
CONTINUITY AND DIFFERENTIATION

TSOGTGEREL GANTUMUR

Abstract. After reviewing the notion of continuity for univariate functions, we extend it
to multivariate functions. Then we treat differentiability in an analogous way.
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1. Continuity of univariate scalar functions

Let us recall first a definition of continuous functions.

• Intuitively, a continuous function f sends nearby points to nearby points, i.e, if x is
close to y then f(x) is close to f(y).
• That is, continuous functions are the ones that send convergent sequences to conver-

gent sequences. This is sometimes called the sequential criterion of continuity.

Definition 1.1. Let K ⊂ R be a set. A function f : K → R is said to be continuous at
y ∈ K if and only if f(xn)→ f(y) as n→∞ for every sequence {xn} ⊂ K converging to y.

Example 1.2. (a) Let f : R → R be the function given by f(x) = x for x ∈ R. Then f is
continuous at every point y ∈ R, because given any sequence {xn} ⊂ R converging to y,
we have f(xn) = xn → y = f(y) as n→∞.

(b) Let g : R → R be the function given by g(x) = |x| for x ∈ R. Then f is continuous
at every point y ∈ R, because given any sequence {xn} ⊂ R converging to y, we have
g(xn) = |xn| → |y| = f(y) as n→∞.

(c) We define the Heaviside step function θ : R→ R by

θ(x) =

{
1 for x > 0,

0 for x ≤ 0.
(1)

It is clear that θ is continuous at every x ∈ R \ {0} . Our intuition tells us that θ is
not continuous at x = 0. Indeed, let xn = 1

n and yn = − 1
n for n ∈ N. Then we have

xn → 0 and yn → 0, but θ(xn)→ 1 and θ(yn)→ 0 as n→∞. Since 1 6= 0, the sequential
criterion of continuity implies that θ is not continuous at x = 0.
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(d) The Dirichlet function h : R→ R is defined by

h(x) =

{
1 for x ∈ Q,
0 for x ∈ R \Q.

(2)

For any x ∈ R, we can find two sequences {xn} ⊂ Q and {yn} ⊂ R \Q satisfying xn → x
and yn → x as n→∞. Since h(xn) = 1 and h(yn) = 0, we have h(xn)→ 1 and h(yn)→ 0,
and hence we conclude that h is not continuous at any point x ∈ R.

Remark 1.3. This remark contains the main practical message of this section.

• In order to show that f is discontinuous at y, it suffices to exhibit a sequence {xn}
with xn → y, such that f(xn) 6→ f(y) as n→∞.
• If a function is given by a formula, verifying its continuity is usually not hard, because

continuous building blocks produce continuous functions. In the rest of this section
we shall justify the latter statement.

Lemma 1.4. Let K ⊂ R, and let f, g : K → R be functions continuous at x ∈ K. Then the
sum and difference f ± g, and the product fg are all continuous at x. Moreover, the function
1
f is continuous at x, provided that f(x) 6= 0.

Proof. The results are immediate from the definition of continuity. For instance, let us prove
that fg is continuous at x. Thus let {xn} ⊂ K be an arbitrary sequence converging to x.
Then f(xn) → f(x) and g(xn) → g(x) as n → ∞, and hence f(xn)g(xn) → f(x)g(x) as
n→∞. Therefore fg is continuous at x. �

Exercise 1.5. Complete the proof of the preceding lemma.

Example 1.6. (a) We know that the constant function f(x) = c (where c ∈ R) and the
identity function f(x) = x are continuous in R. Then by Lemma 1.4, any monomial
f(x) = axn with constants a ∈ R and n ∈ N0, is continuous in R, since we can write
axn = a · x · · ·x. A univariate polynomial is a function p : R→ R of the form

p(x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0. (3)

By Lemma 1.4 again, we conclude that all univariate polynomials are continuous in R.
(b) Let p and q be polynomials, and let Z = {x ∈ R : q(x) = 0} be the set of zeroes of q. Then

by Lemma 1.4, the function r : R \ Z → R given by r(x) = p(x)
q(x) is continuous in R \ Z.

The functions of this form are called rational functions. For instance, f(x) = x2+1
(x−1)(x−2)

is continuous at each x ∈ R \ {1, 2}.
(c) The function tanx = sinx

cosx is continuous wherever cosx 6= 0.

Lemma 1.7. Let K ⊂ R, and let g : K → R be a function whose components are all
continuous at x ∈ K. Suppose that U ⊂ R satisfies g(K) ⊂ U , the latter meaning that y ∈ K
implies g(y) ∈ U . Let F : U → R be a function continuous at g(x). Then the composition
F ◦ g : K → R, defined by (F ◦ g)(y) = F (g(y)), is continuous at x.

Example 1.8. (a) The function f(x) = cos(2x+ sinx) is continuous in R.
(b) The function g(x) = tan(ex) is continuous wherever ex 6= π

2 + πn for any n ∈ Z.

2. Continuity of univariate vector functions

The set of all ordered pairs of real numbers is denoted by

R2 = R× R = {(x, y) : x, y ∈ R}. (4)

Ordered means that, for instance, (1, 3) 6= (3, 1). As an example, the position of a point on
the surface of the Earth can be described by an element of R2, by its latitude and longitude.
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• For n ∈ N, we let

Rn = R× . . .× R︸ ︷︷ ︸
n times

= {(x1, x2, . . . , xn) : x1, x2, . . . , xn ∈ R}. (5)

An element of Rn is called an n-tuple, an n-vector, a point, or simply a vector.
• In a context where both R and Rn (with n > 1) are present, an element of R (i.e., a

real number) is called a scalar.
• Given a vector x = (x1, . . . , xn) ∈ Rn, the number xk ∈ R is called the k-th component

of x, for k ∈ {1, . . . , n}.
• At times, it is convenient to denote a vector in R2 by (x, y) with x and y being real

numbers, instead of using subscripts as in (x1, x2).
• The advantage of the notation (x1, x2), apart from its generalization to n dimensions,

is that the vector itself can be denoted by x = (x1, x2), whereas for (x, y) we need to
invent a letter, such as P = (x, y).

Example 2.1. Consider n foreign currencies, and let xk be the exchange rate between the
k-th currency and Canadian dollar (at a certain moment of time). Then any possible outcome
(x1, . . . , xn) can be considered as an element of Rn.

Definition 2.2. For x, y ∈ Rn and α ∈ R, we define

x± y = (x1 ± y1, . . . , xn ± yn) and αx = xα = (αx1, . . . , αxn). (6)

Example 2.3. For x = (1,−3) ∈ R2, we have 2x = x · 2 = (2,−6), and x+ (−2, 3) = (−1, 0).

Let K ⊂ R, and let f : K → Rn be a function.

• Such functions are called vector valued functions (of a single variable).
• In contrast, R-valued functions (i.e., n = 1) are called scalar valued functions.
• For t ∈ K, the value f(t) is an n-vector; Let us denote the k-th component of f(t) ∈ Rn

by fk(t) ∈ R.
• Since t can be any point in K, this defines a function fk : K → R, called the k-th

component of f , for each k ∈ {1, . . . , n}.
• Thus a vector valued function is simply a collection of scalar valued functions.

Example 2.4. (a) If f(t) ∈ R2 denotes the latitude and longitude of a car at the time
moment t ∈ R, then f : R→ R2 is a vector valued function.

(b) Similarly, f(t) ∈ Rn could be the list of exchange rates at the time moment t ∈ R.
(c) An explicit example is f(t) = (t cos t, t sin t). This function is of the type f : R→ R2.

We define continuity for vector functions component-wise.

Definition 2.5. Let K ⊂ R be a set, and let f : K → Rn be a vector function. We say that
f is continuous at y ∈ K if each component of f is continuous at y.

Example 2.6. (a) The function f : R → R2 defined by f(t) = (t cos t, t sin t) is obviously
continuous at each t ∈ R.

(b) The function f(t) = (θ(t), t2) is discontinuous at 0, and continuous everywhere in R\{0}.

Let us briefly discuss vector sequences.

• A vector sequence is simply a sequence

x(1), x(2), . . . , x(i), . . . ,

consisting of vectors x(i) ∈ Rn, i ∈ N.

• If we fix k ∈ {1, . . . , n}, then {x(1)k , x
(2)
k , . . .} is a scalar (i.e., real number) sequence,

called the k-th component of the vector sequence {x(i)}.
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• Hence a vector sequence is simply a collection of scalar sequences.

Example 2.7. An example of an R2-valued sequence is (j2, arctan j), j = 0, 1, 2, . . ..

Definition 2.8. We say that a vector sequence {x(i)} ⊂ Rn converges to y ∈ Rn if for each

k ∈ {1, . . . , n}, the k-th component of {x(i)} converges to the k-th component of y. That is,

we write x(i) → y as i→∞ if x
(i)
k → yk as i→∞ for each k ∈ {1, . . . , n}.

Example 2.9. (a) The sequence (j2, arctan j) is not convergent as j → ∞, because its first
component does not convergent.

(b) However, ( 1
j+1 , arctan j) is convergent as j →∞, and the limit is (0, π2 ).

3. Continuity of multivariate functions

In this section, we start our study of functions of several variables.

• A (scalar) function of several variables is simply a function f : K → R, where K ⊂ Rn.
• For now, we will focus on scalar valued functions of 2 variables (i.e., n = 2).
• Examples of such functions are given by

f(x, y) = log(x+ y) with K = {(x, y) ∈ R2 : x+ y > 0},

and

f(x, y) = −max{x, y} with K = R2.

The first question is how we define continuity for functions of several variables. For functions
of the sort g : R→ Rn, we defined continuity as continuity of its components gk : R→ R. For
a function of the sort f : R2 → R, the component-wise approach to continuity would be to
require that the single variable functions g(x) = f(x, y) with y fixed, and h(y) = f(x, y) with
x fixed, are both continuous.

Definition 3.1. Let K ⊂ R2 be a set, and let f : K → R be a function. We say that
f is separately continuous at (x, y) ∈ K, if the single variable functions g(t) = f(t, y) and
h(t) = f(x, t) are both continuous.

Example 3.2. (a) The function f(x, y) = x2 + sin y is separately continuous at (0, π2 ) ∈ R2,

because g(x) = x2+1 and h(y) = sin y are continuous at x = 0 and at y = π
2 , respectively.

(b) Consider

f(x, y) =

{
1 for x < y < 3x

0 otherwise.
(7)

This function is separately continuous at (0, 0) with f(x, y) = 0, because f(t, 0) = f(0, t) =
0 for all t ∈ R. However, there exist points (x, y) that are arbitrarily close to (0, 0) with
f(x, y) = 1, such as (x, 2x) for x > 0.

We see that separate continuity of f : R2 → R, say, at (0, 0), imposes conditions only on
the two axes, and hence it is not dependent on the behaviour of f at points such as (x, x) with
x > 0 arbitrarily small. The following is a stronger definition, which follows an inherently
2-dimensional approach.

Definition 3.3. Let K ⊂ R2 be a set, and let f : K → R be a function. We say that f
is jointly continuous or simply continuous at (x, y) ∈ K, if f(xi, yi) → f(x, y) as i → ∞ for
every sequence {(xi, yi)} ⊂ K converging to (x, y).

Example 3.4. In Example 3.2(b), we have f( 1
m ,

2
m) = 1 for m ∈ N, but f( 1

m , 0) = 0 for
m ∈ N. This shows that f is not jointly continuous at the origin.
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Exercise 3.5. Show that the function

f(x, y) =

{
1 for x2 < y < 3x2

0 otherwise
(8)

is not jointly continuous at the origin, but is continuous along any line, that is, the function
g(t) = f(α+ at, β + bt) is continuous in R for any constants α, β, a, b ∈ R.

Example 3.6. (a) Let c ∈ R, and let f : R2 → R be the function given by f(x, y) = c.
Then f is continuous at every point (x, y) ∈ R2, since for any sequence {(xi, yi)}, we have
f(xi, yi) = c→ c = f(x, y) as i→∞.

(b) Let f : R2 → R be the function given by f(x, y) = x. Then f is continuous at every
point (x, y) ∈ R2, because given any sequence {(xi, yi)} ⊂ R2 converging to (x, y), we
have f(xi, yi) = xi → x = f(x, y) as i→∞.

(c) Similarly, g : R2 → R given by g(x, y) = y is continuous everywhere in R2.

Remark 3.7. This remark contains the main practical message of this section.

• In order to show that f is discontinuous at (x, y), it suffices to exhibit a sequence
{(xn, yn)} with (xn, yn)→ (x, y), such that f(xn, yn) 6→ f(x, y) as n→∞.
• If a function is given by a formula, verifying its continuity is usually not hard, because

continuous building blocks produce continuous functions. Following the pattern of the
single variable theory, in what follows we shall justify the latter statement.

Lemma 3.8. Let K ⊂ R2, and let f, g : K → R be functions continuous at x ∈ K. Then the
sum and difference f ± g, and the product fg are all continuous at x. Moreover, the function
1
f is continuous at x, provided that f(x) 6= 0.

Example 3.9. (a) Recall from Example 3.6 that the constant function f(x, y) = c (where
c ∈ R), and the projection maps g(x, y) = x and h(x, y) = y are continuous in R2. Then
by Lemma 3.8, any monomial f(x, y) = axnym with constants a ∈ R and n,m ∈ N2

0, is
continuous in R2. A bivariate polynomial is a function p : R2 → R of the form

p(x) =
∑
i,k

aikx
iyk, (9)

where only finitely many of the coefficients aik ∈ R are nonzero. Applying Lemma 3.8
again, we conclude that all bivariate polynomials are continuous in R2.

(b) Let p and q be polynomials, and let Z = {(x, y) ∈ R2 : q(x, y) = 0} be the set of

zeroes of q. Then by Lemma 3.8, the function r : R2 \ Z → R given by r(x, y) = p(x,y)
q(x,y)

is continuous in R2 \ Z. The functions of this form are called rational functions. For

instance, f(x, y) = x2+1
(x−1)2+y2 is continuous at each (x, y) ∈ R2 \ {(1, 0)}.

Lemma 3.10. Let K ⊂ R2, and let g : K → R be a function continuous at (x, y) ∈ K.
Suppose that U ⊂ R satisfies g(K) ⊂ U , the latter meaning that (x, y) ∈ K implies g(x, y) ∈ U .
Let F : U → R be a function continuous at g(x, y). Then the composition F ◦ g : K → R,
defined by (F ◦ g)(x, y) = F (g(x, y)), is continuous at x.

Example 3.11. (a) The function f(x, y) = cos(2x+ y)− sinx is continuous in R2.
(b) Let K ⊂ R2 and let f : K → R be continuous at (x, y) ∈ K. Then

g(s, t) = |f(s, t)| for (s, t) ∈ K, (10)

is continuous at (x.y).

We now consider vector functions of several variables. All that has been said extends to
this situation in a straightforward, “componentwise” way.
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Definition 3.12. Let K ⊂ Rn be a set, and let f : K → Rm be a function. We say that f is
continuous at y ∈ K, if each component of f is continuous at y. If f : K → Rm is continuous
at each point of K, we say that f is continuous in K.

Example 3.13. (a) The function f : R2 → R2 defined by f(x, y) = (x cos y, y sinx) is obvi-
ously continuous in R2.

(b) The function f(x, y) = (ax+ by, cx+ dy), with a, b, c, d constants, is continuous in R2.

4. Differentiability of univariable scalar functions

Let us recall the usual definition of differentiability. This is essentially the definition intro-
duced by Augustin-Louis Cauchy in 1821.

Definition 4.1. Let K ⊂ R be a set, and let f : K → R be a function. We say that f is
differentiable at y ∈ K, if there exists λ ∈ R such that

f(x)− f(y)

x− y
→ λ as x→ y. (11)

We call f ′(y) = λ the derivative of f at y. If f is differentiable at each point of K, then f is
said to be differentiable in K.

Remark 4.2. The following notations are also used:

df

dx
(x) = ḟ(x) = f ′(x). (12)

Example 4.3. (a) Let us try to differentiate f(x) = x2 at y = 1. Taking into account

f(x)− f(y)

x− y
=
x2 − 1

x− 1
=

(x− 1)(x+ 1)

x− 1
= x+ 1, (13)

we compute

lim
x→1

f(x)− f(1)

x− 1
= lim

x→1
(x+ 1) = 2, (14)

which means that f is differentiable at 1, with f ′(1) = 2. Note that (13) can be rewritten
as

f(x) = f(1) + (x+ 1)(x− 1) = f(1) + g(x)(x− 1), (15)

with g(x) = x + 1, and the derivative f ′(1) is simply the value g(1). This is generalized
to Carathéodory’s criterion (c) in the following lemma.

(b) Let us try to differentiate f(x) = |x| at x = 0. With xn = 1
n for n ∈ N, we have

{xn} ⊂ R \ {0} and xn → 0 as n→∞. On one hand, we get

lim
n→∞

f(xn)− f(0)

xn − 0
= lim

n→∞

|xn|
xn

= 1, (16)

but on the other hand, with yn = −xn, we infer

lim
n→∞

f(yn)− f(0)

yn − 0
= lim

n→∞

|yn|
yn

= − lim
n→∞

xn
xn

= −1. (17)

The definition of derivative requires these two limits to be the same, and thus we conclude
that f(x) = |x| is not differentiable at x = 0.

(c) Consider the differentiability of f(x) = 3
√
x at x = 0. Let xn = 1

n3 . It is obvious that
xn 6= 0 and xn → 0. We have

f(xn)− f(0)

xn − 0
=

3
√
xn
xn

= n2, (18)

which diverges as n→∞. Hence f(x) = 3
√
x is not differentiable at x = 0.

http://www-history.mcs.st-andrews.ac.uk/Biographies/Cauchy.html
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We now state a couple of useful criteria of differentiability. In the following lemma, (b) is
called the sequential criterion, and (c) is introduced by Constantin Carathéodory in 1950.

Lemma 4.4. Let K ⊂ R, let y ∈ K, and let f : K → R be a function. Then the following
are equivalent.

(a) f is differentiable at y.
(b) There exists a number λ ∈ R, such that

f(xn)− f(y)

xn − y
→ λ as n→∞, (19)

for every sequence {xn} ⊂ K \ {y} converging to y.
(c) There exists a function g : K → R, continuous at y, such that

f(x) = f(y) + g(x)(x− y) for x ∈ K. (20)

In (b), the derivative is given by f ′(y) = λ, and in (c), it is given by f ′(y) = g(y).

Example 4.5. (a) Let c ∈ R, and let f(x) = c be a constant function. Then by Caratheodory’s
criterion, since f(x) = f(y) + 0 · (x− y) for all x, y, we get f ′(y) = 0 for all y.

(b) Let a, c ∈ R, and let f(x) = ax + c be a linear (also known as affine) function. Since
f(x) = f(y) + a(x− y) for all x, y, by Caratheodory’s criterion, we get f ′(y) = a for all y.

(c) Let f(x) = x3, and let us try to differentiate it at y ∈ R. Since

f(x)− f(y) = x3 − y3 = (x2 + xy + y2)(x− y), (21)

we identify g(y) = x2 + xy + y2 in Caratheodory’s criterion, to conclude that f is differ-
entiable at y, with f ′(y) = g(y) = 3y2 for all y.

(d) Let f(x) = 1
x , fix y ∈ R \ {0}, and for x ∈ R \ {0, y} define

g(x) =

1
x −

1
y

x− y
= − 1

xy
. (22)

Upon defining g(y) = − 1
y2

, the function g(x) = − 1
x ·

1
y becomes continuous at x = y, and

therefore f is differentiable at y with

f ′(y) =
(1

y

)′
= − 1

y2
(y 6= 0). (23)

Remark 4.6. Differentiability of f at y is equivalent to the condition that f(x) can be
approximated by the linear function `(x) = f(y) + λ(x − y) with the error going to 0 faster
than |x − y|. Of course, this linear function is the tangent line to the graph of f through
the point (x, f(x)). Recall that continuity of f at y is equivalent to saying that f(x) can be
approximated by the constant f(y) with the error going to 0 as x→ y.

Example 4.7. (a) The linear approximation to f(x) = x3 at x = 1 is given by

`(x) = f(1) + f ′(1)(x− 1) = 1 + 3(x− 1) = 3x− 2. (24)

So for instance, we can approximate

1.13 = f(1.1) ≈ `(1.1) = 3 · 1.1− 2 = 1.3. (25)

Compare this with the true value 1.13 = 1.331.
(b) The tangent line to f(x) = 1

x at x = y is given by

`(x) = f(y) + f ′(y)(x− y) =
1

y
− x− y

y2
=

2

y
− x

y2
. (26)

Remark 4.8. This remark contains the main practical message of this section.

http://www-history.mcs.st-andrews.ac.uk/Biographies/Caratheodory.html
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• In order to show that f is nondifferentiable at x, it suffices to exhibit a sequence {xn}
with xn → x, such that the quotient f(xn)−f(x)

xn−x does not have a limit as n→∞.
• If a function is given by a formula, verifying its differentiability and computing its

derivative is usually not hard, because differentiable building blocks produce differen-
tiable functions. In the rest of this section, we shall review differentiability of various
combinations of differentiable functions.

Theorem 4.9. Let f, g : (a, b) → R be functions differentiable at x ∈ (a, b). Then the
following are true.

a) The sum and difference f ± g are differentiable at x, with

(f ± g)′(x) = f ′(x)± g′(x). (27)

These are called the sum and difference rules.
b) The product fg is differentiable at x, with

(fg)′(x) = f ′(x)g(x) + f(x)g′(x). (28)

This is called the product rule.
c) If F : (c, d) → R is a function differentiable at g(x), with g((a, b)) ⊂ (c, d), then the

composition F ◦ g : (a, b)→ R is differentiable at x, with

(F ◦ g)′(x) = F ′(g(x))g′(x). (29)

This is called the chain rule.
d) If f : (a, b) → f((a, b)) is bijective and f ′(x) 6= 0, then the inverse f−1 : f((a, b)) → (a, b)

is differentiable at y = f(x), with

(f−1)′(y) =
1

f ′(x)
. (30)

Example 4.10. (a) By the product rule, we have

(x2)′ = 1 · x+ x · 1 = 2x,

(x3)′ = (x2 · x)′ = 2x · x+ x2 · 1 = 3x2, . . .

(xn)′ = nxn−1 (n ∈ N).

(31)

(b) By the sum and product rules, all polynomials are differentiable in R, and the derivative
of a polynomial is again a polynomial.

(c) Given a function f : (a, b)→ R that does not vanish anywhere in (a, b), we can write the
reciprocal function 1

f as F ◦ f with F (z) = 1
z . If f is differentiable at x ∈ (a, b), then by

the chain rule, 1
f is differentiable at x and( 1

f

)′
(x) = (F ◦ f)′(x) = F ′(f(x))f ′(x) = − f ′(x)

[f(x)]2
. (32)

In particular, we have

(x−n)′ = −nx
n−1

x2n
= −nx−n−1 (n ∈ N). (33)

(d) Let f(x) = xn for x ∈ [0,∞), where n ∈ N. We have f ′(x) = nxn−1 at x > 0, and the
inverse function is the arithmetic n-th root f−1(y) = n

√
y (y ≥ 0). Since f ′(x) > 0 for

x > 0, the inverse f−1 is differentiable at each y > 0, with

(f−1)′(y) =
1

f ′(f−1(y))
=

1

n( n
√
y)n−1

=
1

n
y

1−n
n . (34)
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Moreover, by the chain rule, for m ∈ Z and n ∈ N, we infer

(x
m
n )′ = (( n

√
x)m)′ = m( n

√
x)m−1 · 1

n
x

1−n
n =

m

n
x

m−1
n

+ 1−n
n =

m

n
x

m
n
−1, (35)

that is

(xa)′ = axa−1 at each x > 0, for a ∈ Q. (36)

Exercise 4.11. Let f, g : (a, b) → R be functions differentiable at x ∈ (a, b), with g(x) 6= 0.
Show that the quotient f/g is differentiable at x, and the following quotient rule holds.(f

g

)′
(x) =

f ′(x)g(x)− f(x)g′(x)

[g(x)]2
. (37)

Compute the derivative of q(x) = 3x3

x2+1
.

5. Differentiability of univariate vector functions

Similarly to continuity, differentiability of vector functions is defined component-wise.

• A function f : R→ Rn can be interpreted as a parametrized curve in Rn.
• Then its derivative f ′(t) is the tangent vector to the curve at the point f(t).

Definition 5.1. Let K ⊂ R be a set, and let f : K → Rn be a vector function. We say
that f is differentiable at y ∈ K, if each component of f is differentiable at y. We call
f ′(y) = (f ′1(y), . . . , f ′n(y)) ∈ Rn the derivative of f at y. If f is differentiable at each point of
K, then f is said to be differentiable in K.

Example 5.2. (a) Let f(t) = (t2, sin t). Then f ′(t) = (2t, cos t).
(b) Let f(t) = (t sin t, t cos t). Then f ′(t) = (sin t+ t cos t, cos t− t sin t).
(c) Functions ` : R→ Rn of the form

`(t) = α+ tβ, (38)

where α, β ∈ Rn are fixed vectors, are called linear (or affine) functions. For these
functions, we have `′(t) = β.

Lemma 5.3. Let K ⊂ R, let y ∈ K, and let f : K → Rn be a vector function. Then the
following are equivalent.

(a) f is differentiable at y.
(b) There exists a function g : K → Rn, continuous at y, such that

f(x) = f(y) + g(x)(x− y) for x ∈ K. (39)

(c) There exists a vector λ ∈ Rn, such that

f(xi)− f(y)

xi − y
→ λ as i→∞, (40)

for every sequence {xi} ⊂ K \ {y} converging to y.

Exercise 5.4. Let f : (a, b) → Rn and φ : (a, b) → R be both differentiable at y ∈ (a, b).
Show that the product φf : (a, b)→ Rn is differentiable at y, with

(φf)′(y) = φ′(y)f(y) + φ(y)f ′(y).

Exercise 5.5. Let f : (a, b)→ Rn and φ : (c, d)→ (a, b), where φ is differentiable at t ∈ (c, d),
and f is differentiable at φ(t) ∈ (a, b). Show that the composition f ◦ φ : (c, d) → Rn is
differentiable at t, with

(f ◦ φ)′(y) = f ′(φ(t))φ′(t).
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6. Partial and directional derivatives

Separate continuity of a function f : R2 → R at P = (x, y) ∈ R2 is defined in terms of
continuity of the single variable functions g(t) = f(x+ t, y) and h(t) = f(x, y + t), at t = 0.

• Observe that g is simply f restricted to the line γ1(t) = P +(t, 0), t ∈ R, and similarly
that h is simply f restricted to the line γ2(t) = P + (0, t), t ∈ R.
• Apart from continuity, we can talk about differentiability of g and h, leading to the

notion of partial derivatives:

∂f

∂x
(x, y) = g′(0),

∂f

∂y
(x, y) = h′(0).

• More generally, given an arbitrary vector V = (a, b) ∈ R2, the restriction

g(t) = f(P + V t) = f(x+ at, y + bt)

to the line γ(t) = P +V t can be considered. This leads us to the notion of directional
derivative along the direction V :

DV f(x, y) = g′(0).

• Similarly to the situation with continuity, partial and directional derivatives turn out
to be not the correct generalization of the derivative to higher dimensions, but will be
a very useful auxiliary tool to get a handle on the ultimate generalization.

Definition 6.1. Let K ⊂ R2. The directional derivative of f : K → R at P = (x, y) ∈ K
along V ∈ R2, is defined to be DV f(x) = g′(0) if the latter exists, where

g(t) = f(P + V t), (41)

is a function of t ∈ R. The partial derivatives of f at P are

∂f

∂x
(x, y) = De1f(x, y),

∂f

∂y
(x, y) = De2f(x, y), (42)

provided that it exists, where e1 = (1, 0) and e2 = (0, 1). The row-vector (i.e., 1× 2 matrix)
consisting of the partial derivatives

Jf (x, y) =
(
∂f
∂x (x, y) ∂f

∂y (x, y)
)

(43)

is called the Jacobian matrix of f at x.

Remark 6.2. (a) For partial derivatives, the following notations are also used:

fx(x, y) = f ′x(x, y) = ∂xf(x, y) = ∂1f(x, y) =
∂f

∂x
(x, y). (44)

The way to understand the notation ∂1f is that we are taking the partial derivative with
respect to the first variable of f .

(b) For directional derivatives, we have the following (rarely used) alternative notations:

∂V f(x, y) =
∂f

∂V
(x, y) = DV f(x, y). (45)

Example 6.3. (a) Consider the function f : R2 → R defined by

f(x, y) =

{
1 for x2 < y < 3x2

0 otherwise.
(46)
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Given any (a, b) ∈ R2, we have f(at, bt) = 0 for all t > 0 sufficiently small. Hence the
directional derivative DV f(0, 0) exists and is equal to 0 for all V ∈ R2. In particular, the
partial derivatives are

∂f

∂x
(0, 0) = D(1,0)f(0, 0) = 0,

∂f

∂y
(0, 0) = D(0,1)f(0, 0) = 0, (47)

and thus the Jacobian matrix of f at the origin is given by J = (0 0) ∈ R1×2. However,
f is not even continuous at the origin.

(b) Similarly, let

f(x, y) =

{
x2y
x4+y2

for |x|+ |y| > 0

0 for x = y = 0.
(48)

For (a, b) ∈ R2 \ {(0, 0)} and t 6= 0, we have

g(t) = f(at, bt) =
a2bt

a4t2 + b2
= f(0, 0) +

a2b

a4t2 + b2
· t, (49)

which implies that g′(0) exists, with g′(0) = a2/b for b 6= 0 and g′(0) = 0 for b = 0. Hence,
the directional derivativeD(a,b)f(0, 0) exists, with its value equal to a2/b for b 6= 0 and 0 for

b = 0. Note that the value a2/b diverges as (a, b)→ (1, 0), even though D(1,0)f(0, 0) = 0,
meaning that the dependence of D(a,b)f(0, 0) on (a, b) is not continuous. The Jacobian

matrix of f at the origin is given by J = (0 0) ∈ R1×2.

(c) It is easy to see that the function f(x, y) =
√
|xy| is differentiable at (0, 0) along V if and

only if V = (a, 0) or V = (0, a) for some a ∈ R.

Remark 6.4. There is no obvious a priori structure on how DV f depends on V , except to
say that DV f(x) is homogeneous in V , that is, DαV f(x) = αDV f(x) for α ∈ R.

Definition 6.5. A vector valued function f : R2 → Rm is a function with m components:

f(x, y) =
(
f1(x, y), f2(x, y), . . . , fm(x, y)

)
, (50)

where f1, f2, . . . are scalar functions. We usually think of these components as arranged in a
column, and define the Jacobian of f to be the m× 2 matrix

Jf (x, y) =


∂xf1(x, y) ∂yf1(x, y)
∂xf2(x, y) ∂yf2(x, y)

. . .
∂xfm(x, y) ∂yfm(x, y)

 . (51)

Example 6.6. The Jacobian matrix of f(x, y) =
(
xy, sin(x+ y2)

)
is

Jf (x, y) =

(
y x

cos(x+ y2) 2y cos(x+ y2)

)
. (52)

Definition 6.7. The Jacobian of f : Rn → Rm is defined to be the m× n matrix

Jf (x) =


∂1f1(x) ∂2f1(x) . . . ∂nf1(x)
∂1f2(x) ∂2f2(x) . . . ∂nf2(x)
. . .

∂1fm(x) ∂2fm(x) . . . ∂nfm(x)

 . (53)

Example 6.8. The Jacobian matrix of f(x, y) =
(
xyz, sin(x+ z2)

)
is

Jf (x, y, z) =

(
yz xz xy

cos(x+ z2) 0 2z cos(x+ z2)

)
. (54)
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7. Gradient in two dimensions

Loosely speaking, the way we defined partial derivatives resembles that of separate con-
tinuity. Now we want to introduce a notion of derivative that mirrors joint continuity. To
motivate it, recall that f : R→ R is differentiable at x if and only if

f(s) = f(x) + λ(s− x) + e(s), (55)

with e(s) tending to 0 faster than |s− x|, that is,

e(s)

s− x
→ 0 as s→ x, (56)

for some (fixed) number λ ∈ R. In a certain sense, differentiable functions are well approxi-
mated locally by linear functions. An equivalent way to characterize this is to say that

f(s) = f(x) + g(s)(s− x), (57)

with g(s) continuous at s = x. The following natural extension of this criterion to functions
of several variables was first studied by Karl Weierstrass (1861), Otto Stolz (1893), William
H. Young (1910), and Maurice Fréchet (1911).

Definition 7.1. Let K ⊂ R2. A function f : K → R is called differentiable at (x, y) ∈ K if

f(s, t) = f(x, y) + g(s, t)(s− x) + h(s, t)(t− y), (58)

for some functions g and h, both continuous at (s, t) = (x, y). We call the row-vector

Df(x, y) =
(
g(x, y) h(x, y)

)
(59)

if it exists, the derivative of f at (x, y).

Remark 7.2. For scalar valued functions, the derivative is also called the gradient, and the
following alternative notations are often used:

gradf(x, y) = ∇f(x, y) = Df(x, y). (60)

Note in particular that if f is differentiable at (x, y) ∈ K then f is continuous at (x, y). In
contrast, recall from Example 6.3 that directional differentiability does not imply continuity.

Example 7.3. (a) Consider f(x, y) = x2 + y3. We can write

f(s, t)− f(x, y) = s2 − x2 + t3 − y3 = (s− x)(s+ x) + (t− y)(t2 + ty + y2), (61)

and identify g(s, t) = s + x and h(s, t) = t2 + ty + y2. Note that x and y should be
treated as constants, since they are the coordinates of the base point of differentiation.
As g and h are obviously both (jointly) continuous at (s, t) = (x, y), we conclude that f
differentiable at (x, y), with

∇f(x, y) =
(
g(x, y) h(x, y)

)
=
(
2x 3y2

)
. (62)

(b) Consider f(x, y) = xy, and write

f(s, t)− f(x, y) = st− xy = st− xt+ xt− xy = (s− x)t+ x(t− y). (63)

We identify g(s, t) = t and h(s, t) = x, which are obviously continuous at (s, t) = (x, y).
Hence f differentiable at (x, y), with

∇f(x, y) =
(
g(x, y) h(x, y)

)
=
(
y x

)
. (64)

Remark 7.4. If f is differentiable at (x, y), then the linear approximation at (x, y) to f (or
the tangent plane to the graph of f) is given by

`(s, t) = f(x, y) +∇f(x, y)

(
s− x
t− y

)
. (65)

Note that here x and y are fixed, and s and t are the free parameters of the plane.

http://www-history.mcs.st-andrews.ac.uk/Biographies/Weierstrass.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Stolz.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Young.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Young.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Frechet.html
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Example 7.5. (a) The linear approximation to f(x, y) = x2 + y3 at (x, y) = (1, 1) is

`(s, t) = f(1, 1) +∇f(1, 1)

(
s− 1
t− 1

)
= 2 +

(
2 3

)(s− 1
t− 1

)
= 2 + 2(s− 1) + 3(t− 1) = 2s+ 3t− 3.

(66)

For instance, we can approximate

1.12 + 0.93 = f(1.1, 0.9) ≈ `(1.1, 0.9) = 1.92 · 1.1 + 3 · 0.9− 3 = 1.9. (67)

Compare this with the true value f(1.1, 0.9) = 1.939.
(b) The tangent plane to the graph of f(x, y) = xy at (x, y) is

`(s, t) = xy +
(
y x

)(s− x
t− y

)
= xy + y(s− x) + x(t− y) = ys+ xt− xy. (68)

Remark 7.6 (Differentiability implies directional derivatives). Suppose that f : K → R is
differentiable at (x, y) ∈ K. Then for V = (a, b) fixed and t ∈ R with t→ 0, we have

f(x+ at, y + bt) = f(x, y) + g(x+ at, y + bt)at+ h(x+ at, y + bt)bt. (69)

This leads to

f(x+ at, y + bt)− f(x, y)

t
→ g(x, y)a+ h(x, y)b as t→ 0, (70)

i.e., the directional derivative DV f(x, y) exists, with

DV f(x, y) = (∇f(x, y))V = V · ∇f(x, y). (71)

Thus differentiability of f implies not only directional differentiability, but also a linear de-
pendence of the derivative DV f(x, y) on the direction V . In particular, by taking V = e1 and
V = e2, we see that the gradient is in fact equal to the Jacobian matrix Jf (x, y) of f :

∇f(x, y) = Jf (x, y). (72)

In view of the preceding remark, if we somehow know that f is differentiable, we can
compute the derivative as the Jacobian matrix. However, how do we ascertain differentiability
of f in the first place? The following result gives a practical way to handle this situation.

Theorem 7.7. Let Q = (a, b)× (c, d) be a rectangular domain, and let f : Q → R. Suppose
that all partial derivatives of f exist at each (x, y) ∈ Q, and that the partial derivatives are
continuous in Q. Then f is differentiable in Q.

Example 7.8. (a) Let f : R2 → R be given by f(x, y) = x cos y. Its Jacobian matrix can be
computed as

Jf (x, y) =
(
∂xf ∂yf

)
=
(
cos y −x sin y

)
. (73)

Since Jf : R2 → R2 is continuous in R2, we conclude that f is differentiable in R2 with
Df(x, y) = Jf (x, y).

(b) Let f : R2 → R be given by f(x, y) = y sinx. Its Jacobian matrix can be computed as

Jf (x, y) =
(
∂xf ∂yf

)
=
(
y cosx sinx

)
. (74)

Since Jf : R2 → R2 is continuous in R2, we conclude that f is differentiable in R2 with
Df(x, y) = Jf (x, y).

Remark 7.9 (Gradient gives direction of fastest growth). Suppose that f is differentiable at
P = (x, y) with ∇f(P ) =

(
u v

)
, and consider the problem of maximizing DV f(P ) over all

vectors V = (a, b) with unit length. That is, given a gradient vector (u, v) ∈ R2, we want to

find V = (a, b) with |V | =
√
a2 + b2 = 1, such that

DV f(P ) = ua+ vb (75)
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takes its maximum value. We claim that V should be parallel to (u, v), that is, V = (ku, kv)
with k = 1√

u2+v2
. The value of the directional derivative for this particular direction is

D(ku,kv)f(P ) =
√
u2 + v2 = |∇f(x, y)|, (76)

and so what we need to show is

ua+ vb ≤
√
u2 + v2, (77)

for any (a, b) satisfying a2 + b2 = 1. To see this, let

g(t) = (u+ at)2 + (v + bt)2 = u2 + v2 + 2(ua+ vb)t+ (a2 + b2)t2. (78)

Since g(t) ≥ 0 for all t, as a quadratic polynomial of t, its discriminant must be nonpositive:

D = 4(ua+ vb)2 − 4(u2 + v2)(a2 + b2) ≤ 0. (79)

Thus we have

ua+ vb ≤
√
u2 + v2

√
a2 + b2, (80)

which is (77) as a2 + b2 = 1. The argument can be generalized to n dimensions easily, and
the inequality (80) is called the Cauchy-Bunyakowsky-Schwarz inequality.

Remark 7.10 (Gradient is orthogonal to level surfaces). Let f be differentiable at P , and
suppose that V is a vector tangent to the level curve of f at P . Since f does not vary along its
level curves, we have DV f(P ) = 0. On the other hand, we know that DV f(P ) = V · ∇f(P ),
and hence the gradient ∇f(P ) is orthogonal to the level curve: V · ∇f(P ) = 0.

Example 7.11. From Example 7.5(a), we know that the tangent plane to the graph of
f(x, y) = x2 + y3 at (x, y) = (1, 1) is

`(s, t) = 2s+ 3t− 3. (81)

This means that the tangent line (lying in the plane R2) to level curve of f going through
(1, 1) is given by the equation

2s+ 3t− 3 = f(1, 1) = 2. (82)

As the gradient of ` is ∇` = (2, 3), the line normal to the level curve at (1, 1) is given by

x(t) = 1 + 2t, y(t) = 1 + 3t. (83)

8. Differentiability of multivariate functions

Once we understand the gradient in two dimensions, extensions to more general situations
are straightforward. The derivative of f : R2 → Rm is defined component-wise, and if exists,
it coincides with the Jacobian matrix of f , cf. Definition 6.5 and Remark 7.6. In the other
direction, if the Jacobian matrix of f exists and continuous in an open region, then f is
differentiable, cf. Theorem 7.7.

Example 8.1. The Jacobian matrix of f(x, y) =
(
xy, sin(x+ y2)

)
is

Jf (x, y) =

(
y x

cos(x+ y2) 2y cos(x+ y2)

)
. (84)

Since each component of Jf is continuous in R2, we conclude that f is differentiable in R2

with Df(x, y) = Jf (x, y).
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Differentiability of f : R3 → R at x = (x1, x2, x3) is defined by the condition that

f(t1, t2, t3) = f(x1, x2, x3) + g1(t1, t2, t3)(t1 − x1)
+ g2(t1, t2, t3)(t2 − x2) + g3(t1, t2, t3)(t3 − x3), (85)

for some functions g1, g2, and g3, all continuous at t = x. Differentiability of functions of the
type f : Rn → R is defined analogously. For the n-dimensional gradient

∇f(x) =
(
∂1f ∂2f . . . ∂nf

)
, (86)

Remark 7.4, Remark 7.9, and Remark 7.10 are true, with obvious modifications.

Example 8.2. The gradient of f(x, y, z) = xy + sin z is

∇f(x) =
(
y x cos z

)
, (87)

and so the linear approximation to f at (x, y, z) = (1, 1, 0) is

`(s, t, u) = f(1, 1, 0) +∇f(1, 1, 0)

s− 1
t− 1
u

 = 1 +
(
1 1 1

)s− 1
t− 1
u


= 1 + s− 1 + t− 1 + u = s+ t+ u− 1.

(88)

For instance, we can approximate

1 + sin(0.1) = f(1, 1, 0.1) ≈ `(1, 1, 0.1) = 1.1. (89)

Compare this with the true value f(1, 1, 0.1) = 1.09983 . . ..

Finally, differentiability of f : Rn → Rm is defined component-wise. If exists, the derivative
of f : Rn → Rm coincides with the Jacobian matrix of f , cf. Definition 6.7 and Remark 7.6.
In the other direction, if the Jacobian matrix of f exists and continuous in an open region,
then f is differentiable, cf. Theorem 7.7.

Example 8.3. The Jacobian matrix of f(x, y) =
(
xyz, sin(x+ z2)

)
is

Jf (x, y, z) =

(
yz xz xy

cos(x+ z2) 0 2z cos(x+ z2)

)
. (90)

Since each component of Jf is continuous in R3, we conclude that f is differentiable in R3

with Df(x, y, z) = Jf (x, y, z).

9. The chain rule

Recall from single variable calculus that the derivative of the composition (f◦g)(t) = f(g(t))
is given by the so-called chain rule

df(g(t))

dt
= f ′(g(t))g′(t). (91)

As a preliminary to the chain rule for multivariate functions, let us consider differentiating
f(g1(t), g2(t)) with respect to t, where f(x, y) is a bivariate function, and g(t) = (g1(t), g2(t))
is a vector valued univariate function. In view of the approximation

f(g1(t+ h), g2(t+ h)) ≈ f(g1(t) + hg′1(t), g2(t) + hg′2(t)) (92)

and of the definition

df(g1(t), g2(t))

dt
= lim

h→0

f(g1(t+ h), g2(t+ h))− f(g1(t), g2(t))

h
, (93)

we formally derive

df(g(t))

dt
= Dg′(t)f(g(t)) =

∂f

∂x
(g(t))g′1(t) +

∂f

∂y
(g(t))g′2(t). (94)
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This formal derivation can be made precise, and yields the following theorem.

Theorem 9.1 (Chain rule). Let K ⊂ Rn be a set, and let f : K → Rm be a function,
differentiable at y ∈ K. Suppose that U ⊂ Rm, such that f(K) ⊂ U , that is, f(x) ∈ U
for all x ∈ K. Assume that g : U → Rk is differentiable at f(y). Then the composition
g ◦ f : K → Rk, defined by (g ◦ f)(x) = g(f(x)) for x ∈ K, is differentiable at y, with

D(g ◦ f)(y) = Dg(f(y))Df(y). (95)

Example 9.2. Let f : R2 → R and g : R2 → R2 be given by

f(x, y) = xy, g(x, y) =
(
xy, sin(x+ y2)

)
. (96)

Then we have

Df(x, y) =
(
y x

)
, Dg(x, y) =

(
y x

cos(x+ y2) 2y cos(x+ y2)

)
. (97)

The composition h = f ◦ g : R2 → R is h(x, y) = xy sin(x + y2), whose derivative can be
computed by the chain rule as

Dh(x, y) = Df(g(x, y))Dg(x, y) =
(
sin(x+ y2) xy

)( y x
cos(x+ y2) 2y cos(x+ y2)

)
=
(
y sin(x+ y2) + xy cos(x+ y2) x sin(x+ y2) + 2xy2 cos(x+ y2)

)
.

(98)

Remark 9.3 (Convenient notation). In practice, the following form of the chain rule is often
more convenient. Let z be a quantity that depends on y1, y2, . . . , yn, which in turn depend on
other quantities x, . . ., as

z = z
(
y1(x, . . .), y2(x, . . .), . . . , yn(x, . . .)

)
. (99)

Then
∂z

∂x
=

∂z

∂y1

∂y1
∂x

+
∂z

∂y2

∂y2
∂x

+ . . .+
∂z

∂yn

∂yn
∂x

. (100)

Example 9.4 (Polar coordinates). The formula for transforming polar coordinates to Carte-
sian coordinates is given by {

x = r cos θ

y = r sin θ
(101)

which can be written as (x, y) = Φ(r, θ). We can compute

DΦ(r, θ) =

(
cos θ −r sin θ
sin θ r cos θ

)
. (102)

If we have a curve given in polar coordinates γ(t) = (r(t), θ(t)), whose Cartesian representation
is Γ(t) = Φ(γ(t)), then its velocity transforms as

Γ̇(t) = DΦ(γ(t))γ̇(t) =

(
cos θ −r sin θ
sin θ r cos θ

)(
ṙ

θ̇

)
=

(
ṙ cos θ − rθ̇ sin θ

ṙ sin θ + rθ̇ cos θ

)
. (103)

Following the preceding remark, we could have computed it as

ẋ =
dx

dt
=
∂x

∂r

dr

dt
+
∂x

∂θ

dθ

dt
= (cos θ)ṙ − (r sin θ)θ̇,

ẏ =
dy

dt
=
∂y

∂r

dr

dt
+
∂y

∂θ

dθ

dt
= (sin θ)ṙ + (r cos θ)θ̇.

(104)
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On the other hand, given a scalar function f(x, y) of Cartesian coordinates, we can consider
it in polar coordinates, as f = f(r cos θ, r sin θ), and its gradient transforms as

∂rf =
∂f

∂r
=
∂f

∂x

∂x

∂r
+
∂f

∂y

∂y

∂r
= cos θ∂xf + sin θ∂yf

∂θf =
∂f

∂θ
=
∂f

∂x

∂x

∂θ
+
∂f

∂y

∂y

∂θ
= −r sin θ∂xf + r cos θ∂yf

(105)

This can be written as(
∂rf
∂θf

)
= J>

(
∂xf
∂yf

)
, where J =

(
cos θ −r sin θ
sin θ r cos θ

)
, (106)

or (
∂rf ∂θf

)
=
(
∂xf ∂yf

)
J. (107)

Compare this with (103) or (104), that is,(
ẋ
ẏ

)
= J

(
ṙ

θ̇

)
. (108)

Quantities, whose components transform like (108), are called vectors. Velocity is an example
of a vector quantitiy. In contrast, the gradient of a function is not a vector, since it transforms
according to (107). Such quantities are called covectors, or differential 1-forms.

Example 9.5 (Linear regression). Suppose that a collection (xi, yi), i = 1, . . . , N , of points
on the plane R2 is given, which we think of as samples from some unknown functional relation
y = F (x). We want to approximate F by a linear function

y = f(x) = ax+ b, (109)

such that the mean square error

E(a, b) =
N∑
i=1

(f(xi)− yi)2 =
N∑
i=1

(axi + b− yi)2, (110)

is as small as possible. We compute the partial derivatives as

∂E

∂a
=

N∑
i=1

(axi + b− yi)xi = a
N∑
i=1

x2i + b
N∑
i=1

xi −
N∑
i=1

xiyi,

∂E

∂b
=

N∑
i=1

(axi + b− yi) = a

N∑
i=1

xi + nb−
N∑
i=1

yi.

(111)

The parameters a and b are optimal when these partial derivatives vanish. That is, we would
need to solve the 2× 2 linear system {

Ga+Hb = K

Ha+ nb = L
(112)

for the unknowns a and b, where

G =

N∑
i=1

x2i , H =

N∑
i=1

xi, K =

N∑
i=1

xiyi, L =

N∑
i=1

yi. (113)
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Example 9.6 (Backpropagation in a neural net). Suppose that the output s of a neural net
depends on the inputs x1, x2, x3, and the weights a1, a2, . . . , a12, according to the relations

y1 = a1x1 + a2x2 + a3x3, z1 = σ(y1),

y2 = a4x1 + a5x2 + a6x3, z2 = σ(y2),

u1 = a7z1 + a8z2, v1 = σ(u1),

u2 = a9z1 + a10z2, v2 = σ(u2),

w = a11v1 + a12v2, s = σ(w),

(114)

where σ is a given activation function, such as

σ(t) =
1

1 + e−t
. (115)

Then we can compute the derivatives with respect to the weights as, e.g.,

∂s

∂a7
=
∂s

∂w

∂w

∂v1

∂v1
∂u1

∂u1
∂a7

= σ′(w)a11σ
′(u1)z1,

∂s

∂a2
=
∂s

∂w

∂w

∂v1

∂v1
∂u1

∂u1
∂z1

∂z1
∂y1

∂y1
∂a2

+
∂s

∂w

∂w

∂v2

∂v2
∂u2

∂u2
∂z1

∂z1
∂y1

∂y1
∂a2

= σ′(w)a11σ
′(u1)a7σ

′(y1)x2 + σ′(w)a12σ
′(u2)a9σ

′(y1)x2.

(116)
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