
FUNCTIONS OF A REAL VARIABLE

TSOGTGEREL GANTUMUR

Abstract. We review some of the important concepts of single variable calculus. The dis-
cussions are centred around building and establishing the main properties of the elementary
functions such as xa, expx, log x, sinx, and arctanx. We start with an axiomatic treatment
of real numbers. If the reader is willing to assume the basic properties of real numbers, then
they can skip Section 1 in its entirety, and simply skim through Section 2.
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1. Ordered fields

In this and the following sections we state (one version of) the real number axioms, and
derive the most fundamental properties of real numbers from them.

The axioms can be thought of as the minimal requirements any logical system that claims
itself to be the real number system must satisfy. It is possible to construct such systems by
using other systems such as the natural number system, but we will not consider those here.

The real number axioms can be divided into three groups. The set of real numbers is
denoted by R, and for any two real numbers a, b ∈ R, their sum a + b ∈ R and product
a · b ∈ R are well defined. In other words, we assume the existence of two binary operations.
Then the first group of axioms requires that R be a field with respect to these operations.
This basically means that the addition and multiplication satisfy commutativity, associativity,
and distributivity laws, that the numbers 0 and 1 exist and are distinct, and finally, that
subtraction and division (by any nonzero number) can be defined.

The second group of axioms adds more structure to the field, and demands that R be an
ordered field. This means that any two real numbers a, b ∈ R satisfy one (and only one) of
a < b, a = b, and b < a, that the binary relation < is transitive, and that a < b is preserved
under addition of any number and under multiplication by a positive number. In this section,
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we will consider some of the consequences of the first two groups of axioms. The third group,
that is an axiom on completeness of R, will be considered in the next section.

Axiom 1 (Ordered field). (a) The addition operation satisfies the following properties.
(i) a, b ∈ R then a+ b = b+ a.

(ii) a, b, c ∈ R then (a+ b) + c = a+ (b+ c).
(iii) There exists an element 0 ∈ R such that a+ 0 = a for each a ∈ R.
(iv) For any a ∈ R there exists x ∈ R such that x+ a = 0.

(b) The multiplication operation satisfies the following properties.
(i) a, b ∈ R then a · b = b · a.

(ii) a, b, c ∈ R then (a · b) · c = a · (b · c).
(iii) a, b, c ∈ R then a · (b+ c) = a · b+ a · c.
(iv) There exists an element 1 ∈ R with 1 6= 0 such that a · 1 = a for each a ∈ R.
(v) For any a ∈ R not equal to 0, there exists x ∈ R such that x · a = 1.

(c) The binary relation < satisfies the following properties.
(i) a, b ∈ R then one and only one of the following is true: a < b, a = b, or b < a.

(ii) If a, b, c ∈ R satisfy a < b and b < c then a < c.
(iii) If a, b, c ∈ R and a < b then a+ c < b+ c.
(iv) If a, b ∈ R satisfy a > 0 and b > 0 then a · b > 0.

Remark 1.1. The relation a > b is defined as b < a. Similarly, a ≤ b means a < b or a = b,
and a ≥ b means a > b or a = b. The product a · b can be written simply as ab.

Definition 1.2. Given a, b, c ∈ R with c 6= 0, we define the difference a − b ∈ R and the
quotient a

c ∈ R as the solutions to the equations b + x = a and cx = a, respectively. Then
b) and f) of the following theorem guarantee that these concepts are well defined. We also
define the opposite number (or negation) −a = 0− a and the reciprocal (or inverse) a−1 = 1

a .

Theorem 1.3 (Algebraic properties). For a, b, c ∈ R, we have the following.

a) a+ b = a implies b = 0 (uniqueness of 0).
b) a+ b = a+ c implies b = c (subtraction of a).
c) 0 · a = 0.
d) ab = 0 implies a = 0 or b = 0.
e) ab = a and a 6= 0 imply b = 1 (uniqueness of 1).
f) ab = ac and a 6= 0 imply b = c (division by a).

Proof. a) By Axiom (a)(iii), we have b = 0 + b. Now let x be such that x+ a = 0. Then the
assumed property of b implies that

b = 0 + b = (x+ a) + b = x+ (a+ b) = x+ a = 0. (1)

b) Let x be such that x+ a = 0. Then we have

b = 0 + b = (x+ a) + b = x+ (a+ b) = x+ (a+ c) = (x+ a) + c = 0 + c = c. (2)

c) Using the distributivity axiom, we observe that

a = a · 1 = a · (0 + 1) = a · 0 + a · 1 = a · 0 + a, (3)

and part a) of the current theorem (i.e., uniqueness of 0) finishes the job.
d) Suppose that a 6= 0, and let x be such that xa = 1. Then we infer

b = 1 · b = (xa) · b = x · (ab) = x · 0 = 0, (4)

where in the last step we have used part c) of the current theorem. �

Exercise 1.4. Prove e) and f) of the preceding theorem.

Exercise 1.5. Prove the following.
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(a) a− b = a+ (−b) for a, b ∈ R.
(b) −(ab) = (−a) · b for a, b ∈ R. In particular, −a = (−1) · a and (−a) · (−a) = a · a.
(c) (ab)−1 = a−1b−1 for a, b ∈ R \ {0}.

Theorem 1.6 (Order properties). For a, b, c, d ∈ R, we have the following.

a) a > 0 is equivalent to −a < 0.
b) a < b is equivalent to b− a > 0.
c) b < c and a > 0 imply ab < ac.
d) b < c and a < 0 imply ab > ac.
e) a 6= 0 implies a · a > 0.
f) 0 < a < b and ac = bd > 0 imply 0 < d < c.

Proof. a) If a > 0, then Axiom (c)(iii) yields 0 = a + (−a) > 0 + (−a) = −a. Similarly, if
−a < 0, then 0 = −a+ a < 0 + a = a.

b) By Axiom (c)(iii), a < b implies 0 = a+ (−a) < b+ (−a) = b−a. Similarly, in the other
direction, b− a > 0 implies b = b− a+ a > 0 + a = a.

c) By the preceding paragraph, b < c is the same as c − b > 0, and then Axiom (c)(iv)
implies that ac− ab = a(c− b) > 0, or ac > ab.

f) Suppose that c < 0. Then −c > 0, and hence −(ac) = a · (−c) > 0, or ac < 0. Since
c = 0 would imply that ac = 0, we conclude that c > 0, and similarly, that d > 0. Now
assume d ≥ c. Then ac < bc ≤ bd, contradicting ac = bd. Hence d < c. �

Exercise 1.7. Prove d) and e) of the preceding theorem.

Definition 1.8. We introduce the following notations.

• (a,∞) = {x ∈ R : x > a}, (−∞, b) = {x ∈ R : x < b}.
• [a,∞) = {x ∈ R : x ≥ a}, (−∞, b] = {x ∈ R : x ≤ b}.
• (a, b) = (a,∞) ∩ (−∞, b).
• [a, b] = [a,∞) ∩ (−∞, b].
• (a, b] = (a,∞) ∩ (−∞, b], [a, b) = [a,∞) ∩ (−∞, b).

Exercise 1.9. Show that R \ (a, b) = (−∞, a] ∪ [b,∞) and R \ [a, b] = (−∞, a) ∪ (b,∞).

Definition 1.10. For a ∈ R, we define its modulus (or absolute value) by

|a| =

{
a, for a ≥ 0,

−a, for a < 0.
(5)

Remark 1.11. One can think of |a| as the distance between the points a and 0 on the real
line. The distance between two points a and b is defined to be |a− b|.

Exercise 1.12. Prove the following.

(a) |a| ≥ 0 for any a ∈ R, and |a| = 0 if and only if a = 0.
(b) |a−1| = 1

|a| for a 6= 0.

(c) |ab| = |a||b| for a, b ∈ R.
(d) |a+ b| ≤ |a|+ |b| for a, b ∈ R.
(e) ||a| − |b|| ≤ |a− b| for a, b ∈ R.

Having established the basic algebraic properties of R, we now turn to identifying some
important subsets of R, such as the integers and the rational numbers. We have 0 ∈ R and
1 ∈ R with 0 6= 1, thus obviously −1 6= 0. Moreover, 1 < 0 would imply −1 > 0, and hence
−1 = (−1) · 1 < (−1) · 0 = 0 by Theorem 1.6(c). Since −1 > 0 and −1 < 0 cannot be
simultaneously true, we conclude that 0 < 1. Now, the number 2 = 1+1 is distinct from each
of −1, 0, and 1, because 1 + 1 > 1 + 0 = 1. We continue this process as 3 = 2 + 1, 4 = 3 + 1,
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..., constructing larger and larger numbers. The numbers obtained are of course the natural
numbers. To make it more precise, we define an inductive subset of R as a subset A ⊂ R with
the property that 1 ∈ A and that x ∈ A implies x+ 1 ∈ A. Then we define the set of natural
numbers N as the intersection of all inductive subsets of R. Since inductivity is preserved
under intersections (Exercise!), N is the smallest inductive subset of R. This property is the
basis of proof by induction, and of definition by recurrence. We illustrate these by a couple of
examples.

Let n ∈ N, and let xk ∈ R for each k ∈ N with k ≤ n. In other words, x : Nn → R is a
function with Nn = {k ∈ N : k ≤ n} and x(k) = xk. Such a function is called a finite sequence
of real numbers, an n-tuple, or an n-vector, and denoted by (x1, x2, . . . , xn). Sets of the form
{xk : k ∈ Nn} are called finite sets. For an arbitrary set B ⊂ R, a number m ∈ B is called
a maximum of B if b ≤ m for all b ∈ B. If B admits a maximum, the maximum must be
unique, because the existence of two maxima m,m′ ∈ B implies that m ≤ m′ and m′ ≤ m.

Lemma 1.13. Any nonempty finite set of real numbers admits a maximum.

Proof. Let A ⊂ N be the set of n ∈ N with the property that any set of the form {xk : k ∈ Nn}
admits a maximum. Clearly, 1 ∈ A since given any set {x1}, we can check that m = x1 is a
maximum of {x1}. Suppose that n ∈ A, that is, suppose that any set of the form {xk : k ∈ Nn}
admits a maximum. Let B = {x1, x2, . . . , xn+1} be given. Then {x1, x2, . . . , xn} admits a
maximum, which we denote by xi. Now if xi > xn+1, we set m = xi, and if xi ≤ xn+1, we set
m = xn+1. Since m ≥ xn+1 and m ≥ xi ≥ xk for any k ≤ n, we see that m is the maximum
of B. All this shows that 1 ∈ A, and that n ∈ A implies n + 1 ∈ A. Thus A is an inductive
set, meaning that N ⊂ A. �

Exercise 1.14. Introduce the concept of minimum, and show that any nonempty set A ⊂ N
admits a minimum.

Definition 1.15. For a ∈ R and n ∈ N, the n-th power of a is the real number an ∈ R defined
by the recurrent formula

an =

{
a, for n = 1,

a · an−1, for n > 1.
(6)

Fix a ∈ R, and let A ⊂ R be the set of x ∈ R for which the power ax is uniquely defined
by the preceding definition. Since the definition restricts itself to x ∈ N, we have A ⊂ N. It
is clear that 1 ∈ A. Moreover, if x ∈ A then x+ 1 ∈ A, because x+ 1 ∈ N and ax+1 is defined
as a · ax. Hence A is inductive, meaning that N ⊂ A.

Exercise 1.16. (a) Informally, the factorials are defined by 1! = 1, 2! = 1 · 2, 3! = 1 · 2 · 3,
etc. Give a definition of n! by using a recurrent formula.

(b) Given x1, x2, . . . , xn, informally, we have

1∑
i=1

xi = x1,

2∑
i=1

xi = x1 + x2,

3∑
i=1

xi = x1 + x2 + x3, etc. (7)

Define
n∑
i=1

xi by using a recurrent formula.

(c) Prove the binomial formula

(a+ b)n =

n∑
i=0

(
n

i

)
aibn−i, (8)

where a, b ∈ R, n ∈ N, and
(
n
i

)
= n!

i!(n−i)! , with the conventions x0 = 1 and 0! = 1.
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(d) Prove the formula

an − bn = (a− b) ·
n−1∑
i=0

aibn−1−i, (9)

for a, b ∈ R and n ∈ N.

The natural numbers are closed under addition and multiplication, but the equations a+x =
b and ax = b are not always solvable. By adjoining the negative integers and 0 to N, the
equation a + x = b can be solved. We let N0 = {0} ∪ N, and define the set of integers by
Z = N0 ∪ {−n : n ∈ N}. Then Z is closed under addition, subtraction, and multiplication,
i.e., Z is a ring. We extend the power function to integers as follows.

an =


an, for n ∈ N,
1, for n = 0,
1

a−n , for n < 0,

(10)

where a ∈ R and n ∈ Z. Note that negative powers are not defined for a = 0.

Exercise 1.17. Prove the following.

(a) anam = an+m, (an)m = anm, (ab)n = anbn.
(b) |an| = |a|n
(c) If 0 < a < b then an < bn for n > 0 and an > bn for n < 0.
(d) If m < n then am < an for a > 1 and am > an for 0 < a < 1.

Exercise 1.18. Let A ⊂ Z be bounded above, in the sense that there is b ∈ Z such that a < b
for all a ∈ A. Show that A admits a maximum.

Going further, the rational numbers are Q = {mn : m ∈ Z, n ∈ N}, which is closed under
addition, subtraction, multiplication, and division by nonzero numbers. It is almost immediate
that Q satisfies the ordered field axioms (Axiom 1) considered in this section. Therefore
Axiom 1 is not stringent enough to differentiate R from Q. What we need is an additional
axiom, that will be considered in the next section.

2. The real number continuum

The following notions will be used in the statement of the anticipated axiom.

Definition 2.1. Given a set A ⊂ R, a number s ∈ R is called the least upper bound or the
supremum of A, and written as

supA = s, (11)

if a ≤ s for all a ∈ A, and for any c < s there is a ∈ A with a > c.

Example 2.2. For A = (0, 1] and B = (0, 1), we have supA = supB = 1. The set (1,∞)
does not have a supremum.

Definition 2.3. A subset A ⊂ R is called bounded above if there exists a number b ∈ R such
that a < b for all a ∈ A.

Example 2.4. The set {x− x2 : x ∈ R} is bounded above, while {n2 : n ∈ N} is not.

Now we are ready to state the only remaining axiom for real numbers.

Axiom 2 (Continuum property, the least upper bound property). If A ⊂ R is nonempty and
bounded above, then there exists s ∈ R such that s = supA.
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Remark 2.5. Axiom 1 and Axiom 2 together pinpoint the real numbers completely, in the
sense that if R and R′ both satisfy the aforementioned axioms, then there exists an order
preserving field isomorphism between R and R′. The basic reason behind this result is that
each of R and R′ contains a copy of Q, and these two copies of Q can be naturally identified.
Furthermore, the only field isomorphism from R onto itself is the identity map.

Remark 2.6. Foreshadowing the detailed study that will occupy the rest of this section, here
we want to include an informal discussion on the continuum property. In a certain sense, the
continuum property combines two important characteristics of the real numbers. Firstly, it
states that no single real number is larger than all the natural numbers, or equivalently, that
there is no real number between 0 and all positive rational numbers. Loosely speaking, how
large a real number can be is comparable to how large a natural number can be. This property
is called the Archimedean property of the real numbers. The second characteristic of the real
numbers that is embedded in the continuum property is basically the requirement that the
real numbers have “no gaps” between them. This property is called the Cauchy completeness
or the Cauchy property. Recall that by the ordered field axioms, R must contain Q as a
subset. Then, the Cauchy property asserts that real numbers are used to fill in the gaps in Q,
and the Archimedean property states that this “filling in” process is done efficiently, without
adding any unnecessary elements.

Theorem 2.7 (Archimedean property). a) Given any x ∈ R, there is n ∈ N such that x < n.
b) Moreover, given any a ∈ R and b ∈ R with a < b, there exists q ∈ Q such that a < q < b.

Proof. a) Suppose that there is x ∈ R satisfying n < x for all n ∈ N. Then by the least
upper bound property, the supremum of N exists, i.e., s = supN ∈ R. Now, by definition of
supremum, there is m ∈ N such that m > s− 1

2 . This leads to contradiction, since m+ 1 ∈ N
and m+ 1 > s+ 1

2 .

b) Let δ = b − a, and let n ∈ N be such that n > 1
δ . The set G = {k ∈ Z : k < bn} is by

construction bounded above, and hence m = maxG exists (Exercise 1.18). Let q = m
n . Since

m ∈ G, we have m < bn, meaning that q < b. Anticipating a contradiction, suppose that
q ≤ a. This would mean that m ≤ an, or m + 1 ≤ an + 1 = (a + 1

n)n < (a + δ)n = bn.
Therefore, we have m+ 1 ∈ G, which contradicts the maximality of m. �

In the remainder of this section, we explore further consequences of the continuum property.
We start by introducing the notion of infinite sequences.

Definition 2.8. A real number sequence is a function x : N→ R, which is usually written as
{xn} = {x1, x2, . . .}, with xn = x(n). We say that a sequence {xn} converges to x ∈ R, if for
any given ε > 0, there exists an index N such that

|xn − x| ≤ ε for all n ≥ N. (12)

If {xn} converges to x, we write

lim
n→∞

xn = x, or limxn = x, or xn → x as n→∞. (13)

In some contexts, the sequence {xn} is identified with the set {xn : n ∈ N}. For instance,
{xn} ⊂ Ω with some Ω ⊂ R means that xn ∈ Ω for all n. Moreover, often times one considers
sequences such as {a0, a1, . . .}, whose indices start with n = 0.

Definition 2.9. If a sequence does not converge to any number, then the sequence is said to
diverge. A special type of divergence occurs when the divergence is caused by growth, rather
than oscillation. More precisely, we say that {an} diverges to ∞, and write

lim
n→∞

an =∞, or lim an =∞, or an →∞ as n→∞, (14)
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if for any given number M , the sequence is eventually larger than M , that is, only finitely
many terms of {an} stay in (−∞,M). Divergence to −∞ can be defined in an obvious manner.

Example 2.10. (a) A constant sequence is a sequence whose terms are all equal to each
other. An example is the sequence {1, 1, 1, . . .} whose n-th term is an = 1.

(b) An arithmetic progression is a sequence whose n-th term satisfies the formula an = kn+b,
where k and b are constants. For example, {5, 8, 11, 14, . . .} is an arithmetic progression,
with k = 3 and b = 2. Note that we have chosen b = 2 so that the first term “5”
corresponds to n = 1 in the formula an = kn + b. However, this is not necessary. We
could have taken b = 5, and specified that we start the sequence at the index n = 0.

(c) Similarly, a geometric progression is a sequence with the general term an = bqn, where q
and b are constants. For example, {1, 12 ,

1
4 ,

1
8 , . . .} is a geometric progression, with q = 1

2
and b = 1, and with the understanding that the first term of the sequence corresponds to
n = 0 in the formula an = bqn.

(d) The sequence {1, 4, 9, 16, . . .}, with an = n2, is called the sequence of square numbers.
(e) The Fibonacci sequence is {0, 1, 1, 2, 3, 5, 8, 13, 21, . . .}, where each term (except the first

two) is the sum of the two terms immediately preceding it. In other words, we have the
recurrent formula an = an−1 + an−2 for n ≥ 3.

Example 2.11. (a) We want to show that if x > 1 then limxn = ∞. To this end, we start
with the binomial formula

(a+ b)n = an + nan−1b+ . . .+ nabn−1 + bn, (15)

and substitute a = 1 and b = x− 1 > 0, which gives

xn = (1 + b)n = 1 + nb+ . . .+ nbn−1 + bn ≥ 1 + nb, (16)

since all the terms of the sum are positive. Now, given a large number M , choose N so
that 1 + Nb > M . For instance, N > M/b would be sufficient. Then for all n > N , we
would have

xn ≥ 1 + nb > 1 +Nb > M. (17)

This means, by definition, that limxn =∞.
(b) Let us show that if 0 < x < 1 then limxn = 0. So let ε > 0 be given. We know that

lim yn = ∞, where y = 1
x . By definition, for any given M , there exists an index N such

that yn > M for all n > N . Let N be such an index that corresponds to the choice
M = 1

ε . Then, for all n > N , we have |xn| = xn = 1
yn < 1

M = ε. This shows that

limxn = 0.

Remark 2.12. The limit of a sequence depends only on “behaviour at n =∞”, in the sense
that if lim an = a, then after an arbitrary modification (or removal) of finitely many terms
of {an}, we would still have lim an = a. To change the limit behaviour one would have to
modify infinitely many terms.

Exercise 2.13. Prove the following.

(a) If −1 < x < 1 then limxn = 0.
(b) If x > 1 then lim xn

n =∞.

(c) If x > 1 and a ∈ N then lim xn

na =∞ and limnax−n = 0.

(d) lim xn

n! = 0 for any x ∈ R.

Exercise 2.14. Prove the following.

(a) lim an = a if and only if lim |an − a| = 0.
(b) If lim an =∞ and bn ≥ an for all n then lim bn =∞.
(c) If {an} converges then it is bounded, i.e., there is M ∈ R such that |an| ≤M for all n.
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Theorem 2.15 (Monotone convergence). Let {xn} ⊂ R be a sequence that is nondecreasing
and bounded above, in the sense that

xn ≤ xn+1 ≤M for each n, (18)

and with some constant M ∈ R. Then there is x ≤M such that xn → x as n→∞.

Proof. Let x = sup{xn}, and let ε > 0. Then there is N such that x− ε < xN . Since {xn} is
nondecreasing, we have x− ε < xn ≤ x for all n ≥ N . This means that {xn} converges to x.
The inequality x ≤M is obvious because x is the least upper bound of {xn}. �

Exercise 2.16. Show that every nonincreasing, bounded below sequence converges.

Theorem 2.17 (Nested intervals principle). Let {an} and {bn} be two sequences such that

[a0, b0] ⊃ [a1, b1] ⊃ . . . ⊃ [an, bn] ⊃ . . . , (19)

with an < bn for each n ∈ N. Then the intersection
⋂
n∈N[an, bn] is nonempty. In addition, if

bn − an → 0 as n→∞, then
⋂
n∈N[an, bn] consists of a single point.

Proof. We have
a0 ≤ a1 ≤ . . . ≤ an < bn ≤ . . . ≤ b1 ≤ b0, (20)

which makes it clear that {an} is nondecreasing and {bn} is nonincreasing. Since both of these
sequences are bounded, by the monotone convergence theorem (Theorem 2.15), there exist a
and b such that am → a and bm → b as m→∞. Given any m, we have am ≤ an < bn ≤ bm
whenever n ≥ m. This implies that a and b are both in the interval [am, bm] for any m. In
addition, if bn − an → 0, we must have a = b. �

Theorem 2.18 (Bolzano-Weierstrass). Let {xn} ⊂ [a, b]. Then there is a subsequence
{xnk

} ⊂ {xn} that converges to some point x ∈ [a, b].

Proof. Let us subdivide the interval [a, b] into two subintervals [a, a+b2 ] and [a+b2 , b]. Then at
least one of these subintervals must contain infinitely many terms from the sequence {xn}.
Pick one such subinterval, and call it [a1, b1]. Obviously, we have b1 − a1 = b−a

2 . Now we

subdivide [a1, b1] into two halves [a1,
a1+b1

2 ] and [a1+b12 , b1], one of which must contain infinitely

many terms from {xn}. Recall that interval [a2, b2]. Of course, we have b2 − a2 = b−a
4 . We

continue this process indefinitely, and obtain a sequence of intervals

[a, b] ⊃ [a1, b1] ⊃ . . . ⊃ [am, bm] ⊃ . . . , (21)

with each [am, bm] containing infinitely many terms from the sequence {xn}, and satisfying
bm − am = 2−m(b− a). Now the nested intervals principle (Theorem 2.17) implies that there
exists a ∈ R such that a ∈ [an, bn] for all n ∈ N. Hence |a− an| ≤ 2−n(b− a) for all n.

Let n0 = 1, and for k ∈ N, let nk be an index such that nk > nk−1 and that xnk
∈ [ak, bk].

Such nk exists since [ak, bk] contains infinitely many terms from {xn}. Then we have

|xnk
− a| ≤ |xnk

− ak|+ |ak − a| ≤ 2−k(b− a) + 2−k(b− a), (22)

which shows that the sequence {xnk
} converges to a. �

Theorem 2.19 (Cauchy’s criterion). Let {xn} ⊂ R be a Cauchy sequence, in the sense that

|xn − xm| → 0, as min{n,m} → ∞. (23)

Then {xn} is convergent.

Proof. Let N be such that |xn − xN | ≤ 1 for all n ≥ N . Then we have

|xn| ≤ |xN |+ 1 for all n ≥ N, (24)

and therefore
|xn| ≤ max{|x1|, . . . , |xN−1|, |xN |+ 1} for all n, (25)
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meaning that {xn} is bounded. By the Bolzano-Weierstrass theorem (Theorem 2.18), there is
a subsequence {xnk

} ⊂ {xn} that converges to some point x ∈ R.
So far we only have shown that a subsequence of {xn} converges to x. Now we will show

that the whole sequence {xn} indeed converges to x. To this end, let ε > 0, and let N be
such that |xn−xm| ≤ ε for all n ≥ N and m ≥ N . Moreover, let k ≥ N be large enough that
|xnk

− x| ≤ ε. Then for m ≥ N , we have

|xm − x| ≤ |xm − xnk
|+ |xnk

− x| ≤ 2ε, (26)

which shows that the entire sequence {xn} converges to x. �

3. Limits and continuity

In this section, we will study continuous functions. Intuitively, a continuous function f
sends nearby points to nearby points, i.e, if x is close to y then f(x) is close to f(y). This
intuition can be made precise by saying that if a sequence xk converges to x, then f(xk)
converges to f(x). Before doing that, we prove a preliminary result to handle limits. Recall
from Definition 2.8 that a sequence {xn} converges to x ∈ R, if for any given ε > 0, there
exists an index N such that

|xn − x| ≤ ε for all n ≥ N. (27)

If {xn} converges to x, we write lim
n→∞

xn = x or xn → x as n→∞.

Theorem 3.1. Let an → a and bn → b as n→∞. Then the following are true.

a) an ± bn → a± b as n→∞.
b) anbn → ab as n→∞.
c) If a 6= 0, then an = 0 for only finitely many indices n, and after the removal of those zero

terms from the sequence {an}, we have lim 1
an

= 1
a .

d) an ≤ bn implies a ≤ b.
e) If {xn} is a sequence satisfying an ≤ xn ≤ bn for all n, and if a = b, then limxn = a.

Proof. b) We have anbn − ab = an(bn − b) + (an − a)b, and so

|anbn − ab| ≤ |an||bn − b|+ |an − a||b| for all n. (28)

By choosing n large enough, we can make |bn − b| and |an − a||b| as small as we want. The
question is if can do the same for the product |an||bn − b|. We claim that {an} is bounded,
i.e., there is M ∈ R such that |an| ≤ M for all n. Indeed, since {an} converges to a, taking
ε = 1 in the definition of convergence, there exists an index N such that |an − a| ≤ 1 for all
n ≥ N . Hence |an| = |an − a + a| ≤ |an − a| + |a| ≤ 1 + |a| for all n ≥ N , and if we take
M = max{|a|+ 1, |a1|, |a2|, . . . , |aN−1|}, then |an| ≤M for all n. Now (28) yields

|anbn − ab| ≤M |bn − b|+ |b||an − a| for all n. (29)

Let ε > 0 be given. Let N ′ be such that M |bn − b| ≤ ε
2 for all n ≥ N ′, and let N ′′ be such

that |b||an− a| ≤ ε
2 for all n ≥ N ′′. This is possible since bn → b and an → a as n→∞. Now

we set N = max{N ′, N ′′}. Then we have

|anbn − ab| ≤M |bn − b|+ |b||an − a| ≤ ε
2 + ε

2 = ε for all n ≥ N, (30)

which means that anbn → ab as n→∞.
e) Let ε > 0 be given. Let N ′ be such that |an − a| ≤ ε for all n ≥ N ′, and let N ′′ be such

that |bn − b| ≤ ε for all n ≥ N ′′. We set N = max{N ′, N ′′}. Then we have

xn − a = xn − b ≤ bn − b ≤ |bn − b| ≤ ε for all n ≥ N, (31)

and
a− xn ≤ a− an ≤ |an − a| ≤ ε for all n ≥ N, (32)
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which imply

|xn − a| = max{xn − a, a− xn} ≤ ε for all n ≥ N. (33)

By definition, this means that xn → a as n→∞. �

Exercise 3.2. Prove a), c) and d) of the preceding theorem.

Example 3.3. Let us try to compute the limit of 3n+1
2n+5 as n → ∞. If we approach naively,

we get

lim
n→∞

3n+ 1

2n+ 5
= lim

n→∞
(3n+ 1) · lim

n→∞

1

2n+ 5
=∞ · 0, (34)

which is nonsense. The error is in the first step, where we attempt to apply Theorem 3.1b).
This is not justified, because lim(3n+ 1) does not exist. A correct way to proceed is to write

3n+ 1

2n+ 5
=

3 + 1
n

2 + 5
n

= (3 +
1

n
) · 1

2 + 5
n

, (35)

and to note that

• lim(3 + 1
n) = 3 and lim(2 + 5

n) = 2 by Theorem 3.1a).

• Hence lim 1
2+ 5

n

= 1
2 by Theorem 3.1c).

• Therefore lim(3 + 1
n) · 1

2+ 5
n

= 3 · 12 = 3
2 by Theorem 3.1b).

This process is usually written as

lim
3n+ 1

2n+ 5
= lim

3 + 1
n

2 + 5
n

=
3 + lim 1

n

2 + lim 5
n

=
3

2
. (36)

Exercise 3.4. Prove the following.

(a) If lim an =∞ and lim bn
an

= 0, then lim(an ± bn) =∞.

(b) lim an =∞ if and only if lim 1
an

= 0 and {an} is eventually positive.

(c) If lim an = 0 and {bn} is bounded, then lim(anbn) = 0. Recall that a sequence {an} is
bounded if there exists a number M such that |an| ≤M for all n.

We define continuous functions as the ones that send convergent sequences to convergent
sequences. This is sometimes called the sequential criterion of continuity.

Definition 3.5. Let K ⊂ R be a set. A function f : K → R is called continuous at x ∈ K if
f(xn)→ f(x) as n→∞ for every sequence {xn} ⊂ K converging to x.

Example 3.6. (a) Let c ∈ R, and let f : R→ R be the function given by f(y) = c for y ∈ R.
Then f is continuous at every point x ∈ R, since for any sequence {xn} ⊂ R converging
to x, we have f(xn) = c→ c = f(x) as n→∞.

(b) Let f : R → R be the function given by f(y) = y for y ∈ R. Then f is continuous
at every point x ∈ R, because given any sequence {xn} ⊂ R converging to x, we have
f(xn) = xn → x = f(x) as n→∞.

We now confirm an intuitive property of continuous functions, namely that if f is continuous
at x then for all points y close to x the value f(y) is close to f(x).

Lemma 3.7. Let K ⊂ R be a set. Then f : K → R is continuous at x ∈ K if and only if for
any ε > 0 there exists δ > 0 such that y ∈ (x−δ, x+δ)∩K implies f(x)−ε < f(y) < f(x)+ε.

Proof. Let f be continuous at x ∈ K, and let ε > 0. Suppose that no such δ exists, i.e., that
there is a sequence {xn} ⊂ K converging to x, with |f(xn) − f(x)| ≥ ε for all n. Since f is
continuous at x, we have f(xn) → f(x) as n → ∞. In particular, there is an index N such
that |f(x)− f(xN )| < ε, which is a contradiction.
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In the other direction, assume that x ∈ K and that for any ε > 0 there exists δ > 0 such
that y ∈ (x − δ, x + δ) ∩ K implies f(x) − ε < f(y) < f(x) + ε. In particular, there is a
positive sequence {δn} such that y ∈ (x− δn, x+ δn)∩K implies f(x)− 1

n < f(y) < f(x) + 1
n .

Let {xm} ⊂ K be a sequence converging to x. Then we can choose a sequence of indices
m1,m2, . . ., such that xm ∈ (x−δn, x+δn) for all m ≥ mn, that is, f(x)− 1

n < f(xm) < f(x)+ 1
n

for all m ≥ mn. This shows that f(xm)→ f(x) as m→∞. �

The following result shows that continuity is a local property.

Lemma 3.8. Let f : K → R with K ⊂ R, and let g = f |(a,b)∩K for some (a, b). Then f is
continuous at x ∈ (a, b) ∩K if and only if g is continuous at x.

Proof. Suppose that f is continuous at x ∈ (a, b) ∩K. Then by definition, f(xn) → f(x) as
n → ∞ for every sequence {xn} ⊂ K converging to x. In particular, this is true for every
sequence {xn} ⊂ (a, b) ∩K converging to x. Since g = f on (a, b) ∩K, g is continuous at x.

Now suppose that g is continuous at x ∈ (a, b)∩K, i.e., that f(xn) = g(xn)→ g(x) = f(x)
as n→∞ for every sequence {xn} ⊂ (a, b)∩K converging to x. Let {xn} ⊂ K be a sequence
converging to x. Then there exists N such that xn ∈ (a, b) ∩K for all n ≥ N , and hence the
sequence {f(xN ), f(xN+1), . . .} converges to f(x). This is the same as saying that the full
sequence {f(xn)} converges to f(x), meaning that f is continuous at x. �

Our next step is to combine known continuous functions to create new continuous functions.

Definition 3.9. Given two functions f, g : Ω → R, with Ω ⊂ R, we define their sum,
difference, product, and quotient by

(f ± g)(x) = f(x)± g(x), (fg)(x) = f(x)g(x), and
(f
g

)
(x) =

f(x)

g(x)
, (37)

for x ∈ Ω, where for the quotient definition we assume that g does not vanish anywhere in Ω.
Furthermore, we define the function |f | by

|f |(z) = |f(z)|, for x ∈ Ω. (38)

Theorem 3.10. Let Ω ⊂ R, and let f, g : Ω → R be functions continuous at x ∈ Ω. Then
the following are true.

a) The sum and difference f ± g, the product fg, and the modulus |f | are all continuous at x.
b) The function 1

f is continuous at x, provided that f(x) 6= 0.

c) Suppose that U ⊂ R is a set satisfying g(Ω) ⊂ U , the latter meaning that y ∈ Ω implies
g(y) ∈ U . Let F : U → R be a function continuous at g(x). Then the composition
F ◦ g : Ω→ R, defined by (F ◦ g)(y) = F (g(y)), is continuous at x.

Proof. The results are immediate from the definition of continuity. For instance, let us prove
that fg is continuous at x. Thus let {xn} ⊂ Ω be an arbitrary sequence converging to x. Then
f(xn) → f(x) and g(xn) → g(x) as n → ∞, and Theorem 3.1 gives f(xn)g(xn) → f(x)g(x)
as n→∞. Hence fg is continuous at x. �

Exercise 3.11. Prove b) and c) of the preceding theorem.

Definition 3.12. A function f : Ω→ R is called continuous in Ω, if f is continuous at each
point of Ω. The set of all continuous functions in Ω is denoted by C (Ω).

Exercise 3.13. Show that if f, g ∈ C (Ω), then f ± g, fg, |f | ∈ C (Ω).

Example 3.14. (a) Recall from Example 3.6 that the constant function f(x) = c (where
c ∈ R) and the identity map f(x) = x are continuous in R. Then by Theorem 3.10a),
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any monomial f(x) = axn with a constant a ∈ R, is continuous in R, since we can write
axn = a · x · · ·x. Applying Theorem 3.10a) again, we conclude that any polynomial

p(x) = a0 + a1x+ . . .+ anx
n, (39)

where a0, . . . an ∈ R are the coefficients, as a function p : R→ R, is continuous in R.
(b) Let p and q be polynomials, and let Z = {x ∈ R : q(x) = 0} be the set of real roots of q.

Then by Theorem 3.10b), the function r : R\Z → R given by r(x) = p(x)
q(x) is continuous in

R \Z. The functions of this form are called rational functions. For instance, f(x) = x2+1
x−1

is a rational function defined for x ∈ R \ {1}.

Exercise 3.15. Show that functions of the form r1(x)+r2(|x|)
r3(x)+r4(|x|) are continuous in an appropriate

subset of R, where r1, r2, r3, and r4 are all rational functions.

The following theorem was proved by Bernard Bolzano in 1817.

Theorem 3.16 (Intermediate value). Let a, b ∈ R satisfy a < b, and let f : [a, b] → R be
continuous in [a, b]. Then for any y ∈ R satisfying min{f(a), f(b)} ≤ y ≤ max{f(a), f(b)},
there exists x ∈ [a, b] such that f(x) = y.

Proof. We apply what is known as the bisection method. We define two sequences {an} and
{bn} as follows. First, set a0 = a and b0 = b. Obviously, the value y lies between f(a0) and
f(b0), that is, y ∈ [f(a0), f(b0)] ∪ [f(b0), f(a0)]. Let c0 = 1

2(a0 + b0). Then at least one of
y ∈ [f(a0), f(c0)]∪ [f(c0), f(a0)] and y ∈ [f(c0), f(b0)]∪ [f(b0), f(c0)] must hold. If the former
holds, we set a1 = a0 and b1 = c0. Otherwise, we set a1 = c0 and b1 = b0. In any case, we
have y ∈ [f(a1), f(b1)] ∪ [f(b1), f(a1)], and b1 − a1 = 1

2(b0 − a0). By repeating this process,
we get {an} and {bn} such that

[a0, b0] ⊃ [a1, b1] ⊃ . . . ⊃ [an, bn] ⊃ . . . , (40)

with y ∈ [f(an), f(bn)]∪ [f(bn), f(an)] and bn − an = 2−n(b− a) for each n ∈ N. Then by the
nested intervals principle (Theorem 2.17),

⋂
n∈N[an, bn] is nonempty and consists of a single

point. Let us denote this point by x. Since an → x and bn → x as n→∞, by continuity of f
we have f(an)→ f(x) and f(bn)→ f(x) as n→∞. In particular, for any given ε > 0, there
exists N such that |f(an)− f(x)| ≤ ε and |f(bn)− f(x)| ≤ ε for all n ≥ N . This means that
|f(bn)− f(an)| ≤ 2ε for all n ≥ N , and hence |y − f(an)| ≤ 2ε for all n ≥ N . Finally, by the
triangle inequality we have |f(x) − y| ≤ |f(x) − f(aN )| + |f(aN ) − y| ≤ 3ε. In other words,
for any ε > 0 we have |f(x)− y| ≤ 3ε. This shows that f(x) = y, since f(x) 6= y would imply
that |f(x)− y| > 0. �

Example 3.17. Given y ≥ 0, let us try to solve the equation x2 = y. Consider the function
f(x) = x2 in the interval [0, b], where b = max{1, y}. Obviously, f is continuous in [0, b],
and since y ≤ max{1, y2}, we have f(0) ≤ y ≤ f(y). By the intermediate value theorem
(Theorem 3.16), there exists x ∈ [0, b] such that f(x) = y, that is, the equation x2 = y has a
solution in the interval [0, b]. This solution is in fact the unique solution of x2 = y in [0,∞).
Indeed, 0 ≤ x < z implies x2 < z2, and hence x2 = z2 with x, z ≥ 0 is possible only when
x = z. The function y 7→ x is called the arithmetic (or principal) square root function, and
denoted by x =

√
y. It is clear that the arithmetic square root function is the inverse of

f : [0,∞) → [0,∞) given by f(x) = x2. More generally, let F : R → [0,∞) be given by
F (x) = x2. Then we have F |[0,∞) = f , and F (x) = f(|x|) for all x ∈ R. This means that

x2 = z2 implies |x| = |z|, and hence x2 = z2 if and only if x = z or x = −z. To conclude, the
equation x2 = y has no solution for y < 0, exactly one solution for y = 0, and exactly two
solutions x =

√
y and x = −√y for y > 0.

Exercise 3.18. Investigate the equation xn = y where n ∈ N.
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Corollary 3.19. Let f ∈ C ([a, b]) be a strictly increasing function in the sense that x < y
implies f(x) < f(y). Then f is injective, the image of f is f([a, b]) = [f(a), f(b)], and the
inverse f−1 : f([a, b])→ [a, b] is continuous and strictly increasing.

Proof. Considered as a function f : [a, b] → f([a, b]), f is obviously surjective. Since x 6= y
implies f(x) 6= f(y), f is injective. Hence there exists the inverse f−1 : f([a, b]) → [a, b].
Moreover, x ≥ y implies f(x) ≥ f(y), and so by contrapositive, f−1 is strictly increasing.
We have [f(a), f(b)] ⊂ f([a, b]), since by the intermediate value theorem (Theorem 3.16), the
equation f(x) = y has a solution for every y ∈ [f(a), f(b)]. On the other hand, a ≤ x ≤ b
implies f(a) ≤ f(x) ≤ f(b), meaning that f([a, b]) = [f(a), f(b)].

It remains to show that f−1 is continuous. To this end, let {yn} ⊂ [f(a), f(b)] be such
that yn → y for some y ∈ [f(a), f(b)]. Let ε > 0 be given, and let x = f−1(y). Then with
αε = f(max{a, x− ε}) and βε = f(min{b, x+ ε}), we have f−1(yn) ∈ [x− ε, x+ ε] whenever
yn ∈ [αε, βε]. Note that αε < y unless y = f(a), and βε > y unless y = f(b). Thus there
exists N such that yn ∈ [αε, βε] for all n ≥ N , which shows that f−1(yn)→ x as n→∞. �

Exercise 3.20. Let f ∈ C ([a, b]) be a strictly decreasing function in the sense that x < y
implies f(x) > f(y). Show that f is injective, and that the inverse f−1 : f([a, b]) → [a, b] is
continuous and strictly decreasing.

Example 3.21. (a) Fix n ∈ N, and consider the power function f(x) = xn. This is a
continuous and strictly increasing function in the range [0,∞). Given any b > 0, the
restriction f |[0,b] is in particular strictly increasing, and so its inverse gb : [0, bn] → [0, b]
is also strictly increasing and continuous. Now if we consider gc with c > b, then gc
must agree with gb on their common domain, that is, gc(y) = gb(y) for y ∈ [0, bn], since
gb(f(x)) = x and gc(f(x)) = x for x ∈ [0, b]. Therefore we can define the function
g : [0,∞) → [0,∞) by g(y) = gb(y) with b > max{1, y} for y ∈ [0,∞), and this function
satisfies g(f(x)) = x for x ∈ [0,∞), i.e., g is the inverse of f |[0,∞). Moreover, g is
continuous and strictly increasing. Of course, g is the arithmetic n-th root function,
denoted by n

√
y ≡ g(y).

(b) With the help of the n-th root function, we also define the rational power as

x
m
n = (n

√
x )m for x ≥ 0, m ∈ Z, n ∈ N. (41)

That this definition is unambiguous can be seen as follows.
• We have ((n

√
x)m)n = (n

√
x)mn = ((n

√
x)n)m = xm, and hence (n

√
x)m = n

√
xm.

• By writing m
n = mk

nk with some k ∈ N, we get x
mk
nk = (nk

√
x)mk. We need to show

that this is equal to (n
√
x)m. Since ((nk

√
x)k)n = (nk

√
x)nk = x, we have (nk

√
x)k = n

√
x.

Therefore we conclude that (nk
√
x)mk = ((nk

√
x)k)m = (n

√
x)m.

As the composition of two continuous functions, the rational power function w(x) = x
m
n is

a continuous function of x ≥ 0. Moreover, w is strictly increasing, provided m
n > 0, since

it is the composition of two strictly increasing functions. Another important property is
for a, b ∈ Q with a < b, we have

x > 1 =⇒ xa < xb and 0 < x < 1 =⇒ xa > xb. (42)

Indeed, by writing a = m
n and b = k

n , the question is reduced to comparing the integer

powers (n
√
x)m and (n

√
x)k.

(c) We claim that for any x > 0, n
√
x→ 1 as n→∞. This result will be used later to define

the power xa for any a ∈ R. Let x > 1. Then n
√
x > 1 for all n. Suppose that there exists

some ε > 0 such that n
√
x > 1 + ε for all n. This would imply that x = (1 + ε)n ≥ 1 + εn

for all n, which is impossible by the Archimedean property. Hence n
√
x → 1 as n → ∞,

for x > 1. The case 0 < x < 1 is given as an exercise below.
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Exercise 3.22. Prove the following.

(a) For odd n, the inverse of f(x) = xn can be defined on all of R.
(b) The function f(x) = xq with rational q < 0 is a strictly decreasing function of x ≥ 0.
(c) For x, y ≥ 0 and p, q ∈ Q, there hold that

xpxq = xp+q, (xp)q = xpq, (xy)q = xqyq. (43)

Exercise 3.23. Prove the following.

(a) If 0 < x < 1 then n
√
x→ 1 as n→∞.

(b) n
√
n→ 1 as n→∞.

(c) If a ∈ N then n
√
na → 1 as n→∞.

Remark 3.24. Let s =
√

2. We claim that s 6∈ Q, which would mean that Q is strictly
contained in R. To show this, suppose that s ∈ Q, i.e., that s = m

n with m ∈ N and n ∈ N.

Thus we have (mn )2 = 2 or m2 = 2n2. This implies that m is divisible by 2, i.e., m = 2m1

for some m1 ∈ N, which in turn yields n2 = 2m2
1. Hence n = 2n1 for some n1 ∈ N, and this

leads to m1 = 2m2 for some m2 ∈ N. We can repeat this process indefinitely, arriving at the
conclusion that for any k ∈ N there exists a ∈ N such that m = 2ka. However, since a ≥ 1,
by choosing k large enough we can ensure that 2ka ≥ 2k > m, which is a contradiction. The
numbers in R \Q, such as

√
2, are called irrational numbers.

The following fundamental theorem was established by Weierstrass in 1861.

Theorem 3.25 (Extreme value). Let f ∈ C ([a, b]). Then there exists c ∈ [a, b] such that
f(x) ≤ f(c) for all x ∈ [a, b].

Proof. For n ∈ N, let Qn = { km : k ∈ Z, m ∈ N, m ≤ n} ∩ [a, b]. It is clear that Qn is a finite
set, and therefore f takes its maximum over Qn, i.e., there exists xn ∈ Qn such that f(q) ≤
f(xn) for all q ∈ Qn. Since {xn} ⊂ [a, b], the Bolzano-Weierstrass theorem (Theorem 2.18)
guarantees the existence of a subsequence {xnk

} ⊂ {xn} that converges to some point c ∈ [a, b].
The sequence {f(xn)} is nondecreasing, in the sense that f(xn) ≤ f(xn+1) for all n. Thus
f(c) ≥ f(xn) for all n, and hence f(c) ≥ f(q) for all q ∈ Q∩ [a, b]. We claim that f(x) ≤ f(c)
for all x ∈ [a, b]. Suppose that there is x ∈ [a, b] with f(x) > f(c). Then by continuity there
exists ε > 0 small enough, such that y ∈ (x − ε, x + ε) implies f(y) > f(c). However, there
exists q ∈ Q ∩ (x− ε, x+ ε), contradicting the fact that f(c) ≥ f(q) for all q ∈ Q ∩ [a, b]. �

4. Differentiation

Let us consider the function f(x) = x2 when x is very close to some given point x∗ ∈ R.
Putting h = x− x∗, which is assumed to be small, we can write

x2 = (x∗ + h)2 = x2∗ + 2x∗h+ h2, (44)

that is,

f(x)− f(x∗) = x2 − x2∗ = 2x∗h+ h2 = (2x∗ + h)h. (45)

Intuitively speaking, this means that when |h| small, f(x∗ + h) − f(x∗) is basically equal to
the linear function `(h) = 2x∗h. This leads to the concept of derivative.

Given a function f : (a, b)→ R with a < b, and a point x∗ ∈ (a, b), the idea is to require

f(x∗ + h)− f(x∗) = (λ+ e(h))h, (46)

where λ ∈ R is a constant, and e(h) is a function of h that can be made arbitrarily close
to 0 by choosing |h| small enough. In other words, e is continuous at h = 0 with e(0) = 0.
An example of such a function is e(h) = h as in (45). If (46) holds, then for h ∈ R with |h|
small, f(x∗ + h)− f(x∗) is equal to the linear function `(h) = λh, up to the error e(h)h. The
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following definition was introduced by Carathéodory in 1950, and is a refined version of the
definition given by Weierstrass in 1861.

Definition 4.1. A function f : (a, b) → R is said to be differentiable at x ∈ (a, b), if there
exists a function g : (a, b)→ R, which is continuous at x, such that

f(y) = f(x) + g(y)(y − x), y ∈ (a, b). (47)

We call the value g(x) the derivative of f at x, and write

f ′(x) ≡ df

dx
(x) := g(x). (48)

If f is differentiable at each x ∈ K for some K ⊂ (a, b), then we say that f is differentiable in
K, and consider the derivative as a function f ′ : K → R sending x to f ′(x).

It is immediate from (47) that if f is differentiable at x then f is continuous at x. The
following lemma gives a sequential criterion of differentiability. This criterion was used as a
definition by Cauchy in 1821.

Lemma 4.2. A function f : (a, b)→ R is differentiable at x ∈ (a, b) if and only if there exists
a number λ ∈ R such that

f(xn)− f(x)

xn − x
→ λ as n→∞, (49)

for every sequence {xn} ⊂ (a, b) \ {x} converging to x.

Proof. Let f be differentiable at x. Then by (47), we have

g(y) =
f(y)− f(x)

y − x
for y ∈ (a, b) \ {x}. (50)

Since g is continuous at x, for any sequence {xn} ⊂ (a, b) \ {x} converging to x, we have

g(xn) =
f(xn)− f(x)

xn − x
→ λ := g(x) as n→∞. (51)

This establishes the “only if” part of the lemma.
Now suppose that there exists λ ∈ R such that (49) holds for every sequence {xn} ⊂

(a, b) \ {x} converging to x. Then we define a function g : (a, b)→ R by

g(y) =
f(y)− f(x)

y − x
for y ∈ (a, b) \ {x}, and g(x) = λ. (52)

This function satisfies (47) by construction. It remains to show that g is continuous at x.
Let {xn} ⊂ (a, b) be a sequence converging to x. Suppose that we created a new sequence
{x′m} ⊂ (a, b) \ {x} by removing every occurrence of x from {xn}. There are two possibilities.
The first possibility is that {x′m} is a finite sequence. In this case, there exists some N such
that xn = x for all n ≥ N , and hence it is trivial to observe that g(xn) → g(x) as n → ∞.
The second possibility is that {x′m} is an infinite sequence. In this case, by (49) we have
g(x′m)→ g(x) as m→∞, that is, for any ε > 0, there exists M such that |g(x′m)− g(x)| ≤ ε
for all m ≥ M . Now if we let N to be the index of {xn} corresponding to the index M in
{x′m}, then it is clear that |g(xn)− g(x)| ≤ ε for all n ≥ N because for n ≥ N we have either
xn = x′m for some m ≥M or xn = x. �

Example 4.3. (a) Let c ∈ R, and let f(x) = c be a constant function. Then since f(y) =
f(x) + 0 · (y − x) for all x, y, we get f ′(x) = 0 for all x.

(b) Let a, c ∈ R, and let f(x) = ax + c be a linear (also known as affine) function. Since
f(y) = f(x) + a(y − x) for all x, y, we get f ′(x) = a for all x.
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(c) Let f(x) = 1
x , and for y ∈ R \ {0, x} define

g(y) =

1
y −

1
x

y − x
= − 1

xy
. (53)

As long as x 6= 0, upon defining g(x) = − 1
x2

, the function g(y) = − 1
x ·

1
y becomes

continuous at y = x, and therefore f is differentiable at x with

f ′(x) =
(1

x

)′
= − 1

x2
(x 6= 0). (54)

(d) Let us try to differentiate f(x) = |x| at x = 0. With xn = 1
n for n ∈ N, we have

{xn} ⊂ R \ {0} and xn → 0 as n→∞. On one hand, we get

lim
n→∞

f(xn)− f(0)

xn − 0
= lim

n→∞

|xn|
xn

= 1, (55)

but on the other hand, with yn = −xn, we infer

lim
n→∞

f(yn)− f(0)

yn − 0
= lim

n→∞

|yn|
yn

= − lim
n→∞

xn
xn

= −1. (56)

The definition of derivative requires these two limits to be the same, and thus we conclude
that f(x) = |x| is not differentiable at x = 0.

(e) Consider the differentiability of f(x) = 3
√
x at x = 0. Let xn = 1

n3 . It is obvious that
xn 6= 0 and xn → 0. We have

f(xn)− f(0)

xn − 0
=

3
√
xn
xn

= n2, (57)

which diverges as n→∞. Hence f(x) = 3
√
x is not differentiable at x = 0.

Exercise 4.4. Show that f(x) = xn is differentiable in R, for n ∈ N, with f ′(x) = nxn−1.

The following result shows that differentiability is a local property.

Lemma 4.5. Let f : (a, b) → R, and let g = f |(c,d) for some (c, d) ⊂ (a, b). Then f is
differentiable at x ∈ (c, d) if and only of g is differentiable at x. Moreover, if f is differentiable
at x ∈ (c, d), then f ′(x) = g′(x).

Proof. Suppose that f is differentiable at x ∈ (c, d). Then by definition, there is a function

f̃ : (a, b)→ R, continuous at x, with f ′(x) = f̃(x), such that

f(y) = f(x) + f̃(y)(y − x), y ∈ (a, b). (58)

Since g(y) = f(y) for y ∈ (c, d), we have

g(y) = g(x) + f̃(y)(y − x), y ∈ (c, d). (59)

This shows that g is differentiable at x with g′(x) = f̃(x) = f ′(x).
Now suppose that g is differentiable at x ∈ (c, d). Then there is a function g̃ : (c, d) → R,

continuous at x, with g′(x) = g̃(x), such that

g(y) = g(x) + g̃(y)(y − x), y ∈ (c, d). (60)

If we extend g̃ as

f̃(y) =

{
g̃(y), for y ∈ (c, d),
f(y)−f(x)

y−x , for y ∈ (a, b) \ (c, d),
(61)

then since f and g agree on (c, d), we have

f(y) = f(x) + f̃(y)(y − x), y ∈ (a, b). (62)
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Since f̃ = g̃ on (c, d), by locality of continuity f̃ is continuous at x. Hence f is differentiable

at x with f ′(x) = f̃(x) = g̃(x) = g′(x). �

We now investigate differentiability of various combinations of differentiable functions.

Theorem 4.6. Let f, g : (a, b) → R be functions differentiable at x ∈ (a, b). Then the
following are true.

a) The sum and difference f ± g are differentiable at x, with

(f ± g)′(x) = f ′(x)± g′(x). (63)

These are called the sum and difference rules.
b) The product fg is differentiable at x, with

(fg)′(x) = f ′(x)g(x) + f(x)g′(x). (64)

This is called the product rule.
c) If F : (c, d) → R is a function differentiable at g(x), with g((a, b)) ⊂ (c, d), then the

composition F ◦ g : (a, b)→ R is differentiable at x, with

(F ◦ g)′(x) = F ′(g(x))g′(x). (65)

This is called the chain rule.
d) If f : (a, b) → f((a, b)) is bijective and f ′(x) 6= 0, then the inverse f−1 : f((a, b)) → (a, b)

is differentiable at y = f(x), with

(f−1)′(y) =
1

f ′(x)
. (66)

Proof. b) By definition, there is a function f̃ : (a, b)→ R, continuous at x, satisfying

f(y) = f(x) + f̃(y)(y − x), y ∈ (a, b), (67)

and f ′(x) = f̃(x). Similarly, there is a function g̃ : (a, b) → R, continuous at x, and with
g′(x) = g̃(x), such that

g(y) = g(x) + g̃(y)(y − x), y ∈ (a, b). (68)

By multiplying (67) and (68), we get

f(y)g(y) = f(x)g(x) + g(x)f̃(y)(y − x) + f(x)g̃(y)(y − x) + f̃(y)g̃(y)(y − x)2

= f(x)g(x) + [g(x)f̃(y) + f(x)g̃(y) + f̃(y)g̃(y)(y − x)](y − x).
(69)

The expression in the square brackets, as a function of y, is continuous at y = x, with

[g(x)f̃(y) + f(x)g̃(y) + f̃(y)g̃(y)(y − x)]
∣∣
y=x

= g(x)f̃(x) + f(x)g̃(x)

= g(x)f ′(x) + f(x)g′(x),
(70)

which shows that fg is differentiable at x, and that (64) holds.

c) Since F is differentiable at g(x), by definition, there is a function F̃ : (c, d) → R,

continuous at g(x), and with F ′(g(x)) = F̃ (g(x)), such that

F (z) = F (g(x)) + F̃ (z)(z − g(x)), z ∈ (c, d). (71)

Plugging z = g(y) into (71), we get

F (g(y)) = F (g(x)) + F̃ (g(y))(g(y)− g(x)) = F (g(x)) + F̃ (g(y))g̃(y)(y − x), (72)

where in the last step we have used (68). The function y 7→ F̃ (g(y))g̃(y) is continuous at

y = x, with F̃ (g(x))g̃(x) = F ′(g(x))g′(x), which confirms that F ◦ g is differentiable at x, and
that (65) holds.



18 TSOGTGEREL GANTUMUR

d) By definition, there is g : (a, b)→ R, continuous at x, with g(x) = f ′(x) 6= 0, such that

f(z) = f(x) + g(z)(z − x) for z ∈ (a, b). (73)

Since g is continuous at x, we infer the existence if an open interval (c, d) 3 x such that
g(z) 6= 0 for all z ∈ (c, d). For t ∈ f((c, d)), we have z = f−1(t) ∈ (c, d), and

f−1(t)− f−1(y) = z − x =
f(z)− f(x)

g(z)
=

t− y
g(f−1(t))

. (74)

The function 1
g(f−1(t))

is continuous at t = y, meaning that f−1 is differentiable at y, and that

(66) holds. �

Exercise 4.7. Prove a) of the preceding theorem.

Example 4.8. (a) By the product rule, we have

(x2)′ = 1 · x+ x · 1 = 2x,

(x3)′ = (x2 · x)′ = 2x · x+ x2 · 1 = 3x2, . . .

(xn)′ = nxn−1 (n ∈ N).

(75)

(b) By the sum and product rules, all polynomials are differentiable in R, and the derivative
of a polynomial is again a polynomial.

(c) Given a function f : (a, b)→ R that does not vanish anywhere in (a, b), we can write the
reciprocal function 1

f as F ◦ f with F (z) = 1
z . If f is differentiable at x ∈ (a, b), then by

the chain rule, 1
f is differentiable at x and

( 1

f

)′
(x) = (F ◦ f)′(x) = F ′(f(x))f ′(x) = − f ′(x)

[f(x)]2
. (76)

In particular, we have

(x−n)′ = −nx
n−1

x2n
= −nx−n−1 (n ∈ N). (77)

(d) Let f(x) = xn for x ∈ [0,∞), where n ∈ N. We have f ′(x) = nxn−1 at x > 0, and the
inverse function is the arithmetic n-the root f−1(y) = n

√
y (y ≥ 0). Since f ′(x) > 0 for

x > 0, the inverse f−1 is differentiable at each y > 0, with

(f−1)′(y) =
1

f ′(f−1(y))
=

1

n( n
√
y)n−1

=
1

n
y

1−n
n . (78)

Moreover, by the chain rule, for m ∈ Z and n ∈ N, we infer

(x
m
n )′ = (( n

√
x)m)′ = m( n

√
x)m−1 · 1

n
x

1−n
n =

m

n
x

m−1
n

+ 1−n
n =

m

n
x

m
n
−1, (79)

that is

(xa)′ = axa−1 at each x > 0, for a ∈ Q. (80)

Exercise 4.9. Let f, g : (a, b) → R be functions differentiable at x ∈ (a, b), with g(x) 6= 0.
Show that the quotient f/g is differentiable at x, and the following quotient rule holds.(f

g

)′
(x) =

f ′(x)g(x)− f(x)g′(x)

[g(x)]2
. (81)

Compute the derivative of q(x) = 3x3

x2+1
.
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5. Applications of differentiation

The following result is sometimes called the first derivative test.

Lemma 5.1. Let f : (a, b) → R be a function, and let c ∈ (a, b) be a maximum of f , in the
sense that f(x) ≤ f(c) for all x ∈ (a, b). Suppose that f is differentiable at c. Then f ′(c) = 0.

Proof. Suppose that f ′(c) 6= 0. By definition of differentiability, there exists a function g :
(a, b)→ R, continuous at c, with g(c) = f ′(c), such that

f(x) = f(c) + g(x)(x− c), x ∈ (a, b). (82)

If f ′(c) > 0, we let xn = c + 1
n , and if f ′(c) < 0, we let xn = c − 1

n , for n ∈ N. Then

by continuity, for sufficiently large n, we have |g(xn) − g(c)| ≤ 1
2 |g(c)|. This means that

g(xn)(xn− c) ≥ 1
2n |f

′(c)| or f(x) ≥ f(c)+ 1
2n |f

′(c)|, contradicting the maximality of f(c). �

Remark 5.2. At least in principle, the first derivative test gives a way to find the maximums
and minimums of a differentiable function. Namely, let f ∈ C ([a, b]) be given. Then the
extreme value theorem (Theorem 3.25) guarantees the existence of a maximum ξ ∈ [a, b]. If
ξ ∈ (a, b) and if f is differentiable in (a, b), then f ′(ξ) = 0. In other words, all maximums
located in the interior (a, b) can be found by comparing the values f(c) at the critical points,
which are by definition the solutions c ∈ (a, b) of the equation f ′(c) = 0.

The consideration of critical points leads to the following fundamental result, known as
Rolle’s theroem. It was proved by Michel Rolle in 1690.

Theorem 5.3 (Rolle). Let f ∈ C ([a, b]) be differentiable at each x ∈ (a, b), with f(a) = f(b).
Then there exists ξ ∈ (a, b) such that f ′(ξ) = 0.

Proof. The extreme value theorem (Theorem 3.25) yields the existence of ξ ∈ [a, b] with the
property that f(x) ≤ f(ξ) for all x ∈ [a, b]. Without loss of generality, we can assume that
f is not constant, and that ξ ∈ (a, b), because if f(x) ≤ f(a) for all x ∈ [a, b], then we can
replace f by −f . Then the first derivative test (Lemma 5.1) implies that f ′(ξ) = 0. �

The following important consequence was proved by Lagrange in 1796.

Theorem 5.4 (Mean value). Let f ∈ C ([a, b]) be differentiable at each x ∈ (a, b). Then there
exists ξ ∈ (a, b) such that f(b)− f(a) = f ′(ξ)(b− a).

Proof. Define the function F : [a, b]→ R by

F (x) = f(x)− f(b)− f(a)

b− a
(x− a). (83)

We have F (a) = F (b) = f(a), F ∈ C ([a, b]), and F is differentiable at each x ∈ (a, b), with

F ′(x) = f ′(x)− f(b)− f(a)

b− a
. (84)

By Rolle’s theorem (Theorem 5.3), there exists ξ ∈ (a, b) such that F ′(ξ) = 0. �

Remark 5.5. If f is continuous at c, then for y close to c, we have f(y) = f(c) + e, with
e → 0 as |y − c| → 0. Thus we can use f(c) to approximate f(y), but there is a very little
information on the size of the error e. If in addition, f is differentiable at c, then we have

f(y) = f(c) + f ′(c)(y − c) + e1, (85)

with e1 vanishing faster than |y − c| as |y − c| → 0. This shows that e = f ′(c)(y − c) + e1,
but we still do not have a precise quantitative information on e1. The mean value theorem
(Theorem 5.4) reveals a quantitative bound on the error e, provided that f is differentiable in
a region (not only at the point c), even when c and y are at a finite distance from each other.
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For example, we have (x
1
2 )′ = 1

2x
− 1

2 , which implies that for y > c > 0 there exists ξ ∈ (c, y)
such that

√
y =
√
c+

y − c
2
√
ξ
. (86)

Taking into account that
√
ξ is strictly increasing in ξ, we infer
√
c <
√
y <
√
c+

y − c
2
√
c

(y > c > 0). (87)

Corollary 5.6. Let f : (a, b) → R be differentiable in (a, b), and suppose that f ′(x) > 0 for
all x ∈ (a, b). Then f is strictly increasing in (a, b).

Proof. Suppose that there exist x, y ∈ (a, b) with x < y, such that f(x) ≥ f(y). Then by the

mean value theorem (Theorem 5.4), there exists ξ ∈ (x, y) such that f ′(ξ) = f(y)−f(x)
y−x ≤ 0,

leading to contradiction. �

Definition 5.7. A function f : (a, b)→ R is called continuously differentiable in K ⊂ (a, b),
and written f ∈ C 1(K), if it is differentiable in K, with f ′ is continuous in K.

Corollary 5.8 (Inverse functions). Let f ∈ C 1((a, b)) satisfy f ′(x) 6= 0 for some x ∈ (a, b).
Then there exists an interval (c, d) 3 x, such that f |(c,d) : (c, d)→ f((c, d)) is bijective.

Proof. Without loss of generality, we shall only consider the case f ′(x) > 0. By continuity of
f ′, there is an open interval I 3 x such that f ′(ξ) > 0 for all ξ ∈ I. Hence by the preceding
corollary, f is strictly increasing in I, and by Corollary 3.19, the function f : [c, d] → R
on [c, d] ⊂ I admits the inverse f−1 : f([c, d]) → [c, d], which is continuous and strictly
increasing. �

Corollary 5.9 (L’Hôpital’s rule). Let f, g ∈ C ([a, b)) be differentiable in (a, b), satisfying
f(a) = g(a) = 0 and g′(x) 6= 0 for x ∈ (a, b). Suppose that there exists q ∈ R such that

f ′(xn)

g′(xn)
→ q as n→∞, (88)

for every sequence {xn} ⊂ (a, b) converging to a. Then g(x) 6= 0 for x ∈ (a, b), and

f(xn)

g(xn)
→ q as n→∞, (89)

for every sequence {xn} ⊂ (a, b) converging to a.

Proof. Suppose that g(x) = 0 for some x ∈ (a, b). Then by Rolle’s theorem (Theorem 5.3),
there exists ξ ∈ (a, x) such that g′(ξ) = 0. This contradicts the assumption that g′ does not
vanish in (a, b), which means that g does not vanish in (a, b).

Let {xn} ⊂ (a, b) be a sequence converging to a. For each n ∈ N and x ∈ [a, xn], we
define Fn(x) = g(xn)f(x) − f(xn)g(x). Then Fn ∈ C ([a, xn]) with Fn(a) = Fn(xn) = 0, and
moreover Fn is differentiable in (a, xn) with F ′n(x) = g(xn)f ′(x)−f(xn)g′(x). Hence by Rolle’s
theorem, there exists ξn ∈ (a, xn) such that F ′n(ξn) = 0, i.e., that g(xn)f ′(ξn) = f(xn)g′(ξn).
Since {xn} converges to a, it is obvious that {ξn} converges to a. Let ε > 0, and let N be

such that |f
′(ξn)
g′(ξn)

− q| < ε for all n ≥ N . Then we have |f(xn)g(xn)
− q| = |f

′(ξn)
g′(ξn)

− q| < ε for all

n ≥ N , and hence the sequence {f(xn)g(xn)
} converges to q. �

6. Higher order derivatives

If f : (a, b)→ R is a function differentiable in (a, b), then the derivative g = f ′ is a function
g : (a, b) → R. Hence it makes sense to talk about differentiability of f ′, which leads to the
notion of higher order derivatives.
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Definition 6.1. We say that f : (a, b)→ R is twice differentiable at x ∈ (a, b), if there exists
ε > 0 such that f is differentiable in (x− ε, x+ ε), and if f ′ is differentiable at x. We call

f ′′(x) ≡ d2f

dx2
(x) = g′(x), (90)

the second order derivative of f at x.

Example 6.2. For f(x) = x3, we have f ′(x) = 3x2 and f ′′(x) = 6x. Hence f is twice
differentiable at each x ∈ R, i.e., it is twice differentiable in R.

Remark 6.3. Let f : (a, b)→ R be differentiable at c ∈ (a, b). Then by definition, there is a
function φ : (a, b)→ R that is continuous at c with φ(c) = 0, such that

f(x) = f(c) + f ′(c)(x− c) + φ(x)(x− c), x ∈ (a, b). (91)

Now, assume that f is twice differentiable at c. By definition, this means that f is differentiable
in (c− ε, c+ ε) for some ε > 0, and that there is a function g : (a, b)→ R that is continuous
at c with g(c) = f ′′(c), such that

f ′(x) = f ′(c) + g(x)(x− c), x ∈ (c− ε, c+ ε). (92)

In other words, for any sequence {xn} ⊂ (c− ε, c) ∪ (c, c+ ε), we have

f ′(xn)− f ′(c)
xn − c

→ f ′′(c) as n→∞. (93)

Since [f(x)− f(c)− f ′(c)(x− c)]′ = f ′(x)− f ′(c) and [12(x− c)2]′ = x− c, by L’Hôpital’s rule,
for any sequence {xn} ⊂ (c− ε, c) ∪ (c, c+ ε), this implies that

f(xn)− f(c)− f ′(c)(xn − c)
1
2(xn − c)2

→ f ′′(c) as n→∞. (94)

Note that the function

F (x) =
f(x)− f(c)− f ′(c)(x− c)

1
2(x− c)2

, (95)

is well defined in (a, c)∪(c, b). Then upon setting F (c) = f ′′(c), by (94) we have F continuous
at c. In other words, there is a function ψ : (a, b)→ R that is continuous at c with ψ(c) = 0,
such that

f(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2
(x− c)2 + ψ(x)(x− c)2, x ∈ (a, b). (96)

Thus in a certain sense, the existence of the second derivative guarantees that the function
can be approximated by a quadratic polynomial well.

The following result is known as the second derivative test.

Lemma 6.4. Let f : (a, b) → R be a function, and suppose that f is twice differentiable at
c ∈ (a, b). Then the following are true.

a) If c is a maximum of f over the interval (a, b), in the sense that f(x) ≤ f(c) for all
x ∈ (a, b), then f ′(c) = 0 and f ′′(c) ≤ 0.

b) If f ′′(c) < 0, then there exists ε > 0 such that c is a strict maximum of f over (c−ε, c+ε).

Proof. a) Let c be a maximum of f over the interval (a, b). Then the assertion f ′(c) simply
follows from the first derivative test (Lemma 5.1). Suppose that f ′′(c) > 0. By Remark 6.3,
there exists a function ψ : (a, b) → R that is continuous at c with ψ(c) = 0, such that (96)
holds. Let x ∈ (c, b) be such that |ψ(x)| < 1

2f
′′(c). Then (96) implies that f(x) > f(c),

contradicting the maximality of f(c). �

Exercise 6.5. Prove b) of the preceding lemma.
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Remark 6.6. Let f : (a, b)→ R be differentiable at c ∈ (a, b). Then by definition, there is a
function φ : (a, b)→ R that is continuous at c with φ(c) = 0, such that

f(x) = f(c) + f ′(c)(x− c) + φ(x)(x− c), x ∈ (a, b). (97)

On the other hand, if f is continuous in [c, y] and f is differentiable in (c, y) where y ∈ (c, b),
then the mean value theorem tells us that there exists ξ ∈ (c, y) such that

f(y) = f(c) + f ′(ξ)(y − c). (98)

The analogue of this for second order derivatives can be obtained as follows. In the proof of
the mean value theorem, we constructed a function of the form F (x) = f(x) +A(x− c) with
F (c) = F (y) = f(c). Here we look for a function F (x) = f(x) + A(x − c) + B(x − c)2 with
F (c) = F (y) = f(c) and F ′(c) = 0, and easily find such a function as

F (x) = f(x)− f ′(c)(x− c)−
[
f(y)− f(c)− f ′(c)(y − c)

](x− c)2
(y − c)2

. (99)

We assume that f : (a, b)→ R is twice differentiable in (c, y), and continuously differentiable
in [c, y), where y ∈ (c, b). Then F is twice differentiable in (c, y), with

F ′(x) = f ′(x)− f ′(c)−
[
f(y)− f(c)− f ′(c)(y − c)

]2(x− c)
(y − c)2

, (100)

and

F ′′(x) = f ′′(x)− 2[f(y)− f(c)− f ′(c)(y − c)]
(y − c)2

. (101)

Moreover, F ′(c) exists and F ′ ∈ C ([c, y)). Since F (c) = F (y), by Rolle’s theorem, there is
ξ ∈ (c, y) such that F ′(ξ) = 0. Now recalling that F ′(c) = 0 and F ′ ∈ C ([c, y)), another
application of Rolle’s theorem gives the existence of η ∈ (c, ξ) such that F ′′(η) = 0. In other
words, we have

f(y) = f(c) + f ′(c)(y − c) +
1

2
f ′′(η)(y − c)2, (102)

for some η ∈ (c, y).

Remark 6.7. We give here an application of (102). Let f : (a, b)→ R be twice differentiable
in (a, b), satisfying f ′′(x) ≥ 0 for x ∈ (a, b). Of course, this implies that f ∈ C 1((a, b)). Let
x, y, z ∈ (a, b) be such that x < y < z. Then by the preceding remark, there exists ξ ∈ (y, z)
such that

f(z) = f(y) + f ′(y)(z − y) +
1

2
f ′′(ξ)(z − y)2. (103)

Since f ′′(ξ) ≥ 0, we infer that

f(z) ≥ f(y) + f ′(y)(z − y). (104)

Similarly, we get
f(x) ≥ f(y) + f ′(y)(x− y). (105)

By multiplying the last two inequalities by positive constants α and β, respectively, and
summing them, we have

αf(x) + βf(z) ≥ (α+ β)f(y) + [α(x− y) + β(z − y)]f ′(y). (106)

Now we impose the conditions α + β = 1 and α(x− y) + β(z − y) = 0, or what is the same,
pick α+ β = 1 and then set y = αx+ βz. This gives

αf(x) + (1− α)f(z) ≥ f(αx+ (1− α)z) x, z ∈ (a, b), α ∈ (0, 1). (107)

The assertion (107) is precisely the definition of convexity of f in (a, b). Therefore, functions
with nonnegative second derivatives are convex. Note that if f ′′ > 0 in (a, b) then we would
have (107) with strict inequality, meaning that f would be strictly convex.
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Example 6.8. Let f(x) = xq for some q ∈ Q. Then f ′′(x) = q(q − 1)xq−2 for x > 0. So if
q > 1 or q < 0 then f is strictly convex, i.e.,

(λx+ (1− λ)y)q < λxq + (1− λ)yq for x > y > 0, λ ∈ (0, 1), (108)

with y = 0 allowed when q > 1. In particular, taking λ = 1
2 , we infer

(x+ y)q < 2q−1(xq + yq) for x > y > 0. (109)

On the other hand, if 0 < q < 1, then −f is strictly convex, that is, f is strictly concave. This
simply means that the inequalities will be reversed, i.e., we have

(λx+ (1− λ)y)q > λxq + (1− λ)yq for x > y ≥ 0, λ ∈ (0, 1). (110)

Let y = 0 and x = a + b for some positive numbers a and b. Moreover, put λ = a
a+b so that

λx = a. Then we get
a

a+ b
(a+ b)q < aq. (111)

Now put λ = b
a+b so that λx = b. This yields

b

a+ b
(a+ b)q < bq, (112)

and by summing the last two inequalities, we conclude

(a+ b)q < aq + bq for a > 0, b > 0. (113)

Definition 6.9. Let f : (a, b)→ R. Then for n = 0, 1, . . ., we define the n-th order derivative

f (n) : Kn → R with the domain Kn ⊂ (a, b), as follows.

• We set f (0)(x) = f(x) for x ∈ (a, b) and K0 = (a, b). So any function is zero times
differentiable in its domain.
• For n = 1, 2, . . ., we say that f is n times differentiable at x ∈ (a, b), if there exists

ε > 0 such that (x − ε, x + ε) ⊂ Kn−1, and if f (n−1) is differentiable at x. We set

f (n)(x) ≡ dnf
dxn (x) = [f (n−1)]′(x), and define Kn to be the set of all x ∈ (a, b) at which

f is n times differentiable.

Example 6.10. (a) Let f(x) = xk with k ∈ N0 and take its domain to be R. Then we have

f (0)(x) = xk, f (1)(x) = kxk−1, f (2)(x) = k(k − 1)xk−2, (114)

and in general,

f (n)(x) = k(k − 1) · · · (k − n+ 1)xk−n =
k!

(k − n)!
xk−n for n ≤ k,

f (n)(x) = 0 for n > k.

(115)

Obviously, Kn = R for all n.
(b) Let f(x) = xq with q ∈ Q \N0 and take its domain to be R+ = {x ∈ R : x > 0}. We have

f (n)(x) = q(q − 1) · · · (q − n+ 1)xq−n for n ∈ N, x > 0. (116)

The following theorem extends Remark 6.3 and Remark 6.6 to higher order derivatives. A
version of this theorem was stated by Brook Taylor in 1712, but the first rigorous proof was
given by Joseph-Louis Lagrange in 1796.

Theorem 6.11. Let f : (a, b)→ R and let c ∈ (a, b).

a) If f is n times differentiable at c ∈ (a, b), then there is a function ψ : (a, b) → R that is
continuous at c with ψ(c) = 0, such that

f(x) = f(c) + f ′(c)(x− c) + . . .+
f (n)(c)

n!
(x− c)n + ψ(x)(x− c)n, x ∈ (a, b). (117)
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b) We assume that f : (a, b)→ R is n times differentiable in (c, x), and that f (n−1) exists and
continuous in [c, x), where x ∈ (c, b). Then there exists ξ ∈ (c, x), such that

f(x) = f(c) + f ′(c)(x− c) + . . .+
f (n−1)(c)

(n− 1)!
(x− c)n−1 +

f (n)(ξ)

n!
(x− c)n. (118)

Exercise 6.12. Prove this theorem. Hint: (117) extends (96), and (118) extends (102).

Example 6.13. (a) For f(x) = xm with m ∈ N0, we have f (k) ≡ 0 for k > m. Thus
Theorem 6.11b) with n = m+ 1 yields

xm = cm +mcm−1(x− c) + . . .+
m!

n!
(x− c)m =

m∑
k=0

m!

(m− k)!k!
cm−k(x− c)k, (119)

which is of course the binomial formula, cf. Exercise 1.16. Putting c = 1 and replacing
x− c with x, we can bring it into the convenient form

(1 + x)m =
m∑
k=0

(
m

k

)
xk, x ∈ R, (120)

where
(
m
k

)
= m(m−1)···(m−k+1)

m! = m!
k!(m−k)! .

(b) For f(x) = xq with q ∈ Q\N0, the derivative f (n) is not trivial for any n, so Theorem 6.11
would not yield a finite formula for (1 + x)q. What we get is that given any x > −1 and
any n ∈ N, there exists ξn ∈ R with |ξn| < |x| such that

(1 + x)q =
n−1∑
k=0

q(q − 1) · · · (q − k + 1)

k!
xk +

q(q − 1) · · · (q − n+ 1)

n!
ξnn . (121)

We write it as

(1 + x)q = Tn−1(x) +

(
q

n

)
ξnn , (122)

where

Tn(x) =
n∑
k=0

(
q

k

)
xk and

(
q

k

)
=
q(q − 1) · · · (q − k + 1)

k!
. (123)

It is in fact true that Tn(x)→ (1 + x)q as n→∞, whenever |x| < 1, leading to Newton’s
binomial theorem (also known as the binomial series)

(1 + x)q =

∞∑
k=0

(
q

k

)
xk for |x| < 1. (124)

To establish convergence, we start with the observation

|(1 + x)q − Tn−1(x)| =
∣∣(q
n

)
ξnn
∣∣ ≤ ∣∣(q

n

)∣∣|x|n. (125)

From now on, we assume that |x| < 1. Let ρ ∈ (|x|, 1), and let N be so large that∣∣q − n+ 1

n

∣∣|x| ≤ ρ for all n ≥ N. (126)

This is possible, because∣∣q − n+ 1

n

∣∣− 1 ≤ |q|+ 1

n
→ 0 as n→∞. (127)

Then for n ≥ N , we have∣∣(q
n

)∣∣|x|n ≤ ∣∣( q
N

)∣∣|x|N · ∣∣q −N
N + 1

∣∣|x| · · · ∣∣q − n+ 1

n

∣∣|x| ≤ ∣∣( q
N

)∣∣|x|N · ρn−N (128)
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Since N is fixed, we conclude that

|(1 + x)q − Tn−1(x)| ≤
∣∣(q
n

)∣∣|x|n ≤ ∣∣( q
N

)∣∣|x|N · ρn−N → 0 as n→∞. (129)

7. Uniform convergence

The class of functions we have considered so far has been generated by starting with the
rational powers (xq, q ∈ Q), and by combining them by using finitely many addition, subtrac-
tion, multiplication, quotient, and composition operations. Then a natural question is if we
can extend the rational powers to real powers, i.e., xa for any a ∈ R. A simple idea would be

• to construct a sequence {an} ⊂ Q converging to a ∈ R,
• and to define xa as the limit of xan as n→∞.

In order to successfully carry out this program, we need to address the following questions.

• Given any a ∈ R, can we construct a sequence {an} ⊂ Q converging to a?
• Supposing that we have such a sequence {an}, does the sequence {xan} converge?
• Would the limit of {xan} depend on the particular sequence {an}?

The first question can be answered easily. Namely, given a ∈ R, let

an = max
{ k
m

: k ∈ Z, m ∈ N, m ≤ n, k
m
≤ a

}
for n ∈ N. (130)

By construction, we have an ≤ an+1 ≤ a for all n. Moreover, for any ε > 0, there is q ∈ Q
such that a − ε < q < a by Theorem 2.7. If we write q = k

n , then q ≤ an ≤ a, meaning that
an → a as n→∞.

The affirmative answers to the remaining questions are given in the following lemma.

Lemma 7.1. Let x > 0, and let a ∈ R. Then there exists y ∈ R such that xan → y as n→∞,
whenever {an} ⊂ Q is a sequence converging to a.

Proof. Let {an} ⊂ Q be a sequence converging to a. We want to show that {xan} is a Cauchy
sequence, and then invoke Theorem 2.19 to establish the convergence of {xan}. Assume that
x > 1. Since {an} is convergent, it is bounded, i.e., there is M such that |an| ≤ M for all n.
Hence for any m,n ∈ N, we have

|xan − xam | = xmin{am,an}(x|am−an| − 1) ≤ xM (x|am−an| − 1) (131)

Let ε > 0, and let k ∈ N be so large that xM ( k
√
x− 1) < ε. This is possible since k

√
x→ 1 as

k →∞. Now, let N be such that |am − an| < 1
k for all m ≥ N and n ≥ N . Then we have

|xan − xam | ≤ xM (x|am−an| − 1) ≤ xM (x1/k − 1) ≤ ε, (132)

for all m ≥ N and n ≥ N , which means that {xan} is a Cauchy sequence. By Theorem 2.19,
there exists y ∈ R such that xan → y as n→∞.

The case 0 < x < 1 can be reduced to the case x > 1 as follows. Let 0 < x < 1. Then
1
x > 0, and so xan = ( 1x)−an form a Cauchy sequence by the preceding paragraph, as the
sequence {−an} is convergent.

Now let {an} and {bn} be sequences both converging to a. By the preceding discussion,
there exist y ∈ R and z ∈ R such that xan → y and xbn → z as n → ∞. In order to show
that y = z, we start with the inequality

|y − z| ≤ |y − xan |+ |xan − xbn |+ |xbn − z|. (133)

Let ε > 0. Then there exists N such that |y − xan | ≤ ε and |xbn − z| ≤ ε for all n ≥ N .
Assuming that x > 1, similarly to (131), we infer

|xan − xbn | = xmin{an,bn}(x|an−bn| − 1) ≤ xM (x|an−bn| − 1), (134)



26 TSOGTGEREL GANTUMUR

where M is an upper bound on both {an} and {bn}. This makes it clear that as in (132), we
can choose n ≥ N so large that |xan − xbn | ≤ ε, i.e., |y − z| ≤ 3ε. As ε > 0 is arbitrary, we
conclude that y = z. The remaining case 0 < x < 1 can be dealt with as in the preceding
paragraph. �

This result makes the following definition possible.

Definition 7.2. Given x > 0 and a ∈ R, the power function xa is defined as the limit of xan ,
where {an} ⊂ Q is a sequence converging to a.

Now we derive some of the important algebraic properties of the power function.

Lemma 7.3. a) For x > 0 and a, b ∈ R, we have xaxb = xa+b and (xa)b = xab.
b) For x, y > 0 and a ∈ R, we have (xy)a = xaya.
c) If 0 < x < y then xa < ya for a > 0 and xa > ya for a < 0.
d) If a < b then xa < xb for x > 1 and xa > xb for 0 < x < 1.

Proof. These properties follow from their rational power equivalents by continuity.
b) Let {an} ⊂ Q be a sequence converging to a. Then we have (xy)an = xanyan . Since

xan → xa and yan → ya as n → ∞, by Theorem 3.1b) we have xanyan → xaya as n → ∞.
Therefore for any ε > 0, there exists N such that |xanyan − xaya| ≤ ε for all n ≥ N . On the
other hand, there exists M such that |(xy)an − (xy)a| ≤ ε for all n ≥M . Thus we have

|(xy)a − xaya| ≤ |(xy)a − (xy)an |+ |(xy)an − xanyan |+ |xanyan − xaya| ≤ 2ε, (135)

for all n ≥ max{M,N}. As ε > 0 is arbitrary, we conclude that (xy)a = xaya.
d) Let {an} ⊂ Q be a non-increasing sequence (an+1 ≤ an) that converges to a, and let

{bn} ⊂ Q be a non-decreasing sequence (bn+1 ≥ bn) that converges to b, cf. (130). Assume
that x > 1. Then since xbn ≤ xbn+1 , we have xbn ≤ xb for all n. Similarly, we have xan ≥ xa

for all n. Hence for n so large that an < bn, it holds that xa ≤ xan < xbn ≤ xb. The case
0 < x < 1 can be dealt with in an analogous manner. �

Exercise 7.4. Prove a) and c) of the preceding lemma.

Now we turn to continuity and differentiability of the power function f(x) = xa with fixed
a ∈ R. For rational powers a ∈ Q, we know that this function is not only continuous, but also
differentiable at each x > 0, with f ′(x) = axa−1. As xa with a ∈ R \Q can be approximated
by xq with q ∈ Q arbitrarily well, it is reasonable to expect that f be continuous. However,
the question is not trivial, as the following example shows.

Example 7.5. For each n ∈ N, let θn : R→ R be given by

θn(x) =


1 for x ≥ 1

n ,

nx for 0 < x < 1
n ,

0 for x ≤ 0.

(136)

Each θn is a continuous function in R. Given any x > 0, we have θn(x) = 1 for all large n,
and hence for each x ∈ R, we have θn(x)→ θ(x) as n→∞, where

θ(x) =

{
1 for x > 0,

0 for x ≤ 0.
(137)

Clearly, θ is not continuous at 0. Thus just because each θn is continuous, and θn(x) converges
to θ(x) at each fixed x, does not mean that the limit θ is continuous.

Let K ⊂ R be a nonempty set. By a sequence of functions (with the domain K) we mean
simply an assignment of a function fn : K → R to each index n, with the latter usually having
positive integers as values. We denote this sequence by {f1, f2, . . .} or {fn}, and consider it
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also as a collection of functions. So for example, {fn} ⊂ C (K) would mean that every function
in the sequence is continuous.

Definition 7.6. A sequence {fn} is said to converge pointwise in K to a function f : K → R,
if for each x ∈ K, fn(x)→ f(x) as n→∞.

Pointwise convergence is a very weak kind of convergence. For instance, as we have seen
in Example 7.5, the pointwise limit of a sequence of continuous functions is not necessarily
continuous. The notion of uniform convergence is a stronger type of convergence that remedies
this deficiency.

Definition 7.7. A sequence {fn} is said to converge uniformly in K to a function f : K → R,
if for any ε > 0, there exists N such that |fn(x)− f(x)| ≤ ε for any x ∈ K and all n ≥ N .

Example 7.8. Let α ∈ R, and let {αn} ⊂ Q be a sequence converging to α. We consider the
sequence fn(x) = xαn , n ∈ N, with the domain [a, b] for some 0 < a < b. We want to show
that {fn} converges uniformly in [a, b] to the function f given by f(x) = xα. Note that

|xαn − xα| = xα|xαn−α − 1| ≤ max{aα, bα} ·max{|aαn−α − 1|, |bαn−α − 1|}, (138)

for x ∈ [a, b]. Given any ε > 0, there existsN such thatM |aαn−α−1| < ε andM |bαn−α−1| < ε
for all n ≥ N , where M = max{aα, bα}. Hence {fn} converges uniformly in [a, b] to f .

Exercise 7.9. Show that uniform convergence implies pointwise convergence.

Theorem 7.10 (Weierstrass 1861). Suppose that {fn} ⊂ C (K) converges uniformly in K to
a function f : K → R. Then f ∈ C (K).

Proof. We will use the sequential criterion of continuity. Let x ∈ K, and let {xk} ⊂ K be a
sequence converging to x. Then we have

f(xk)− f(x) = f(xk)− fn(xk) + fn(xk)− fn(x) + fn(x)− f(x), (139)

for any n, and hence

|f(xk)− f(x)| ≤ |f(xk)− fn(xk)|+ |fn(xk)− fn(x)|+ |fn(x)− f(x)|, (140)

by the triangle inequality.
Let ε > 0 be given. Then by uniform convergence, there is N such that

|f(y)− fn(y)| ≤ ε, for all y ∈ K, and for all n ≥ N. (141)

In particular,

|f(xk)− f(x)| ≤ 2ε+ |fn(xk)− fn(x)|, for all k, and for all n ≥ N. (142)

Now we fix one such n, for example, put n = N , and use the continuity of fn to imply the
existence of M with the property that

|fn(xk)− fn(x)| ≤ ε, for all k ≥M. (143)

Finally, this means that

|f(xk)− f(x)| ≤ 3ε, for all k ≥M, (144)

and since ε > 0 was arbitrary, we infer that f is continuous at x. �

Exercise 7.11. Find a mistake in the following purported proof.
Claim: If {fn} ⊂ C (K) converges pointwise in K to a function f : K → R, then f is

continuous in K.
Proof: Let x ∈ K, and let {xk} ⊂ K be a sequence converging to x. Then as in the

preceding proof, we have

|f(xk)− f(x)| ≤ |f(xk)− fn(xk)|+ |fn(xk)− fn(x)|+ |fn(x)− f(x)|. (145)
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Since fn converges pointwise to f , both |f(xk) − fn(xk)| and |fn(x) − f(x)| tend to 0 as
n→∞. Furthermore, |fn(xk)− fn(x)| → 0 as k →∞, because the function fn is continuos.
Hence by choosing k and n large enough, we can make the right hand side of (145) arbitrarily
small, which means that f is continuous at x.

Corollary 7.12. For α ∈ R, the function f(x) = xα is continuous at each x > 0.

Proof. Let x > 0, and pick a, b ∈ R satisfying 0 < a < x < b. Then in the context of
Example 7.8, we have a sequence {fn} ⊂ C ([a, b]) converging uniformly in [a, b] to f . The
Weierstrass convergence theorem (Theorem 7.10) implies that f ∈ C ([a, b]). In particular, f
is continuous at x. �

Exercise 7.13. For α ≥ 0, show that the function f(x) = xα is continuous at 0.

Turning to the differentiability issue, for fn(x) = xαn , we have f ′n(x) = αnx
αn−1. So if

αn → α then f ′n converges uniformly in [a, b] to g(x) = αxα−1, for any [a, b] ⊂ (0,∞). Since
fn converges to f(x) = xα, we expect that f ′ = g. This is confirmed in the following theorem.

Theorem 7.14. Let {fn} be a sequence of differentiable functions fn : (a, b) → R, such
that {fn} converges pointwise in (a, b) to a function f : (a, b) → R, and that {f ′n} converges
uniformly in (a, b) to a function g : (a, b) → R. Then f is differentiable in (a, b), and
f ′(x) = g(x) for x ∈ (a, b).

Proof. Let x ∈ (a, b), and let {xk} ⊂ (a, b) \ {x} be a sequence converging to x. Having in

mind the sequential criterion of differentiability, we want to show that f(xk)−f(x)
xk−x → g(x) as

k →∞. Let ε > 0, and let n be such that

|f ′m(ξ)− g(ξ)| < ε for any ξ ∈ (a, b), and for all m ≥ n. (146)

Such n exists by the uniform convergence fn → g. Moreover, since fn is differentiable in (a, b),
there exists an index K such that∣∣fn(xk)− fn(x)

xk − x
− f ′n(x)

∣∣ ≤ ε for all k ≥ K. (147)

We have

f(xk)− f(x)

xk − x
− g(x) =

(f(xk)− f(x)

xk − x
− fn(xk)− fn(x)

xk − x
)

+
(fn(xk)− fn(x)

xk − x
− f ′n(x)

)
+
(
f ′n(x)− g(x)

)
, (148)

which implies that∣∣f(xk)− f(x)

xk − x
− g(x)

∣∣ ≤ ∣∣f(xk)− f(x)

xk − x
− fn(xk)− fn(x)

xk − x
∣∣+ 2ε for all k ≥ K. (149)

Now we claim that∣∣f(xk)− f(x)

xk − x
− fn(xk)− fn(x)

xk − x
∣∣ < 2ε for all k ≥ K, (150)

which would complete the proof.
To establish the claim, we replace f(x) and f(xk) by fm(x) and fm(xk), respectively, where

m ∈ N is understood to be large, and invoke the mean value theorem, yielding

fm(xk)− fm(x)

xk − x
− fn(xk)− fn(x)

xk − x
=

(fm − fn)(xk)− (fm − fn)(x)

xk − x
= (fm − fn)′(ξ) = f ′m(ξ)− f ′n(ξ),

(151)
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for some ξ ∈ (a, b), which may depend on m and k. However, regardless of where ξ is, our set
up (146) guarantees that

|f ′m(ξ)− f ′n(ξ)| ≤ |f ′m(ξ)− g(ξ)|+ |g(ξ)− f ′n(ξ)| < 2ε for all m ≥ n. (152)

Therefore we have∣∣f(xk)− f(x)

xk − x
− fn(xk)− fn(x)

xk − x
∣∣ ≤ ∣∣f(xk)− f(x)

xk − x
− fm(xk)− fm(x)

xk − x
∣∣

+
∣∣fm(xk)− fm(x)

xk − x
− fn(xk)− fn(x)

xk − x
∣∣

<
|f(xk)− fm(xk)|+ |f(x)− fm(x)|

|xk − x|
+ 2ε,

(153)

for all m ≥ n. Since fm(y) → f(y) at each y ∈ (a, b), for each fixed k, by choosing m suffi-
ciently large, we can make |f(xk)−fm(xk)|+|f(x)−fm(x)| arbitrarily small, thus establishing
the claim (150). �

Corollary 7.15. For α ∈ R, f(x) = xα is differentiable at each x > 0, with f ′(x) = αxα−1.

An immediate consequence is of course that xα is infinitely often differentiable, with
(xα)(n) = α(α− 1) · · · (α− n+ 1)xα−n.

8. Power series

In Example 6.13, we established that

(1 + x)α =
∞∑
n=0

(
α

n

)
xn for |x| < 1, (154)

where α ∈ Q and
(
α
n

)
= α(α−1)···(α−n+1)

n! . If α is a nonnegative integer, then
(
α
n

)
= 0 for all

n > α, and hence the sum in (154) yields a polynomial of degree α. In all other cases, the sum
has infinitely many nonzero terms, and the equality must be understood in the sense that

(1 + x)α = lim
m→∞

Tm(x), where Tm(x) =
m∑
n=0

(
α

n

)
xn. (155)

Infinite sums such as (154) are called series. To establish the convergence, we only used the

formula (xα)(n) = α(α − 1) · · · (α − n + 1)xα−n in combination with the Lagrange form of

Taylor’s theorem (Theorem 6.11), and the fact that |α|+1
n → 0 as n → ∞, cf. (127). Since

these facts also hold for α ∈ R \ Q, we conclude that the binomial theorem (154) is true for
all real exponents α ∈ R.

Exercise 8.1. Write out a proof that the binomial theorem (154) is true for all α ∈ R.

Exercise 8.2. Explicitly compute the coefficients of (154) for α = 1
2 , α = −1, and α = −2.

As it stands, the binomial theorem (154) is only valid for |x| < 1, and thus can be used
to express the power function yα only in the range 0 < y < 2. However, we can rescale it
to derive series that are valid in larger regions. Let c > 0, and let 0 < y < 2c. Then by
substituting x = y−c

c ∈ (−1, 1) into (154), we get

yα

cα
=

∞∑
n=0

(
α

n

)
(y − c)n

cn
or yα =

∞∑
n=0

(
α

n

)
cα−n(y − c)n. (156)

This is an example of a power series for the function f(y) = yα, centred at c. It is valid in
the region y ∈ (0, 2c).
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Exercise 8.3. Derive the series (156) by computing the derivatives of yα at y = c, and then
invoking Taylor’s theorem (Theorem 6.11).

It turns out that most of the important functions used in mathematics and sciences can be
expressed as power series similar to (156). In this section, we shall study the main properties
of power series. Before doing so, however, we need to introduce the concept of series and
establish a couple of general results.

Given a sequence {a0, a1, . . .} of real numbers, the series with the terms {an} is
∞∑
n=0

an, (157)

which is understood as an overloaded notation for all of the following.

• The sequence {an}.
• The sequence {sm}, where sm = a0 + . . .+ am is called the m-th partial sum.
• The limit lim

m→∞
sm = lim

m→∞
(a0 + . . .+ am), if it exists.

Thus when one says that the series
∑

n an converges, one is referring to the sequence {sm}.
On the other hand, the equality

∑
n an = b, or the statement that the sum (or the value) of

the series
∑

n an is b, would be referring to the limit lim
m→∞

sm.

Example 8.4. (a) Let x ∈ (−1, 1), and let us evaluate the value of the series
∑∞

n=0 x
n. The

n-th term of this series is an = xn, and the n-th partial sum is sn = 1 + x+ x2 + . . .+ xn.
Then the standard argument

sn − xsn = 1 + x+ x2 + . . .+ xn − (x+ x2 + . . .+ xn + xn+1) = 1− xn+1, (158)

implies that

sn =
1− xn+1

1− x
. (159)

We make a guess that sn converges to s = 1
1−x , and compute

s− sn =
1

1− x
− 1− xn+1

1− x
=
xn+1

1− x
, (160)

which leads to

|s− sn| =
|xn+1|
|1− x|

≤ |x|
n+1

|1− x|
→ 0 as n→∞. (161)

Hence we conclude that
∞∑
n=0

xn =
1

1− x
for x ∈ (−1, 1). (162)

(b) Consider the harmonic series
∑

n
1
n , with the partial sums An = 1 + 1

2 + . . . + 1
n . Note

that the indexing starts at n = 1. We have

A2k = 1 +
1

2
+

1

3
+

1

4︸ ︷︷ ︸
> 1

4
·2= 1

2

+
1

5
+ . . .+

1

8︸ ︷︷ ︸
> 1

8
·4= 1

2

+ . . .+
1

2k−1 + 1
+ . . .+

1

2k︸ ︷︷ ︸
> 1

2k
·2k−1= 1

2

≥ 1 +
1

2
· k =

k + 2

2
,

(163)

for k = 1, 2, . . ., implying that the sequence {An} diverges to ∞, that is,
∞∑
n=1

1

n
=∞. (164)
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Remark 8.5 (Leibniz criterion). Suppose that s =
∑

n an, i.e., that the sequence of partial
sums sn = a0 + . . .+ an converges to s. We have an = sn − sn−1, and hence

|an| = |sn − sn−1| ≤ |sn − s|+ |s− sn−1| → 0 as n→∞. (165)

This means that the terms of a convergent series must tend to 0. For example, we can
immediately tell that the series

∑
n(−1)n is divergent, because (−1)n 6→ 0. Note that the

converse statement is not true: The harmonic series
∑

n
1
n diverges, even though the terms 1

n
tend to 0.

Now we extend the concept of series to series whose terms are functions. Given a sequence
{gn} of functions gn : K → R with some K ⊂ R, the function series with the terms {gn} is

∞∑
n=0

gn. (166)

As with the series of numbers, this notation may stand for either of the sequences {gn} and
{fm}, where fm = g0 + . . .+ gm is the m-th partial sum. Naturally, it may also stand for the
limit of the sequence {fm} comprising the partial sums, provided such a limit exist. However,
since {fm} is a sequence of functions, one must in addition specify the mode of convergence,
whether it is pointwise or uniform.

Example 8.6. Let gn(x) = xn. Then the partial sums of the series
∑

n gn are

fn(x) = 1 + x+ . . .+ xn =
1− xn+1

1− x
, (167)

as we know from Example 8.4. In Example 8.4, x ∈ (−1, 1) was a fixed number, and the
series

∑
n x

n was considered to be a series of numbers. Here, we consider
∑

n x
n as a series

of functions gn(x) = xn, with x varying in some interval. Recall that

|f(x)− fn(x)| = |x
n+1|
|1− x|

≤ |x|
n+1

|1− x|
, where f(x) =

1

1− x
. (168)

Now if |x| ≤ r for some r < 1, then |1− x| ≥ 1− |x| ≥ 1− r, and hence

|f(x)− fn(x)| ≤ rn+1

1− r
. (169)

This shows that fn converges to f uniformly in [−r, r], for any fixed r < 1. In other words,
the series

∑∞
n=0 x

n converges uniformly in [−r, r] to 1
1−x , whenever r < 1.

Theorem 8.7 (Weierstrass M-test, majorant test, or comparison test). Let the functions
gn : K → R satisfy |gn(x)| ≤ an for all x ∈ K and for each n, where

∑
n an is a convergent

series of real numbers. Then there exists a function f : K → R such that the function series∑
n gn converges uniformly in K to f .

Proof. With fn = g1 + . . .+ gn, for x ∈ K and n > m, we have

|fn(x)− fm(x)| = |gm+1(x)|+ . . .+ |gn(x)| ≤ am+1 + . . .+ an ≤
∞∑

k=m+1

ak, (170)

which tends to 0 when m → ∞. This means that {fn(x)} is a Cauchy sequence of real
numbers, and hence there exists α ∈ R such that fn(x) → α as n → ∞. We set f(x) := α.
Since x ∈ K is arbitrary, this procedure defines a function f : K → R, and by construction,
fn → f pointwise in K.

It remains to show that this convergence is uniform. Let ε > 0. Since the quantity in the
right hand side of (170) does not depend on x, there exists N such that |fn(x)− fm(x)| ≤ ε
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for all x ∈ K and all n,m ≥ N . Now for any given x ∈ K, by pointwise convergence, there
exists m ≥ N so large that |fm(x)− f(x)| ≤ ε. Therefore we have

|fn(x)− f(x)| ≤ |fn(x)− fm(x)|+ |fm(x)− f(x)| ≤ 2ε, (171)

whenever n ≥ N and x ∈ K, implying that fn → f uniformly in K. �

Definition 8.8. A power series is a series of the form
∞∑
n=0

an(x− c)n, (172)

with the coefficients an ∈ R for n = 0, 1, . . ., and the centre c ∈ R.

Arguably the most important example of a power series is the geometric series
∑

n x
n

studied in Example 8.6. We know that this series converges for all x satisfying |x| < 1. On
the other hand, if |x| > 1, then |xn| = |x|n 6→ 0 as n→∞, meaning that the series diverges.
It turns out that this is basically happens in the general case; Given a power series, there is
a special interval centred at c that separates convergence and divergence behaviours.

We start with the following important observation of Niels Henrik Abel (1802-1829).

Remark 8.9 (Abel 1826). (a) Suppose that (172) converges at some x0 6= c. Then it is
necessary that |an(x0 − c)n| = |an||x0 − c|n → 0 as n → ∞. In particular, the sequence
{|an||x0 − c|n} is bounded, i.e., there is some constant M such that

|an|rn ≤M for all n, (173)

where r = |x0 − c|.
(b) Suppose that the coefficients of the series (172) satisfy the estimate (173) for some

constants r > 0 and M . Let 0 < ρ < r and let z ∈ [c− ρ, c+ ρ]. Then

|an(x− c)n| ≤ |an|ρn ≤M
(ρ
r

)n
, (174)

and since
∑

n(ρr )n <∞, the Weierstrass M-test is applicable to (172) in the interval [c−ρ, c+ρ].
Therefore the series (172) converges uniformly in [c− ρ, c+ ρ].

(c) Combining (a) and (b), we infer the following. If the power series
∑
an(x−c)n converges

at x = x0, then it converges at all points in the open interval (c− r, c+ r) with r = |x0 − c|.
Moreover, the convergence is uniform in [c− ρ, c+ ρ] for each 0 < ρ < r.

Definition 8.10. From (b) of the previous remark we see that it is important to find the
largest value of r for which the estimate (173) holds. To this end, we let

A = {r ≥ 0 : the sequence {|an|rn} is bounded}, (175)

and define
R = supA, (176)

which is called convergence radius of the power series
∑
an(x− c)n.

Example 8.11. (a) If an = nn, the sequence {anrn} diverges to ∞ whatever the value of
r > 0. Therefore we have A = {0} and hence R = 0 in this case.

(b) If an = n−n, the sequence {anrn} converges to 0 whatever the value of r ≥ 0. Therefore
we have A = [0,∞) and hence R =∞.

(c) If an = 2n, the sequence {anrn} is bounded for r ≤ 1
2 and unbounded for r > 1

2 . Therefore

we have A = [0, 12 ] and hence R = 1
2 .

(d) If an = n2n, the sequence {anrn} is bounded for r < 1
2 and unbounded for r ≥ 1

2 .

Therefore we have A = [0, 12) and hence R = 1
2 .

By definition, the convergence radius R has the following characteristic properties.

http://www-history.mcs.st-andrews.ac.uk/Biographies/Abel.html
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• Given any r < R, there is M such that |an| ≤Mr−n for all n.
• For any r > R, the sequence {|an|rn} is unbounded.

This leads to the following.

• Suppose that x satisfy |x − c| ≤ ρ < R, and pick some r such that ρ < r < R. Then
there is M such that |an| ≤Mr−n for all n. This implies that

|an(x− c)n| = |an||x− c|n ≤M
(ρ
r

)n
, (177)

hence the Weierstrass M-test is applicable in the interval [c− ρ, c+ ρ].
• If |x− c| > R, then |an(x− c)n| = |an||x− c|n 6→ 0 as n→∞, and so the power series∑

an(x− c)n diverges.

Therefore, the convergence radius of the power series
∑
an(x − c)n can also defined as the

(extended) real number R ∈ [0,∞] with the property that
∑
an(x− c)n converges whenever

|x−c| < R and diverges whenever |x−c| > R. Note also that whenever ρ < R, the Weierstrass
M-test is applicable in the interval [c− ρ, c+ ρ], hence it converges uniformly in [c− ρ, c+ ρ].

The following result was discovered by Cauchy in 1821.

Theorem 8.12 (Ratio test). The convergence radius R of the power series (172) is by

R = lim
n→∞

|an|
|an+1|

, (178)

provided that the limit exists. In particular, it requires that an = 0 for only finitely many n.

Proof. Without loss of generality, we will assume that an 6= 0 for all n (Equivalently, we only
consider indices n ≥M for some large M).

Let α be the limit in (178) and suppose that |x| < ρ < α. Then there exists N such that
|an|
|an+1| ≥ ρ for all n ≥ N , which leads to the estimate

|an+1| ≤ ρ−1|an| ≤ . . . ≤ ρN−1−n|aN | for n ≥ N, (179)

or |an| ≤ |aN |ρNρ−n for n > N . Thus we have

|anxn| ≤ |aN |ρN
( |x|
ρ

)n
for n > N, (180)

and so
∑
anx

n converges. This means that α ≤ R.

Now suppose that |x| > α. Then there exists N such that |an|
|an+1| ≤ |x| for all n ≥ N , which

leads to the estimate |anxn| ≥ |aN ||x|N for n > N . Since aN 6= 0, the series
∑
anx

n diverges,
and hence R ≤ α. �

Example 8.13. (a) For an = n!, we have |an|
|an+1| = 1

n+1 → 0 as n → ∞. Therefore the

convergence radius of the series
∑
n!xn is 0.

(b) For an = 1
n! , we have |an|

|an+1| = n+ 1→∞ as n→∞. Therefore the convergence radius of

the series
∑ xn

n! is ∞.

(c) For an = (−1)nn32n, we have |an|
|an+1| = n3

2(n+1)3
→ 1

2 as n→∞. Therefore the convergence

radius of the series
∑

(−1)nn32nxn is 1
2 .

(d) Let the sequence {an} be given by {1, 1, 3, 3, 32, 32, 33, 33, . . .}. Then the value of |an|
|an+1|

alternates between 1 and 1
3 , and hence the ratio test as stated is not applicable.

Exercise 8.14. Find the convergence radius of the series described in (d) of the preceding
example. Hint: Use Definition 8.10 directly.

Now we turn to the question of termwise differentiating power series.
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Theorem 8.15. Let 0 < R ≤ ∞ be the convergence radius of the power series

f(x) =
∞∑
n=0

an(x− c)n. (181)

Then the power series

g(x) =

∞∑
n=1

nan(x− c)n−1, (182)

has convergence radius equal to R, and it holds that

f ′ = g in (c−R, c+R), (183)

where in case R =∞ it is understood that (c−R, c+R) = R.

Proof. Without loss of generality, we will assume that c = 0. It is obvious that the convergence
radius R′ of the power series representing g is at most R, that is, R′ ≤ R. To prove the other
direction, let |x| < r < R. Then there is some M such that |an|rn ≤ M for all n, which
implies that

n|an||x|n ≤Mn
( |x|
r

)n
. (184)

Since |x| < r, we have
∑
n( |x|r )n <∞, and so R ≤ R′.

Now we will show that f ′ = g in (c−R, c+R). To this end, let

fm(x) =
m∑
n=0

an(x− c)n, and gm(x) =
m∑
n=1

nan(x− c)n−1. (185)

Then it is clear that f ′m = gm in (c−R, c+R) for all m. Moreover, fm → f and gm → g both
uniformly in (c− r, c+ r) for any r < R. By Theorem 7.14 this shows that f is differentiable
in (c− r, c+ r) with f ′ = g. Since r < R is arbitrary, we have f ′ = g in (c−R, c+R). �

Example 8.16. So far, the only examples of power series we have considered are the binomial
series. Since (yα)′ = αyα−1, differentiating a binomial series results in another binomial
series, and hence would not serve as an interesting example of differentiation of power series.
However, if we look at the right hand side of the equation (yα)′ = αyα−1, we notice that all
powers of y can be obtained as the result of differentiation, except the power y−1. Thus we
can ask the question what would the function whose derivative is equal to y−1, and try to
construct such as function by using power series. We have

(1 + x)−1 =

∞∑
n=0

(−1)nxn =

∞∑
n=1

(−1)n−1xn−1 for |x| < 1, (186)

Then in view of the ratio test (Theorem 8.12) and of Theorem 8.15, the function

f(x) =
∞∑
n=1

(−1)n−1xn

n
= x− x2

2
+ . . . (187)

satisfies f ′(x) = (1 + x)−1 for |x| < 1. This function will in fact turn out to be the logarithm
function, which is explored in the next section.
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9. The exponential and logarithm functions

The repository of functions we have so far can be generated by starting with the power
functions f(x) = xa, a ∈ R, and by combining them by using finitely many addition, sub-
traction, multiplication, quotient, and composition operations. In view of Theorem 4.6, the
derivative of such a function will be a function from the same repository. The methods that
can potentially generate new types of functions are inverse functions and function sequences.
The latter is the most general method, and we shall here focus on a special yet powerful
method of differential equations.

Roughly speaking, a differential equation is an equation involving a function and its deriva-
tives. For example, f ′(x) + f(x) − x = 0 is a differential equation. Given a differential
equation, one is interested in finding a function f satisfying the equation. Such a function is
called a solution of the differential equation. The simplest differential equation is

f ′ = 0. (188)

Lemma 9.1. Let f : (a, b)→ R be differentiable in (a, b), and suppose that f ′(x) = 0 for all
x ∈ (a, b). Then f is constant, i.e., there is c ∈ R such that f(x) = c for x ∈ (a, b).

Proof. Suppose that f is not constant, i.e., that f(x) 6= f(y) for some x, y ∈ (a, b). Without
loss of generality, assume that x < y. Then by the mean value theorem (Theorem 5.4), there

exists ξ ∈ (x, y) such that f ′(ξ) = f(y)−f(x)
y−x 6= 0, leading to contradiction. �

For any c ∈ R, the function f : (a, b)→ R defined by f(x) = c is a solution of the differential
equation f ′ = 0 in (a, b), and hence this differential equation has many solutions. In order to
pinpoint single solution, we could specify the value of f at a point α ∈ (a, b), as f(α) = β.
For example, the only solution of the problem

f ′ = 0, f(0) = 1, (189)

considered in R, is f(x) = 1 for all x ∈ R.
The next natural examples of differential equations would be f ′(x) = 1, f ′(x) = x, etc.,

and more generally, we may consider the problem of finding f satisfying f ′ = g, where g is
a given function. This leads to the problem of antidifferentiation or integration, and will be
discussed in Section 12.

The main subject of this section is the differential equation

f ′ = f, (190)

and we look for its solution in the form of a power series f(x) =
∑
anx

n. Formally differen-
tiating the power series, we find

f ′(x) = (a0 + a1x+ a2x
2 + . . .)′ = 0 + a1 + 2a2x+ . . . =

∞∑
n=0

(n+ 1)an+1x
n, (191)

which should be equal to f(x) =
∑
anx

n. This yields a1 = a0, 2a2 = a1, 3a3 = a2, . . . ,
nan = an−1, or

an =
an−1
n

=
an−2

n(n− 1)
= . . . =

a0
n!
. (192)

Note that under the convention 0! = 1, the equality an = a0/n! is true even for n = 0. Hence
all the coefficients {an} can be written in terms of the single coefficient a0. By choosing
a0 = 1, we are led to the exponential function.

Definition 9.2. The exponential function is given by the power series

exp(x) =
∞∑
n=0

xn

n!
= 1 + x+

x2

2
+
x3

3!
+ . . . , (193)
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whose convergence radius (e.g. by the ratio test) is ∞, and so in particular exp ∈ C∞(R).

Very often we will omit the parentheses and write expx instead of exp(x).

Definition 9.3 (Euler 1748). We define the Euler number by e = exp 1.

Remark 9.4. Putting x = 0 into (193), we get exp 0 = 1. Moreover, termwise differentiating
the power series (193), we have

exp′ x = 0 + 1 +
2x

2
+

3x2

3!
+ . . .+

nxn−1

n!
= expx, (194)

confirming that the exponential function is indeed a solution of (190).

Theorem 9.5 (Law of addition). We have

exp(x+ y) = exp(x) exp(y) for x, y ∈ R. (195)

Proof. For a ∈ R, let g(x) = exp(x) exp(a− x). Then we have

g′(x) = exp(x) exp(a− x)− exp(x) exp(a− x) = 0, (196)

for all x ∈ R, which, by g(0) = exp(a) and by Lemma 9.1, implies that

g(x) = exp(x) exp(a− x) = exp(a) for a, x ∈ R. (197)

Putting a = x+ y, we get (195). �

Corollary 9.6. a) exp(−x) exp(x) = 1, and so exp(x) > 0 for all x ∈ R.
b) The map exp : R→ (0,∞) is strictly increasing and surjective.
c) The only function satisfying f ′ = f in R with f(0) = 1 is the exponential function.
d) expx = ex for all x ∈ R, where e = exp 1, cf. Definition 9.3.

Proof. Putting y = −x into the law of addition (195), we infer

exp(−x) exp(x) = 1 for x ∈ R. (198)

We have

expx = 1 + x+
x2

2!
+ . . . ≥ 1 + x for x ≥ 0, (199)

which implies that expn→∞ as n→∞. Moreover, since exp(−x) = 1
expx , we have

0 < exp(−x) ≤ 1

1 + x
for x ≥ 0, (200)

and so in particular, exp(−n)→ 0 as n→∞. We conclude that exp : R→ (0,∞) is surjective.
Furthermore, we have exp : R → (0,∞) is strictly increasing, as exp′ x = expx > 0 for all
x ∈ R. Hence exp : R→ (0,∞) is a bijection. This establishes a) and b).

Now we shall establish c). Suppose that f is a solution, and let g(x) = f(x) exp(−x). Then
g(0) = f(0) exp(0) = 1, and

g′(x) = f ′(x) exp(−x) + f(x)(exp(−x))′ = f(x) exp(−x)− f(x) exp(−x) = 0, (201)

where we have used f ′(x) = f(x) and (exp(−x))′ = − exp(−x). Invoking Lemma 9.1, we
infer g(x) = c for some constant c ∈ R. Since g(0) = 1, we must have c = 1, that is,
g(x) = f(x) exp(−x) = 1 for all x ∈ R. This means that f(x) = exp(x) for x ∈ R.

Finally, we turn to d). For any x ∈ R and n ∈ N, we have

exp(nx) = exp(x+ . . .+ x) = exp(x) · · · exp(x) = (expx)n, (202)

and

exp(−nx) =
1

exp(nx)
=

1

(expx)n
= (expx)−n, (203)
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showing that exp(nx) = (expx)n for all n ∈ Z. Putting x = 1
n , we get exp 1 = (exp 1

n)n, or

exp( 1
n) = e

1
n . This implies that

exp n
m = (exp 1

m)n = (e
1
m )n = e

n
m for n ∈ Z, m ∈ N. (204)

Let x ∈ R, and let {xn} ⊂ Q be a sequence converging to x. Then by definition, we have
exn → ex as n → ∞. On the other hand, by continuity, we have expxn → expx. Since
expxn = exn , we infer

| expx− ex| ≤ | expx− expxn|+ |exn − ex|, (205)

meaning that for any ε > 0, by choosing n large enough, we conclude that | expx − ex| < ε.
Therefore, we have expx = ex for all x ∈ R. �

Exercise 9.7. Find all solutions of the differential equation f ′ = af , where a ∈ R is given.

Since the exponential exp : R→ (0,∞) is bijective, its inverse function is well defined.

Definition 9.8. The inverse function log : (0,∞)→ R is called the logarithm function.

Theorem 9.9. a) log′ x =
1

x
for x > 0.

b) log(1 + x) =

∞∑
n=1

(−1)n−1

n
xn = x− x2

2
+
x3

3
− x4

4
+ . . . for |x| < 1.

Proof. a) Let x > 0 and let y = log x. Then by Theorem 4.6d), we get

log′ x =
1

exp′ y
=

1

exp y
=

1

exp(log x)
=

1

x
. (206)

b) By the ratio test, the convergence radius of the given series is 1, so the function

λ(x) =
∞∑
n=1

(−1)n−1

n
(x− 1)n, (207)

is well defined for x ∈ (0, 2). We will show that λ(x) = log x for x ∈ (0, 2). A termwise
differentiation of the series for λ(x) gives

λ′(x) =

∞∑
n=1

(−1)n−1(x− 1)n−1 =

∞∑
n=1

(1− x)n−1 =
1

1− (1− x)
=

1

x
, (208)

provided that |1 − x| < 1, i.e., that x ∈ (0, 2). Now let g(x) = x exp(−λ(x)). Then for
x ∈ (0, 2) we have

g′(x) = exp(−λ(x))− x exp(−λ(x))λ′(x) = 0, (209)

meaning that g(x) = g(1) = exp(−λ(1)) = exp(0) = 1 for x ∈ (0, 2). �

Exercise 9.10. Prove the following.

(a) log(ab) = log a+ log b, for a > 0 and b > 0.
(b) log(ax) = x log a, for a > 0 and x ∈ R.
(c) Given any a > 0, the power series

log x = log(a) +

∞∑
n=1

(−1)n−1

nan
(x− a)n, (210)

is valid for 0 < x < 2a.
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Example 9.11. By Theorem 9.9, log(1 + x) behaves like x for x ≈ 0. Hence we expect for
instance that n log(1 + 1

n)→ 1 as n→∞. To establish it rigorously, we use L’Hôpital’s rule
(Corollary 5.9), as

lim
n→∞

log(1 + xn)

xn
= lim

n→∞

1/(1 + xn)

1
= 1, (211)

where {xn} ⊂ (0,∞) is any sequence converging to 0. By continuity of the exponential
function, this leads to the following remarkable limit

lim
n→∞

(
1 + 1

n

)n
= lim

n→∞
exp

(
n log(1 + 1

n)
)

= 1. (212)

Lemma 9.12. We have e 6∈ Q. That is, the Euler number is irrational.

Proof. Suppose that e = n
m for some positive integers n and m. Then we have

m

n
= e−1 =

∞∑
k=0

(−1)k

k!
=

n∑
k=0

(−1)k

k!
+

∞∑
k=n+1

(−1)k

k!
, (213)

and multiplying this by n! yields

m

n
· n! =

n∑
k=0

(−1)k
n!

k!︸ ︷︷ ︸
A

+
∞∑

k=n+1

(−1)k
n!

k!︸ ︷︷ ︸
B

. (214)

It is clear that m
n · n! = m · (n− 1)! and that the sum

A =
n∑
k=0

(−1)k
n!

k!
=

n∑
k=0

(−1)k(k + 1)(k + 2) · · · (n− 1)n, (215)

is an integer. Then (214) implies that B must be an integer. We will now show that B is not
an integer, which would be a contradiction. Note that

B =

∞∑
k=n+1

(−1)k
n!

k!
= (−1)n+1

(
1

n+ 1
− 1

(n+ 1)(n+ 2)
+ . . .

)
. (216)

Multiplying both sides by (−1)n+1, we infer that

(−1)n+1B =
1

n+ 1
−
(

n!

(n+ 2)!
− n!

(n+ 3)!

)
−
(

n!

(n+ 4)!
− n!

(n+ 5)!

)
− . . . ≤ 1

n+ 1
, (217)

and

(−1)n+1B =
1

n+ 1
− 1

(n+ 1)(n+ 2)
+

(
n!

(n+ 3)!
− n!

(n+ 4)!

)
+ . . .

≥ 1

n+ 1
− 1

(n+ 1)(n+ 2)
=

1

n+ 2
,

(218)

leading to

0 <
1

n+ 2
≤ |B| ≤ 1

n+ 1
≤ 1

2
. (219)

Thus B cannot be an integer, and the proof is established. �
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10. The sine and cosine functions

In the preceding section, we considered the differential equation f ′ = f , which led us to the
exponential and logarithm functions. The differential equation f ′ = f is one of the simplest
examples of first order equations, as it involves f ′ but not f ′′ or any higher order derivatives.
In this section, we will look at the second order equation

f ′′ = −f, (220)

and as before, we look for its solution in the form of a power series f(x) =
∑
anx

n. Formally
differentiating the power series, we find

f ′′(x) = (a0 + a1x+ a2x
2 + a3x

3 + . . .)′′ = (0 + a1 + 2a2x+ 3a3x
2 . . .)′

= 0 + 0 + 2a2 + 6a3x . . . =
∞∑
n=0

(n+ 1)(n+ 2)an+2x
n (221)

which should be equal to −f(x) =
∑

(−an)xn. This yields 2a2 = −a0, 2 · 3a3 = −a1,
3 · 4a4 = −a2, 4 · 5a5 = −a3, . . . , (n+ 1)(n+ 2)an+2 = −an, or

an = − an−2
n(n− 1)

=
an−4

n(n− 1)(n− 2)(n− 3)
= . . . = (−1)

n
2 · a0

n!
for n even, (222)

and similarly,

an = (−1)
n−1
2 · a1

n!
for n odd. (223)

Hence every an can be computed in terms of either a0 or a1. We can writte

a2k = (−1)k
a0

(2k)!
, and a2k+1 = (−1)k

a1
(2k + 1)!

, k = 0, 1, . . . , (224)

and therefore

f(x) = a0

∞∑
k=0

(−1)k
x2k

(2k)!
+ a1

∞∑
k=0

(−1)k
x2k+1

(2k + 1)!
(225)

Choosing either a0 or a1 to be 1 and the other to be 0, we are led to the following definition.

Definition 10.1. The sine function is given by the power series

sin(x) =
∞∑
k=0

(−1)k
x2k+1

(2k + 1)!
= x− x3

3!
+
x5

5!
− x7

7!
+ . . . , (226)

and the cosine function is given by

cos(x) =
∞∑
k=0

(−1)k
x2k

(2k)!
= 1− x2

2
+
x4

4!
− x6

6!
+ . . . . (227)

As with exp and log, we often write sinx and cosx instead of sin(x) and cos(x).

Remark 10.2. The convergence radii of both series (e.g. by the ratio test) are ∞. By
termwise differentiation, we infer that

sin′ x = cosx and cos′ x = − sinx for x ∈ R. (228)

This implies that both sinx and cosx satisfy the differential equation (220). It is immediate
from (227) that

cos(−x) = cosx for x ∈ R, (229)

and by differentiating this, we get

sin(−x) = − sinx for x ∈ R. (230)
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Furthermore, we have sin 0 = 0 and cos 0 = 1, and so for A,B ∈ R, the function

f(x) = A cos(x) +B sin(x), (231)

satisfies f ′′ + f = 0 in R, f(0) = A, and f ′(0) = B.

Theorem 10.3 (Law of addition). For x, y ∈ R, we have

sin(x+ y) = sin(x) cos(y) + cos(x) sin(y),

cos(x+ y) = cos(x) cos(y)− sin(x) sin(y).
(232)

Proof. For a ∈ R, let

g(x) = cos(a− x) sin(x) + sin(a− x) cos(x). (233)

We expect that g(x) = const. The heuristic motivation for this choice is as follows.

• sinx is the solution at x of the problem f ′′ + f = 0, f(0) = 0, f ′(0) = 1.
• For this solution, we have f(x) = sinx and f ′(x) = cosx at x.
• g(x) is the solution at a − x of the problem f ′′ + f = 0, f(0) = sinx, f ′(0) = cosx.

Since g(x) is the solution sinx further evolved for a “time” a − x, we expect g(x) to
be sinx evaluated at x+ (a− x) = a.

Now we compute

g′(x) = sin(a− x) sin(x) + cos(a− x) cos(x)

− cos(a− x) cos(x)− sin(a− x) sin(x) = 0,
(234)

for all x ∈ R, which, by g(0) = sin(a) and by Lemma 9.1, implies that

g(x) = cos(a− x) sin(x) + sin(a− x) cos(x) = sin(a) for a, x ∈ R. (235)

Putting a = x+ y, we get the first equation in (232). For the second equation, we may use

g(x) = cos(a− x) cos(x)− sin(a− x) sin(x), (236)

and proceed similarly. �

A notational convention that is prevalent in this context is that the powers (sinx)n and
(cosx)n are written as sinn x and cosn x.

Corollary 10.4. a) sin2 x+ cos2 x = 1 for all x ∈ R.
b) The only function satisfying f ′′ + f = 0 in R with f(0) = 0 and f ′(0) = 1 is sin.
c) The only function satisfying f ′′ + f = 0 in R with f(0) = 1 and f ′(0) = 0 is cos.

Proof. a) Putting y = −x into the second equality of (232), and taking into account (229),
(230), and the fact that cos 0 = 1, we get sin2 x+ cos2 x = 1.

b) Let f be a twice differentiable function in R, satisfying f ′′ + f = 0 in R with f(0) = 0
and f ′(0) = 1. Let

F (x) = cos(x)f(x)− sin(x)f ′(x) and G(x) = sin(x)f(x) + cos(x)f ′(x). (237)

Then we have

F ′(x) = − sin(x)f(x) + cos(x)f ′(x)− cos(x)f ′(x)− sin(x)f ′′(x) = 0,

G′(x) = cos(x)f(x) + sin(x)f ′(x)− sin(x)f ′(x) + cos(x)f ′′(x) = 0,
(238)

implying that both functions F and G are constant functions. Since F (0) = f(0) = 0 and
G(0) = f ′(0) = 1, we get

cos(x)f(x)− sin(x)f ′(x) = 0 sin(x)f(x) + cos(x)f ′(x) = 1 for all x ∈ R. (239)

Multiplying the first equation by cosx, the second by sinx, and then summing them, yield
(cos2 x+ sin2 x)f(x) = sinx, or f(x) = sinx. �
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Exercise 10.5. (a) Prove c) of the preceding theorem.
(b) sin 2x = 2 sinx cosx

Our next task is to identify the zero sets

Z(sin) = {x ∈ R : sinx = 0} and Z(cos) = {x ∈ R : cosx = 0}. (240)

It is obvious that Z(sin) 6= ∅ as sin 0 = 0. We now show that Z(cos) is nonempty.

Lemma 10.6. There exists x > 0 such that cosx = 0.

Proof. Suppose that there is no x > 0 with cosx = 0. Since cos 0 = 1, this yields that
cosx > 0 for all x ≥ 0, and hence by (228), sin is a strictly increasing function in [0,∞). As
sin 0 = 0, we have sinx > 0 for x > 0, and so (228) implies that cos is a strictly decreasing
function in (0,∞). Now consider the sequence {cosn : n ∈ N} ⊂ (0, 1], which is a bounded
and decreasing sequence. By the monotone convergence theorem (Theorem 2.15), there exists
α ∈ R such that cosn→ α as n→∞. In particular, noting that sin 1 > 0, there exists n > 1
such that | cos(n)−cos(n+1)| < sin 1. Furthermore, taking into account that cos′ x = − sinx,
by the mean value theorem (Theorem 5.4) there exists ξ ∈ (n, n+ 1) such that | sin ξ| < sin 1.
This contradicts the assertion that sin is strictly increasing in [0,∞), and therefore there is
some x > 0 with cosx = 0. �

The following theorem states that the zero set of sin : R→ R is given by πZ := {πn : n ∈ Z}
with some π > 0. As aZ = bZ if and only if a = b, this defines the number π uniquely. In
other words, we are defining the number π as the smallest positive solution of sinx = 0.

Theorem 10.7. We have Z(sin) = πZ = {πn : n ∈ Z} for some constant π > 0.

Proof. Let K = Z(sin), and let τ > 0 satisfy cos τ = 0, cf. Lemma 10.6. Then we have
sin(2τ) = 2 sin(τ) cos(τ) = 0, and hence 2τ ∈ K. As {t ∈ K : t > 0} is nonempty, the number

π = inf{t ∈ K : t > 0}, (241)

is well defined. In order to show that π ∈ K, let {tk} ⊂ K be a sequence satisfying tk → π as
k →∞. Then by continuity, sin(tk)→ sin(π) as k →∞. On the other hand, sin(tk) = 0 for
all k, which implies that sin(π) = 0, that is, π ∈ K. Furthermore, since

sin(x± π) = sin(x) cos(π)± cos(x) sin(π) = sin(x) cos(π), (242)

we conclude that πn ∈ K for all n ∈ Z.
Now we wish to show that π > 0. To this end, we write

sinx = x− x3

3!
+ . . . = x

(
1− x2

3!
+ . . .

)
= xg(x), (243)

where we have introduced the function

g(x) = 1− x2

3!
+
x4

5!
− . . . =

∞∑
n=0

(−1)nx2n

(2n+ 1)!
. (244)

The convergence radius of the latter series is ∞, and so in particular we have g ∈ C∞(R).
Since g(0) = 1, by continuity, g has no zeroes in (−ε, ε) for some small ε > 0. Hence in the
interval (−ε, ε), the only solution to sinx = 0 is x = 0, which means that π > 0.

Finally, suppose that r ∈ K. Then there is n ∈ Z such that nπ ≤ r < (n + 1)π, or
0 ≤ r − nπ < π. But sin(r − nπ) = sin(r) cos(−nt) + cos(r) sin(−nπ) = 0, hence r − nπ = 0
by the minimal property of π. This proves that K ⊂ πZ. �

Corollary 10.8. a) We have sinx = cos(x− π
2 ) for all x ∈ R.

b) sinx = sin(x + τ) for all x ∈ R if and only if τ = 2πn for some n ∈ Z. In other words,
the periods of the sine function are precisely the numbers 2πn, n ∈ Z.
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c) sinx > 0 for 0 < x < π. In fact, we have sinx ≥ 2
πx for 0 ≤ x ≤ π

2 .
d) sin(π2 − x) = sin(π2 + x) and sin(π − x) = sinx for all x ∈ R.

Proof. c) Since cos 0 = 1, there is ε > 0 such that cosx > 0 for x ∈ (−ε, ε). Then sin is
strictly increasing in (−ε, ε), and as sin 0 = 0, we have sinx > 0 for x ∈ (0, ε). Now taking
into account that sinx 6= 0 for x ∈ (0, π), we infer sinx > 0 for x ∈ (0, π). This shows that
sinx is concave for x ∈ [0, π], as sin′′ x = − sinx.

Since sin 0 = sinπ = 0, by Rolle’s theorem (Theorem 5.3), there is ξ ∈ (0, π) such that
sin′ ξ = 0, i.e., that cos ξ = 0. This implies that sin(2ξ) = 2 sin(ξ) cos(ξ) = 0, and as the
zeroes of sin are the numbers 0,±π,±2π, . . ., and 0 < ξ < π, we conclude that 2ξ = π or
ξ = π

2 . Therefore, we have cos π2 = 0, and | sin π
2 | = 1 by sin2(π2 ) + cos2(π2 ) = 1. In fact we

have sin π
2 = 1, as in the preceding paragraph we have just proven that sinx > 0 for x ∈ (0, π).

Then by concavity we get sinx ≥ 2
πx for x ∈ [0, π2 ].

a) Let g(x) = cos(x− π
2 ) for x ∈ R. Then g′(x) = − sin(x− π

2 ) and g′′(x) = − cos(x− π
2 ) =

−g(x) for x ∈ R. Moreover, we have g(0) = cos(−π
2 ) = cos(π2 ) = 0 and g′(0) = − sin(−π

2 ) =
sin(π2 ) = 1. Thus Corollary 10.4b) implies that g(x) = sinx for x ∈ R.

d) By repeatedly applying a), we infer sin(π2 − x) = cos(−x) = cos(x) = sin(x + π
2 ) and

sin(π − x) = cos(π2 − x) = cos(x− π
2 ) = sin(x).

b) Recall that sinx = 0 if and only if x = πn for some n ∈ Z. Hence if τ is a period
of the sine function then τ = πn for some n ∈ Z. Moreover, π cannot be a period because
sin(−π

2 ) = − sin π
2 = 1. We claim that 2π is a period. Indeed, the function g(x) = sin(x+ 2π)

satisfies g(0) = sin(2π) = 0, g′(0) = cos(2π) = sin(π2 − 2π) = − sin(3π2 ) = − sin(−π
2 ) = 1, and

g′′ = −g, meaning that g(x) = sinx for all x ∈ R. This makes 2πn a period for any n ∈ Z.
Since cosπ = cos(−π) = sin(−π

2 ) = −1, we have

sin(π2 + 2nπ + π) = sin(π2 + 2πn) cos(π) + cos(π2 + 2πn) sin(π) = − sin(π2 ), (245)

and hence any of the numbers (2n+ 1)π, n ∈ Z, is not a period. Therefore, the periods of the
sine function are precisely the numbers 2πn, n ∈ Z. �

11. Other trigonometric functions

Definition 11.1. Define the tangent function by

tanx =
sinx

cosx
for x ∈ R \ (π2 + πZ), (246)

and the cotangent function by

cotx =
cosx

sinx
for x ∈ R \ πZ, (247)

where π
2 + πZ = {π2 + πn : n ∈ Z}.

Remark 11.2. We have

tan′ x =
sin′ x cosx− cos′ x sinx

cos2 x
=

cos2 x+ sin2 x

cos2 x
=

1

cos2 x
, (248)

and hence the tangent function is strictly increasing in the interval (π2 + πn, π2 + πn + π)
for each n ∈ Z. Let {xk} ⊂ (−π

2 ,
π
2 ) be a sequence converging to π

2 . Then sinxk → 1 and
cosxk → 0 with cosxk > 0, yielding tanxk → ∞. Similarly, we get tanxk → −∞ for any
sequence {xk} ⊂ (−π

2 ,
π
2 ) converging to −π

2 . Moreover, since

tan(x+ π) =
− sinx

sin(x+ π + 3π
2 )

=
− sinx

sin(x− π
2 )

=
− sinx

− sin(π2 − x)
=
− sinx

− cos(−x)
= tan(x), (249)

the periods of the tangent function are precisely the numbers πn, n ∈ Z.

Exercise 11.3. Prove the following.



FUNCTIONS OF A REAL VARIABLE 43

(a) The cotangent function is strictly decreasing in the interval (πn, πn+ π) for each n ∈ Z.
(b) We have cotxk → ∞ for any sequence {xk} ⊂ (0, π) converging to 0, and cotxk → −∞

for any sequence {xk} ⊂ (0, π) converging to π.
(c) The periods of the cotangent function are precisely the numbers πn, n ∈ Z.

Definition 11.4. Since tan : (−π
2 ,

π
2 ) → R is continuous, strictly increasing, and surjective,

its inverse exists. The inverse function arctan : R→ (−π
2 ,

π
2 ) is called the arctangent function.

Lemma 11.5. We have

arctan′ x =
1

1 + x2
for x ∈ R, (250)

and

arctanx =
∞∑
n=0

(−1)nx2n+1

2n+ 1
= x− x3

3
+
x5

5
− x7

7
+ . . . for − 1 < x < 1. (251)

Proof. Let x ∈ R and y = arctanx. Then we have

arctan′ x =
1

tan′ y
= cos2 y =

1

1 + tan2 y
=

1

1 + x2
. (252)

We can expand the latter expression in power series as

arctan′ x =
1

1− (−x2)
=
∞∑
n=0

(−1)nx2n for − 1 < x < 1. (253)

Then taking into account that (x2n+1)′ = (2n+ 1)x2n, we infer( ∞∑
n=0

(−1)nx2n+1

2n+ 1

)′
=
∞∑
n=0

(−1)nx2n for − 1 < x < 1. (254)

In other words, the function

f(x) = arctanx−
∞∑
n=0

(−1)nx2n+1

2n+ 1
(−1 < x < 1), (255)

satisfies f ′(x) = 0 for x ∈ (−1, 1). We also have f(0) = 0 because tan 0 = 0 implies that
arctan 0 = 0, and thus f ≡ 0 in (−1, 1). Therefore, we conclude that (251) holds. �

Exercise 11.6. Show that cot : (0, π) → R is bijective, and compute the derivative of its
inverse function. Then expand the inverse function in power series for −1 < x < 1.

Next, we turn to possible inverse functions of sin and cos. Since sin′ x = cosx > 0 for
x ∈ (π2 ,

π
2 ), the sine function is strictly increasing in [π2 ,

π
2 ]. Hence the sine function restricted

to the interval [π2 ,
π
2 ] is injective, and sin([π2 ,

π
2 ]) = [−1, 1].

Definition 11.7. The inverse function arcsin : [−1, 1] → [−π
2 ,

π
2 ] of sin : [−π

2 ,
π
2 ] → R is

called the arcsine function.

Lemma 11.8. We have

arcsin′ x =
1√

1− x2
for − 1 < x < 1, (256)

and

arcsinx =

∞∑
n=0

(2n− 1)!!

(2n)!!
· x

2n+1

2n+ 1
= x+

1

2
· x

3

3
+

1 · 3
2 · 4

· x
5

5
+

1 · 3 · 5
2 · 4 · 6

· x
7

7
+ . . . (257)

for −1 < x < 1.
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Proof. Let x ∈ (−1, 1) and y = arcsinx ∈ (−π
2 ,

π
2 ). Then we have

arcsin′ x =
1

sin′ y
=

1

cos y
=

1√
1− sin2 y

=
1√

1− x2
. (258)

We can expand the latter expression by using the binomial series as

arcsin′ x =
(
1 + (−x2)

)− 1
2 =

∞∑
n=0

(
−1/2

n

)
(−1)nx2n for − 1 < x < 1, (259)

where(
−1/2

n

)
=

1

n!
·
(
− 1

2

)(
− 1

2
−1
)
· · ·
(
− 1

2
−n+1

)
=

(−1)n(2n− 1)!!

2nn!
= (−1)n

(2n− 1)!!

(2n)!!
. (260)

Then taking into account that (x2n+1)′ = (2n+ 1)x2n, we infer( ∞∑
n=0

(2n− 1)!!

(2n)!!
· x

2n+1

2n+ 1

)′
=
∞∑
n=0

(
−1/2

n

)
(−1)nx2n for − 1 < x < 1. (261)

In other words, the function

f(x) = arcsinx−
∞∑
n=0

(2n− 1)!!

(2n)!!
· x

2n+1

2n+ 1
(−1 < x < 1), (262)

satisfies f ′(x) = 0 for x ∈ (−1, 1). We also have f(0) = 0 because sin 0 = 0 implies that
arcsin 0 = 0, and thus f ≡ 0 in (−1, 1). Therefore, we conclude that (257) holds. �

Exercise 11.9. Show that cos : [0, π] → [−1, 1] is bijective, and compute the derivative of
its inverse function arccos : [−1, 1] → [0, π], the arccosine function. Then expand arccosx in
power series for −1 < x < 1.

Exercise 11.10. Starting with the differential equation f ′′ = f , develop a theory for the
hyperbolic functions sinhx, coshx, tanhx, etc.

12. Antidifferentiation

In the preceding two sections, we have considered the differential equations f ′ = f and
f ′′ + f = 0, which lead us to the functions expx, log x, sinx, cosx, arctanx, etc. Indeed, if f
satisfies f ′ = f , then f(x) = A expx for some constant A ∈ R, and if f satisfies f ′′ + f = 0,
then f(x) = A sinx + B cosx for some constants A,B ∈ R. In this section, we consider the
problem of finding f satisfying

f ′ = g, (263)

where g is a given function. Given g, finding f is called antidifferentiation, and f is called an
antiderivative of g.

Remark 12.1. Suppose that g is a function defined on (a, b), and let F ′ = G′ = g on (a, b),
that is, let F and G be antiderivatives of g. Then (F −G)′ = F ′ −G′ = 0 on (a, b), and from
Lemma 9.1 we infer that

F (x) = G(x) + C, x ∈ (a, b), (264)

for some constant C ∈ R. On the other hand, if G′ = g on (a, b), and if C ∈ R, then a new
function F defined by (264) is also an antiderivetive of g, because

F ′(x) = (G(x) + C)′ = G′(x) + 0 = g(x), x ∈ (a, b). (265)

What this means is that the antiderivative of a given function can only be found up to
an additive constant, and that if we know one antiderivative of a given function, all other
antiderivatives are found by adding an arbitrary constant to it.
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Definition 12.2. Let G be an antiderivative of g on some interval (a, b), i.e., let G′(x) = g(x)
for x ∈ (a, b). Then the set of all antiderivatives of g is denoted by∫

g(x)dx = {G+ C : C ∈ R}, (266)

which is called the indefinite integral of g. Alternatively and more informally, it is a standard
practice to think of the indefinite integral as a notation for infinitely many functions (one
function for each value of C ∈ R), and write∫

g(x)dx = G(x) + C, (267)

where C ∈ R is considered to be an “arbitrary constant.”

Example 12.3. (a) We have G′ = 0 for the zero function G(x) = 0, i.e., G ≡ 0 is an
antiderivative of g ≡ 0. Hence we can write∫

0 dx = 0 + C = C. (268)

(b) More generally, for α ∈ R we have (xα)′ = αxα−1 at each x > 0, i.e., G(x) = 1
αx

α is an

antiderivative of g(x) = xα−1 on the interval (0,∞), for each α ∈ R \ {0}. Hence we have∫
xα−1dx =

xα

α
+ C, (269)

for α ∈ R \ {0}. Note that if α ∈ N, the relation G′(x) = g(x) is true for x ∈ R, and if
α ∈ {−1,−2,−3, . . .}, it is true for x ∈ R \ {0}.

(c) As for the case α = 0, we recall (log x)′ = 1
x for x > 0, which leads to∫

dx

x
= log x+ C. (270)

(d) Since (ex)′ = ex for x ∈ R, we have∫
exdx = ex + C. (271)

(e) From (sinx)′ = cosx and (cosx)′ = − sinx for x ∈ R, we infer∫
cosx dx = sinx+ C, and

∫
sinx dx = − cosx+ C. (272)

(f) Similarly, we have∫
dx

1 + x2
= arctanx+ C, and

∫
dx√

1− x2
= arcsinx+ C, (273)

where the former is valid for x ∈ R, and the latter is for x ∈ (−1, 1).

Exercise 12.4. By a direct guess, find the indefinite integrals of the following functions.

(a) g(x) = (cosx)−2.
(b) g(x) = 2 sinx cosx.
(c) g(x) = e2x.
(d) g(x) = 2x.

Example 12.5. (a) Since (2x3 + ex)′ = 2(x3)′ + (ex)′ = 6x2 + ex, we have∫
(6x2 + ex)dx = 2x3 + ex + C. (274)
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(b) Let α ∈ R be a constant. Then we have (sin(αx))′ = α cos(αx), and hence∫
cos(αx)dx =

sin(αx)

α
+ C for α 6= 0. (275)

(c) We have (log log x)′ = 1
log x ·

1
x , which means that∫

dx

x log x
= log log x+ C. (276)

Remark 12.6. Recall the opening paragraph of Section 9, where we discussed the repository
of functions that are generated by starting with the power functions xa (a ∈ R), and by
combining them by using finitely many addition, subtraction, multiplication, quotient, and
composition operations. This repository has now been extended, since we can start with the
exponential, logarithm, trigonometric and inverse trigonometric functions, in addition to the
power functions xa (a ∈ R). Let us call the resulting functions elementary functions. Then
the derivative of an elementary function is an elementary function, because we have differen-
tiation rules that tell us how to compute (f + g)′, (fg)′, (f ◦ g)′, etc., based on the knowledge
of f ′ and g′, cf. Theorem 4.6. Each differentiation rule can be applied “in reverse” to compute
antiderivatives of a large number of elementary functions. However, these “antidifferentiation
rules” cannot give antiderivatives of all elementary functions, because as discovered by Joseph
Liouville around 1840, there are elementary functions whose antiderivatives are not elemen-
tary. As a reflection, for example, there is no useful formula that gives an antiderivative of fg,
based on antiderivatives of f and g. This makes antidifferentiation of elementary functions
somewhat of a challenge, as opposed to differentiation, which is completely straightforward.
Nevertheless, there exist algorithms, such as the Risch algorithm, that can decide whether an
elementary function is the derivative of an elementary function, and if so, compute the anti-
derivative. More generally, by using the Riemann integral, we can construct an antiderivative
of, say, any continuous function as the limit of a sequence of functions, and thus demonstrate
that continuous functions admit antiderivatives. Note that for certain pathological functions
g, there is no G satisfying G′ = g. Although the Risch algorithm and the Riemann integral are
beyond the scope of these notes, in what follows we will develop a few useful antidifferentiation
rules, and will show that functions defined by power series admit antiderivatives.

Lemma 12.7. a) Let F ′ = f on (a, b), and let α ∈ R \ {0} be a nonzero constant. Then we
have (αF )′ = αf on (a, b), that is,∫

αf(x)dx = α

∫
f(x)dx. (277)

b) Let F ′ = f on (a, b), and let α ∈ R. Then we have

(F (αx))′ = αF ′(αx) = αf(αx) for x ∈ (a, b). (278)

In other words, for α 6= 0 we have∫
f(αx)dx =

1

α
F (x) + C =

1

α

∫
f(x)dx. (279)

c) Let F ′ = f and G′ = g on (a, b). Then we have (F +G)′ = f + g on (a, b), that is,∫
(f(x) + g(x))dx =

∫
f(x)dx+

∫
g(x)dx. (280)

Exercise 12.8. Give a detailed proof of the preceding lemma. Is (277) true for α = 0?

The chain rule of differentiation leads to the following rule for antidifferentiation.
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Theorem 12.9 (Substitution). Let F ′ = f on (a, b), and let φ : (c, d)→ (a, b) be a differen-
tiable function. Then F ◦ φ is an antiderivative of (f ◦ φ)φ′ on (c, d), that is, we have∫

f(φ(x))φ′(x)dx = F (φ(x)) + C =
(∫

f(y)dy
)∣∣∣
y=φ(x)

. (281)

Proof. Taking into account that F ′ = f , we get

d

dx
F (φ(x)) = F ′(φ(x))φ′(x) = f(φ(x))φ′(x) for x ∈ (c, d), (282)

which shows that F ◦ φ is an antiderivative of (f ◦ φ)φ′ on (c, d). �

Recognizing if a given integral is amenable to substitution is the same as deciding if the
expression under the integral can be written in the form f(φ(x))φ′(x).

Example 12.10. We have∫
x√

1 + x2
dx =

1

2

∫
(x2)′√
1 + x2

dx =
1

2

∫
(1 + x2)′√

1 + x2
dx =

1

2

(∫ 1
√
y

dy
)∣∣∣
y=1+x2

=
1

2

(∫
y−

1
2 dy
)∣∣∣
y=1+x2

= y
1
2

∣∣∣
y=1+x2

+ C =
√

1 + x2 + C.

(283)

Exercise 12.11. Compute the following indefinite integrals.

(a)

∫
cos2 x sinx dx (b)

∫
(8x+ 2)e2x

2+x dx (c)

∫
sin log x

x
dx

There is no “product rule” for antidifferentiation, and the following statement is basically
the best we can do, in the sense that it is the most useful antidifferentiation rule that can
be derived from the product rule of differentiation. In practical terms, this rule allows us to
replace fg′ by f ′g under integration.

Theorem 12.12 (Integration by parts). Let f and g be functions differentiable on (a, b), and
let F ′ = f ′g on (a, b). Then fg − F is an antiderivative of fg′ on (a, b), that is, we have∫

f(x)g′(x)dx = f(x)g(x)−
∫
f ′(x)g(x)dx. (284)

Proof. By a direct computation, we infer

(fg − F )′ = f ′g + fg′ − F ′ = f ′g + fg′ − f ′g = fg′, (285)

which shows that fg − F is an antiderivative of fg′ on (a, b). �

Example 12.13. We have∫
log x dx =

∫
log x · (x)′ dx = x log x−

∫
(log x)′ · x dx = x log x−

∫
1

x
· x dx

= x log x−
∫

dx = x log x− x+ C.

(286)

Exercise 12.14. Compute the following indefinite integrals.

(a)

∫
xexdx (b)

∫
x2 cosx dx (c)

∫
ex sinx dx

Finally, we show that functions defined by power series admit antiderivatives.

Theorem 12.15. Let 0 < R ≤ ∞ be the convergence radius of the power series

f(x) =
∞∑
n=0

an(x− c)n. (287)
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Then the power series

F (x) =

∞∑
n=0

an
n+ 1

(x− c)n+1, (288)

has convergence radius equal to R, and it holds that

F ′ = g in (c−R, c+R), (289)

where in case R =∞ it is understood that (c−R, c+R) = R.

Proof. Without loss of generality, we will assume that c = 0. It is obvious that the convergence
radius R′ of the power series representing F is at least R, that is, R′ ≥ R. To prove the other
direction, let |x| > r > R. Then the sequence {|an|rn} is unbounded, meaning that for any
given M ∈ R, there are infinitely many n for which |an|rn > M . For those n, we have

|an||x|n

n+ 1
≥M (|x|/r)n

n+ 1
. (290)

Since |x| > r, we have (|x|/r)n
n+1 →∞ as n→∞, and so |an||x|

n

n+1 > M for infinitely many n. As

M was arbitrary, this implies that R′ ≤ R.
The partial sums Fm of F converges to F uniformly in (c− r, c+ r) for any r < R, and the

analogous statement is true for the partial sums fm of f . Moreover, we have F ′m = fm, and
by invoking Theorem 7.14 we infer that F ′ = f in (c−R, c+R). �

Example 12.16. We have

sinx

x
= 1− x2

3!
+
x4

5!
− . . . =

∞∑
n=0

(−1)nx2n

(2n+ 1)!
, (291)

with the convergence radius equal to ∞. Hence the function

Si(x) = x− x3

3 · 3!
+

x5

5 · 5!
− . . . =

∞∑
n=0

(−1)nx2n+1

(2n+ 1) · (2n+ 1)!
, (292)

is defined for x ∈ R, and satisfies Si′(x) = sinx
x for all x ∈ R. The function Si(x) is known to

be non-elementary, and called the sine integral.

Appendix A. Sets and functions

A set is a collection of its elements, where the elements must be distinct from each other.
The simplest way to describe a set is to list its elements in between curly brackets, as in
{1, 2, 3} and {a, b, d}. The set without any element is called an empty set, and denoted by ∅
or {}. We write a ∈ A, if a is an element of A, and a 6∈ A otherwise. Thus we have a 6∈ ∅
for any a. If all elements of A are also elements of another set B, i.e., if for all a ∈ A it holds
that a ∈ B, then we say that A is a subset of B (or B is a superset of A), and write A ⊂ B.
For example {3, 2} ⊂ {1, 2, 3}. Given any set A, we have A ⊂ A and ∅ ⊂ A, so in particular
∅ ⊂ ∅. Two sets A and B are equal, that is, A = B, if and only if A ⊂ B and B ⊂ A. Thus
{3, 2, 1} = {1, 2, 3} and {1, 2, 1} = {1, 2}. The notation B ⊃ A means A ⊂ B.

Given a set A, a powerful method to generate a new set is to take the set of all subsets of
A. The resulting set is called the power set of A, and denoted by P(A) or 2A. For example,
the only subset of ∅ is ∅ itself, and hence P(∅) = {∅}, and P({∅}) = {∅, {∅}}. Another

example is 2{a,c,e} = {∅, {a}, {c}, {e}, {a, c}, {a, e}, {c, e}, {a, c, e}}.
Two sets can be combined in various ways to construct a new set. Let A and B be sets.

• The union of A and B, denoted by A ∪ B, is the set consisting of the elements that
belong to at least one of A and B. In other words, a ∈ A ∪B if and only if a ∈ A or
a ∈ B. Thus {1, 2, 3} ∪ {2, 4} = {1, 2, 3, 4}.
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• The intersection of A and B, denoted by A ∩ B, is the set consisting of the elements
that belong to both A and B. In other words, a ∈ A ∩ B if and only if a ∈ A and
a ∈ B. Thus {1, 2, 3} ∩ {2, 4} = {2}.
• The set difference between A and B, denoted by A \ B, is the set consisting of the

elements that belong to A but not to B. In other words, a ∈ A\B if and only if a ∈ A
and a 6∈ B. Thus {1, 2, 3} \ {2, 4} = {1, 3} and {2, 4} \ {1, 2, 3} = {4}.

Exercise A.1. Let A, B, and C be sets. Prove the following.

(a) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).
(b) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).
(c) C \ (A ∩B) = (C \A) ∪ (C \B).
(d) C \ (A ∪B) = (C \A) ∩ (C \B).
(e) (A \B) ∪ (B \A) = (A ∪B) \ (A ∩B).

One can observe a kind of parallel between sets and nonnegative integers. Let us denote
by |A| the number of elements1 of A. For example, |{a, b, c}| = 3 and |∅| = 0. We say
A is a finite set if |A| is a finite number. Let A and B be finite sets. Then A ⊂ B implies

|A| ≤ |B|, and |2A| = 2|A|. Moreover, if A∩B = ∅ then |A∪B| = |A|+ |B|, and if B ⊂ A then
|A\B| = |A|−|B|. In general, we have |A∪B|+ |A∩B| = |A|+ |B| and |A\B| = |A|−|A∩B|.

Thus very roughly speaking, set union and set difference are constructions corresponding
to addition and subtraction of positive integers. There is also a construction associated to
multiplication. To explain it, we introduce an ordered pair (a, b) of elements a ∈ A and b ∈ B.
The difference between {a, b} and (a, b) is that the order of the elements matters in (a, b),
that is, (a, b) 6= (b, a) unless a = b, while {a, b} = {b, a}. Then the product A× B of the sets
A and B is the set of all possible ordered pairs (a, b), where a ∈ A and b ∈ B are arbitrary
elements. This can be written as

A×B = {(a, b) : a ∈ A, b ∈ B}. (293)

For example, A×B = {(2, 1), (2, 2), (2, 4), (3, 1), (3, 2), (3, 4)} if A = {2, 3} and B = {1, 2, 4}.
We also have A×∅ = ∅×A = ∅. For finite sets we have |A×B| = |A| · |B|.

The definition (293) is an example of set-builder notation. This notation allows one to
define a subset of a given set X according to whether or not x ∈ X satisfies a particular
property. A general form of set-builder notation is

Y = {x ∈ X : P (x)}, (294)

where P (x) is a logical expression that may be true or false depending on the variable x.
By construction, we have Y ⊂ X. As an example, let X = {1, 2, 3, 4, 5, 6, 8, 9} and let
P (x) = (x is even). Then E = {x ∈ X : P (x)}, or equivalently E = {x ∈ X : x is even}
would be the set E = {2, 4, 6, 8}. In order to make sense of (293) in this framework, one can
define ordered pairs by (a, b) = {{a}, {a, b}}. This implements the correct behaviour since
(b, a) = {{b}, {a, b}} 6= {{a}, {a, b}} unless a = b. Note that {a} and {a, b} are subsets of
A ∪ B, i.e., elements of P(A ∪ B), and hence {{a}, {a, b}} is an element of P(P(A ∪ B)).
Now (293) can be reinterpreted as

A×B = {x ∈P(P(A ∪B)) : there exist a ∈ A and b ∈ B such that x = (a, b)}. (295)

In logical expressions, we allow the symbols ∈, =, and the logical connectives “not, and, or,
implies, equivalent,” as well as the quantifiers “there exist,” and “for all.”

Exercise A.2. Let A, B, C, and D be sets. Prove the following.

(a) A× (B ∩ C) = (A×B) ∩ (A× C).
(b) A× (B ∪ C) = (A×B) ∪ (A× C).

1The notation #A is also often used in place of of |A|.
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(c) A× (B \ C) = (A×B) \ (A× C).
(d) (A ∩B)× (C ∩D) = (A× C) ∩ (B ×D).

A construction of fundamental importance is a map or a function f : A→ B, which assigns
an element b = f(a) ∈ B to every a ∈ A. We say that f(a) is called the image of a under f ,
or the value of f at a. The set A is called the domain of f , and B is called the codomain. For
example, with A = {2, 3} and B = {1, 2, 4}, we may define a function g : A→ B by g(2) = 1
and g(3) = 4. The image of a subset S ⊂ A under f is defined to be

f(S) = {b ∈ B : there exists a ∈ A such that b = f(a)} ⊂ B, (296)

that is, the collection of all the images f(a) for a ∈ S. A convenient abbreviation for this is

f(S) = {f(a) : a ∈ S}. (297)

The image f(A) of the entire domain A is called the range or2 the image of f . If f(A) = B,
then we say that the map f is onto, or surjective.

Given b ∈ f(A), the set {a ∈ A : f(a) = b} ⊂ A is called the preimage of b under f ,
and denoted by f−1(b). More generally, for C ⊂ B, the set {a ∈ A : f(a) ∈ C} ⊂ A is
called the preimage of C under f , and denoted by f−1(C). Obviously, a ∈ f−1(f(a)) and
f−1(f(A)) = A. If f(a) = f(a′) implies a = a′ for all a, a′ ∈ A, that is, if |f−1(b)| = 1 for
all b ∈ f(A), then we say that f is one to one, or injective. A map that is both injective
and surjective is said to be bijective. If f : A → B is bijective, then for any b ∈ B, there
exists a unique a ∈ A such that f(a) = b, and we define the inverse function f−1 : B → A by
f−1(b) = a. Given two functions f : A→ B and g : B → C, their composition g◦f : A→ B is
defined by (g◦f)(a) = g(f(a)) for a ∈ A. If f : A→ B is biijective, then f ◦f−1 = id : B → B
and f−1 ◦ f = id : A → A. For S ⊂ A, we let i : S → A be the map defined by i(s) = s
for all s ∈ S. This map is called the natural injection of S into A. Then for f : A → B, the
composition f ◦ i : S → B is called the restriction of f to S, and denoted by f |S .

Example A.3. (a) Given any set A, the identity map id : A→ A is defined by id(a) = a for
all a ∈ A. Obviously, the identity map is bijective, and it is its own inverse.

(b) Let N = {1, 2, 3, . . .} be the set of natural numbers, and let f : N → N be a function
defined by f(n) = 2n for n ∈ N. Then the image of f is the set of all positive even
integers f(N) = {2n : n ∈ N}. It is injective, but not surjective, as the image misses the
odd integers.

(c) Let X = {1, 2, 3, 5}. Then Z = {2x : x ∈ X} would be the set Z = {2, 4, 6, 10}, and

C = {2x : x ∈ X, x is odd}, (298)

would be the set C = {2, 6, 10}.
(d) Let the functions p : N × N → N and d : N → N × N be defined by p(x) = m · n for

x = (m,n) ∈ N× N and d(n) = (n, n) for n ∈ N. Then the composition f ◦ d : N→ N is
simply (f ◦ d)(n) = n2, and d ◦ f : N× N→ N× N is (d ◦ f)((m,n)) = (mn,mn).

Exercise A.4. Let f : X → Y be a function. Let A,B ⊂ X and C,D ⊂ Y be sets. Prove
the following.

(a) f(A ∪B) = f(A) ∪ f(B).
(b) f(A ∩B) ⊂ f(A) ∩ f(B).
(c) f−1(C ∪D) = f−1(C) ∪ f−1(D).
(d) f−1(C ∩D) = f−1(C) ∩ f−1(D).

Exercise A.5. Let f : A→ B and g : B → C be functions. Prove the following.

(a) (f ◦ g) ◦ h = f ◦ (g ◦ h).

2Note that some references use the range as synonymous to the codomain.
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(b) If f and g are bijective, then so is f ◦ g, and (f ◦ g)−1 = g−1 ◦ f−1.

Given two sets A and B, a function f : A → B is completely described by its graph
Γ(f) = {(a, f(a)) : a ∈ A} ⊂ A × B. In fact, given a subset Γ of A × B, with the property
that for each a ∈ A there is one and only one element of the form (a, b) ∈ Γ, we can define
a function f by setting f(a) = b whenever (a, b) ∈ Γ. Therefore, functions are nothing more
than a special kind of subsets of a product set. In particular, if A and B are finite sets, then
the number of possible functions f : A → B is not more than 2|A|·|B|. Note that strictly
speaking, a function is a triple (f,A,B), or (Γ, A,B), so the functions f1 : A → B1 and
f2 : A→ B2 are considered different when B1 6= B2, even if Γ(f1) = Γ(f2).

The concept of functions can be generalized to that of relations. A relation between two
sets A and B is simply a subset � ⊂ A×B. In this context, we write a�b to mean (a, b) ∈ �,
and say that a and b satisfies R if a�b. For example, let the relation ≤ between the two sets
A = {2, 3} and B = {1, 2, 4} be defined by the subset {(2, 4), (2, 2), (3, 4)} ⊂ A × B. Then
2 ≤ 4 is true, but 2 ≤ 1 is false. Note that since there are more than one b ∈ B with 2 ≤ b,
this relation is not a function.

Finally, we present a set-theoretic construction that is a reminiscent of division. A relation
R ⊂ A×A is called reflexive if (a, a) ∈ R for all A, symmetric if (a, b) ∈ R implies (b, a) ∈ R,
and transitive if (a, b) ∈ R and (b, c) ∈ R imply (a, c) ∈ R. An equivalence relation is a
relation that is reflexive, symmetric, and transitive. Let ∼ be an equivalence relation on
A. Then an equivalence class of a ∈ A under ∼ is the set [a] = {b ∈ A : b ∼ a}, and the
quotient of A by the relation ∼ is defined as A/∼= {[a] : a ∈ A}. This is well defined, as
the following argument shows. If b ∈ [a] and c ∈ [b] then c ∼ a by transitivity, meaning that
b ∈ [a] implies [b] ⊂ [a]. Moreover, since a ∈ [a] by reflexivity, b ∈ [a] implies a ∈ [b] by
symmetry, and hence [a] ⊂ [b]. We conclude that [a] and [c] for a, c ∈ A are either disjoint
or identical, since if b ∈ [a] ∩ [c] then [a] = [b] = [c]. In other words, a ∼ c if and only if
[a] = [c], and an equivalence relation can be completely described by the equivalence classes.
For example, let A = {1, 2, 3}, and let R = {(1, 1), (1, 3), (3, 1), (2, 2), (3, 3)} ⊂ A×A. Then it
is straightforward to verify that R is an equivalence relation on A, and A/R = {{1, 3}, {2}}.
Note in this case that [1] = [3] = {1, 3} and [2] = {2}.
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