MATH 248 WRITTEN ASSIGNMENT 3

DUE THURSDAY NOVEMBER 14

1. Recall that a set $K \in \mathbb{R}^{2}$ is called negligible if for any given $\varepsilon>0$, there exist finitely many rectangles q_{1}, \ldots, q_{m}, such that

$$
K \subset q_{1} \cup \ldots \cup q_{m}, \quad \text { and } \quad\left|q_{1}\right|+\ldots+\left|q_{m}\right|<\varepsilon
$$

(a) Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Prove that the graph

$$
\Gamma=\{(x, f(x)): x \in[a, b]\}
$$

of f is a negligible set in \mathbb{R}^{2}.
Note added on Nov 6: If you want, you can assume that f is continuously differentiable, with its derivative satisfying the estimate $\left|f^{\prime}(x)\right| \leq M$ for all $x \in[a, b]$ and for some constant M.
(b) Give an example of a function $f:[0,1] \rightarrow \mathbb{R}$ whose graph is not negligible in \mathbb{R}^{2}.
2. Let $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ be given by

$$
f(x, y)= \begin{cases}2^{2 n} & \text { for }(x, y) \in\left[2^{-n}, 2^{-n+1}\right) \times\left[2^{-n}, 2^{-n+1}\right), n \in \mathbb{N}, \\ -2^{2 n+1} & \text { for }(x, y) \in\left[2^{-n-1}, 2^{-n}\right) \times\left[2^{-n}, 2^{-n+1}\right), n \in \mathbb{N}, \\ 0 & \text { otherwise } .\end{cases}
$$

Show that

$$
\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y \neq \int_{0}^{1} \int_{0}^{1} f(x, y) d y d x
$$

How do we reconcile this with Fubini's theorem?
3. Let $\gamma(t)=\left(\gamma_{1}(t), \gamma_{2}(t)\right) \in \mathbb{R}^{2}, t \in[a, b]$, be a smooth curve in \mathbb{R}^{2}, such that $\gamma_{1}(t)>0$ for all t, and let $S \subset \mathbb{R}^{3}$ be the surface of revolution, given in cylindrical coordinates by

$$
\left\{\begin{array}{l}
r(t, s)=\gamma_{1}(t) \\
z(t, s)=\gamma_{2}(t) \\
\phi(t, s)=s
\end{array}\right.
$$

with $t \in[a, b]$ and $s \in[0,2 \pi)$.
(a) Show that the surface area of S is

$$
|S|=2 \pi x_{c}|\gamma|,
$$

Date: Fall 2019.
where $|\gamma|$ is the length of γ, and

$$
x_{c}=\frac{1}{|\gamma|} \int_{a}^{b} \gamma_{1}(t)\left|\gamma^{\prime}(t)\right| d t
$$

is the first coordinate of the center of mass of γ.
(b) Apply the formula to find the surface area of the spheroid

$$
\frac{x^{2}+y^{2}}{a^{2}}+\frac{z^{2}}{c^{2}}=1 .
$$

4. Introduce a notion of integral on 3 dimensional hypersurfaces in \mathbb{R}^{4}. Using it, compute the hyper-area of the 3 -dimensional sphere

$$
S_{r}=\left\{x=\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{R}^{4}: x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=r^{2}\right\}
$$

of radius r.
5. Prove the following identities, where f is a scalar field, and X and Y are vector fields.
(a) $\nabla \cdot(f X)=f \nabla \cdot X+(\nabla f) \cdot X$
(b) $\nabla \times(f X)=f \nabla \times X+(\nabla f) \times X$
(c) $\nabla \cdot(X \times Y)=(\nabla \times X) \cdot Y-X \cdot(\nabla \times Y)$
6. Find the area enclosed by the loop in the folium of Descartes, which is given by

$$
\gamma(t)=\left(\frac{3 t}{1+t^{3}}, \frac{3 t^{2}}{1+t^{3}}\right), \quad t \in[0, \infty)
$$

