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1. Problem of antidifferentiation

Consider the problem of finding F satisfying

F ′ = f, (1)

where f is a given function. Given f , finding F is called antidifferentiation, and F is called an
antiderivative of f , cf. Appendix A. We know that the antiderivative of a given function can
only be found up to an additive constant, and that if we know one antiderivative of a given
function, all other antiderivatives are found by adding an arbitrary constant to it.

We also have some useful rules for antidifferentiation, that allow us, for instance, to con-
struct an antiderivative of f + g, given that antiderivatives of f and of g are available. These
rules guarantee that certain elementary functions admit antiderivatives, but the resulting set
of functions is not big enough; They cannot even guarantee that all smooth functions admit
antiderivatives. In modern mathematics how we deal with this problem is to construct an an-
tiderivative F as the limit of some infinite process, known as integration. Specifically, we will
study the Riemann integral, which is one of the simplest yet powerful approach to integration.

We proceed by identifying some crucial properties of antidifferentiation, which will then
guide us in constructing the Riemann integral. Given f : R → R, whose antiderivative
F : R→ R is assumed to exist, we introduce the notation

Ia,x(f) = F (x)− F (a), (2)

where a, x ∈ R. The reason for subtraction is of course to remove the ambiguity given by the
fact that antiderivatives are unique only up to an additive constant. In other words, Ia,x(f) is
the value F (x) of the antiderivative of f , under the normalization that F (a) = 0. Immediate
corollaries of the definition are

Ia,a(f) = 0, (3)
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and the following domain additivity property

Ia,x(f) = Ia,b(f) + Ib,x(f), a, b, x ∈ R. (4)

Then we have linearity, cf. Lemma A.7, expressed by

Ia,x(αf) = αIa,x(f), (5)

for α ∈ R, and

Ia,x(f + g) = Ia,x(f) + Ia,x(g). (6)

Another important property is monotonicity: If a ≤ x and if f ≤ g in [a, x], then

Ia,x(f) ≤ Ia,x(g). (7)

Finally, since (x)′ = 1, we have

Ia,x(1) = x− a. (8)

Remark 1.1. The aforementioned simple properties will be enough to pin down a good
notion of integral. Note that these properties have been derived under the assumption that
all involved functions admit antiderivatives, and what we would like now is to give a general
construction that satisfies those properties, and hope that it will enable us to show that
for instance, smooth functions admit antiderivatives. The basic idea is as follows. Given a
general function f , we want to find a sequence of functions g1, g2, . . ., such that each gi is
simple enough so that Ia,b(gi) is well-defined, and that gi approximates f better and better
as i → ∞. Then we would define Ia,b(f) as the limit of Ia,b(gi) as i → ∞. In order for this
plan to work, we need to address the following issues.

• Choose the pool of “simple” functions from which the sequence {gi} to be picked.
• Clarify the notion “gi approximates f better and better as i→∞.”
• Check if Ia,b(gi) converges to some number ξ ∈ R as i→∞.
• Verify that the limit ξ does not depend on the particular sequence {gi} we used.

For the first item, we use piecewise constant functions, also known as step functions. These
functions have the form

g(x) =
k∑
j=1

AjχJj (x), (9)

where Aj ∈ R, and χJj is the characteristic function of some interval Jj , such as Jj = (aj , bj),
Jj = [aj , bj), Jj = (aj , bj ], or Jj = [aj , bj ]. For later reference, we call J1, . . . , Jk the support
intervals of g. Recall that in general, the characteristic function of a set B ⊂ Rn is defined by

χB(x) =

{
1 for x ∈ B,
0 otherwise.

(10)

For a nonempty closed interval J = [α, β] ⊂ [a, b], we can compute

Ia,b(χJ) = Ia,α(0 · 1) + Iα,β(1) + Iβ,b(0 · 1) = 0 + (β − α) + 0 = β − α, (11)

where we have used domain additivity, linearity, and (8). On the other hand, for a nonempty
open interval J = (α, β) ⊂ [a, b], we have

Ia,b(χJ) = Ia,b(χ[α,β])− Ia,b(χ[α,α])− Ia,b(χ[β,β]) = (β − α)− 0− 0 = β − α. (12)

Similarly, we infer Ia,b(χ[α,β)) = Ia,b(χ(α,β]) = β − α, as long as a ≤ α ≤ β ≤ b. To conclude,
for any J ⊂ [a, b] of the form J = [α, β], J = [α, β), J = (α, β], or J = (α, β), we have

Ia,b(χJ) = |J |, (13)
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where |J | = β−α is by definition the length of J . Once this is known, we can compute Ia,b(g)
for step functions (9) by linearity, as

Ia,b(g) =

k∑
j=1

AjIa,b(χJj ) =

k∑
j=1

Aj |Jj |, (14)

where we have assumed that Jj ⊂ [a, b] for all j.

Remark 1.2. We have restricted ourselves to the case a ≤ b, even though including the case
a > b would not have posed any principal difficulties. However, in order not to clutter the
arguments, we will postpone dealing with the case a > b to Section 3.

The next item in the list of Remark 1.1 is to clarify when it would be useful to say that
a sequence of step functions gi approximates f well as i → ∞. Since we want to eventually
define Ia,b(f) = lim

i→∞
Ia,b(gi), it would be ideal if we introduce closeness of gi to f by

gi is close to f ⇐⇒ gi ≤ f and Ia,b(f)− Ia,b(gi) is small. (15)

However, this would not work, for the simple reason that we have not defined Ia,b(f) yet. A
way out of this situation is to introduce a second sequence of step functions {hi}, bounding
f from above, and require that Ia,b(hi)− Ia,b(gi) is small, as follows.

gi and hi are close to f ⇐⇒ gi ≤ f ≤ hi and Ia,b(hi)− Ia,b(gi) is small. (16)

Intuitively, if {gi} and {hi} satisfy the preceding condition, then both Ia,b(gi) and Ia,b(hi) will
be close to the yet-to-be-defined quantity Ia,b(f).

Example 1.3. Let us illustrate what we have discussed by a concrete example where we
know Ia,b(f) explicitly. We let f(x) = x and [a, b] = [0, b]. For m ∈ N, subdivide [0, b] into m

equal subintervals, by using the node points xk = δk, k = 0, . . . ,m, where δ = b
m . Let

gm(x) = δk and hm(x) = δk + δ, for x ∈ [δk, δk + δ). (17)

The point x = b is missing in this definition, but it will be inconsequential. For concreteness,
we set gm(b) = 0 and hm(b) = b. In other words, we have

gm =
m−1∑
k=0

δkχ[δk,δk+δ), hm =
m−1∑
k=0

(δk + δ)χ[δk,δk+δ) + χ[b,b]. (18)

By construction, we have gm(x) ≤ f(x) ≤ hm(x) for all x ∈ [0, b], and

I0,b(hm)− I0,b(gm) = I0,b(hm − gm) =
m−1∑
k=0

δI0,b

(
χ[δk,δk+δ)

)
+ I0,b

(
χ[b,b]

)
= mδ · δ = b2/m,

(19)

which can be made arbitrarily small by choosing m large. This we have bounded f from above
and below by two step functions, whose integrals are arbitrarily close to each other. Finally,
we compute

I0,b(gm) =

m−1∑
k=0

δkI0,b

(
χ[δk,δk+δ)

)
= δ2

m−1∑
k=0

k =
b2

m2
· m(m− 1)

2
→ b2

2
as m→∞. (20)

This is consistent with the fact that (x2/2)′ = x and so I0,b(f) = b2/2.

Remark 1.4. Based on the foregoing discussion, we make some observations.

(a) The support intervals in the definition of step functions (9) may be assumed to be non-
overlapping, since a step function with two overlapping support intervals can be written
as a step function with 3 non-overlapping support intervals.
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(b) Similarly, if g and h are step functions, then by subdividing the support intervals if
necessary, we can always assume that g and h have the same support intervals.

(c) Furthermore, all support intervals in (9) may be assumed to be open, because any interval
J with |J | > 0 is the union of an open interval and one or two zero-length intervals, and
zero-length support intervals have no contribution to the integral (14).

(d) One cannot cover [a, b] by disjoint open intervals. So once we assume that all support
intervals in (9) are open and disjoint, there will necessarily be at least a finitely many
points x0, . . . , xk that are not covered by the support intervals, and hence any step function
g with the same set of support intervals will satisfy g(xj) = 0 for j = 0, . . . , k. This means
that the condition gi ≤ f ≤ hi in [a, b] from (16) cannot be satisfied in general. However,
we can replace it by the condition that gi ≤ f ≤ hi in each support interval, because we
could always add terms such as f(xj)χ[xj ,xj ] to gi and hi to ensure that gi ≤ f ≤ hi in

[a, b], but these additional terms would not affect the value of the integral (14) anyway.

We now introduce some new terminology. A grid on [a, b] is a collection

P = {(x0, x1), (x1, x2), . . . , (xk−1, xk)}, (21)

of disjoint open intervals, such that [x0, x1] ∪ [x1, x2] ∪ . . . ∪ [xk−1, xk] = [a, b]. The points
x0, . . . , xk are called the nodes of the grid. We call g : [a, b] → R a step function subordinate
to P if g can be written in the form

g =
∑
J∈P

AJχJ , (22)

where P is a grid on [a, b], and AJ ∈ R for J ∈ P . For step functions, we define

Ia,b(g) =
∑
J∈P

AJ |J |. (23)

A refinement of a grid is a grid that is obtained by adding nodes to the original grid. For
example, P̃ = {(0, 1), (1, 2), (2, 4)} is a refinement of P = {(0, 2), (2, 4)}. If g is a step

function subordinate to a grid P , and if P̃ is a refinement of P , then there is a step function
g̃ subordinate to P̃ , such that g̃ = g in each J ∈ P̃ . We get g̃ simply by replacing the
characteristic function χ(xi,xi+1) in (22) by the sum χ(xi,x′) + χ(x′,xi+1) every time a new node

x′ ∈ (xi, xi+1) is introduced. In particular, we have Ia,b(g̃) = Ia,b(g). We shall consider the
two step functions g and g̃ as being the same.

Remark 1.5. Let f : [a, b] → R, and suppose that we have two sequences {gi} and {hi},
satisfying the following conditions.

(i) gi and hi are step functions subordinate to some grid Pi, for each i.
(ii) gi ≤ f ≤ hi in each J ∈ Pi, for each i.
(iii) Ia,b(hi − gi)→ 0 as i→∞.

Let αi = Ia,b(gi) and βk = Ia,b(hk). Then from (ii), since gi ≤ f ≤ hk (in each support
interval) for any i and k, we have αi ≤ βk for all i and k. Let ε > 0 be arbitrary, and let N
be such that i ≥ N implies βi − αi ≤ ε. Then for any i ≥ N and k ≥ N , we have

αi − αk ≤ βk − αk ≤ ε, (24)

implying that {αi} is a Cauchy sequence. Hence there exists ξ ∈ R such that αi → ξ as
i→∞. Since βi − αi → 0 as i→∞, we also get βi → ξ as i→∞, and so ξ would be a very
good candidate for the value of Ia,b(f) that is yet to be defined.

Exercise 1.6. Continuing the preceding remark, let {g̃i} and {h̃i} be two sequences satisfying

the conditions (i)-(iii). Show that the limit ξ̃ of Ia,b(g̃i) as i→∞ is equal to ξ.
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Remark 1.5 and Exercise 1.6 show that as long as {gi} and {hi} are two sequences satisfying
the conditions (i)-(iii) of Remark 1.5, the limit of Ia,b(gi) as i→∞ exists, and does not depend
on the choice of the sequences {gi} and {hi}. Thus the following definition makes sense.

Ia,b(f) := lim
i→∞

Ia,b(gi). (25)

We could have also used the upper sequence {hi} in the defintion, since we have

lim
i→∞

Ia,b(gi) = lim
i→∞

Ia,b(hi). (26)

This completes the program outlined in Remark 1.1. What remains now is to verify if the
procedure (25) would be able to solve the antidifferentiation problem. Before addressing that
question, however, we would like to extend the foregoing construction to higher dimensions.

2. The Riemann integral

A grid on a rectangle Q = [a1, b1]× . . .× [an, bn] ⊂ Rn is a collection

G = {I1 × . . .× In : Ij ∈ Pj , j = 1, . . . , n}, (27)

where Pj is a grid on the interval [aj , bj ], for j = 1, . . . , n. We call g : Q→ R a step function
subordinate to G if g can be written in the form

g =
∑
q∈G

Aqχq, (28)

where G is a grid on Q, and Aq ∈ R for q ∈ G. The (n-dimensional) volume of a rectangle
q = I1 × . . .× In is |q| = |I1| · · · |In|.

Definition 2.1. If g is a step function subordinate to a grid G on Q, then its integral over
Q is defined as ∫

Q
g =

∑
q∈G

Aq|q|. (29)

Note that in 1 dimension, we have ∫
[a,b]

g = Ia,b(g), (30)

where Ia,b(g) is the notation from the preceding section.

Remark 2.2. (a) If f and g are step functions subordinate to G, and λ, µ ∈ R, then we have∫
Q

(λf + µg) = λ

∫
Q
f + µ

∫
Q
g. (31)

(b) If f and g are step functions subordinate to G, satisfying f ≤ g, then we have∫
Q
f ≤

∫
Q
g. (32)

To extend the definition of integral to more general functions, we will use approximation
of general functions by step functions.

Definition 2.3. A function f : Q→ R is called (Riemann) integrable if for any ε > 0, there
exist a grid Gε on Q, and simple functions gε and hε subordinate to Gε, such that

gε ≤ f ≤ hε in each q ∈ Gε, (33)

and ∫
Q

(hε − gε) ≤ ε. (34)
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If f is integrable, we call ∫
Q
f = lim

ε→0

∫
Q
gε, (35)

the integral of f over Q.

Exercise 2.4. Show that the limit in (35) exists, and does not depend on the choice of {gε}
and {hε}. Show also that

lim
ε→0

∫
Q
gε = lim

ε→0

∫
Q
hε. (36)

Hint: Remark 1.5 and Exercise 1.6.

Remark 2.5. One useful observation is that given a grid G on Q, the step functions

g =
∑
q∈G

Aqχq, and h =
∑
q∈G

Bqχq, (37)

given by
Aq = inf

q
f and Bq = sup

q
f for q ∈ G, (38)

minimize the quantity
∫
Q(h − g), while satisfying g ≤ f ≤ h in each q ∈ G. Thus we can

always assume that (37) and (38) hold.

Theorem 2.6. Any continuous function f : Q→ R is integrable.

Proof. In Theorem 2.8 below, we will prove that f is uniformly continuous, meaning that
for any ε > 0, there exists δ > 0, such that |f(x) − f(y)| ≤ ε whenever x, y ∈ Q satisfies
|x − y|∞ < δ. Let ε > 0 be arbitrary, and pick δ > 0 according to the preceding property.
Then we choose an integer m ∈ N so large that max{b1−a1, . . . , bn−an} < mδ, and construct
a grid G by subdividing each side of Q = [a1, b1] × . . . × [an, bn] into m equal subintervals.
This will ensure that the length of each side of any cell q ∈ G is less than δ, and hence

|f(x)− f(y)| ≤ ε whenever x, y ∈ q, q ∈ G. (39)

Finally, we define the step functions g and h by (37) and (38). By construction, we have

g ≤ f ≤ h in each q ∈ G. (40)

Moreover, from (39) we have Bq −Aq ≤ ε for all q ∈ G, and thus∫
Q

(h− g) =
∑
q∈G

(Bq −Aq)|q| ≤ ε
∑
q∈G
|q| = |Q|ε. (41)

As ε > 0 was arbitrary, we conclude that f is integrable. �

To complete the preceding proof, we need to show that the function f in the statement of
the theorem is uniformly continuous.

Definition 2.7. A function u : Ω→ R with Ω ⊂ Rn is called uniformly continuous if for any
ε > 0, there exists δ > 0, such that |u(x)−u(y)| ≤ ε whenever x, y ∈ Ω satisfies |x− y|∞ < δ.

Theorem 2.8 (Heine-Cantor). Let K ⊂ Rn be closed and bounded set, and let f : K → R be
a continuous function. Then f is uniformly continuous.

Proof. Let P = K × K ⊂ R2n, and let F : P → R be defined by F (x, y) = |f(x) − f(y)|.
Obviously, F is continuous. Suppose that f is not uniformly continuous. This means that
for any δ > 0 there exist x, y ∈ K such that |x − y|∞ < δ and |f(x) − f(y)| > ε, where
ε > 0 is some constant. In other words, there exists a sequence (xi, yi) ∈ P , i = 1, 2, . . .,
such that |xi − yi|∞ → 0 as i → ∞ and F (xi, yi) > ε for all i. Since P is bounded, by
considering a large cube Q containing P , and subdividing Q into smaller cubes, we can
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extract a converging subsequence of {(xi, yi)}. Thus without loss of generality, we can assume
that (xi, yi) → (x, y) as i → ∞, for some (x, y) ∈ R2n. As K is closed, we have (x, y) ∈ P .
Moreover, |xi − yi|∞ → 0 as i → ∞ implies that x = y . By continuity of F , we have
F (xi, yi)→ F (x, x) = 0, which contradicts the assumption that F (xi, yi) > ε for all i. Hence,
f must be uniformly continuous. �

Exercise 2.9. Prove the following properties of the Riemann integral.

(a) If f and g are integrable, and λ, µ ∈ R, then λf + µg is integrable, and∫
Q

(λf + µg) = λ

∫
Q
f + µ

∫
Q
g. (42)

(b) If f and g are integrable functions satisfying f ≤ g, then we have∫
Q
f ≤

∫
Q
g. (43)

(c) If f is integrable, then |f | is integrable, and∣∣∣ ∫
Q
f
∣∣∣ ≤ ∫

Q
|f |. (44)

(d) If f is integrable, then f2 is integrable. In addition, if g is integrable, then fg = 1
2(f +

g)2 − 1
2f

2 − 1
2g

2 is integrable.

3. The fundamental theorem of calculus

By using the Riemann integral, in this section we are going to show that all continuous
functions admit antiderivatives. That is, if f : [a, b] → R is a continuous function, then
F : [a, b]→ R defined by the integrals

F (x) =

∫
[a,x]

f, x ∈ [a, b], (45)

satisfies F ′ = f in (a, b). This gives a satisfactory answer to the antidifferentiation problem
posed in Section 1, namely the problem of constructing F satisfying the differential equation
F ′ = f , where f is a given function.

In the following, we will use the notation∫ b

a
f =

∫
[a,b]

f. (46)

Lemma 3.1. If f : [a, b]→ R is an integrable function, then for any c ∈ [a, b], the restrictions
f |[a,c] and f |[c,b] are integrable over [a, c] and [c, b], respectively, and we have∫ c

a
f +

∫ b

c
f =

∫ b

a
f. (47)

Proof. Let ε > 0, and let g and h be step functions subordinate to a grid G, satisfying

g ≤ f ≤ h in each q ∈ G, and
∫ b
a (h− g) ≤ ε. Without loss of generality, we can assume that

c is a node in G, meaning that G can be decomposed as G = G1 ∪G2, where G1 and G2 are
grids on [a, c] and [c, b], respectively. Then we have∫ c

a
(h− g) ≤

∫ b

a
(h− g) ≤ ε, (48)
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which shows that the restriction f |[a,c] is integrable over [a, c]. Similarly, f |[c,b] is integrable
over [c, b]. Hence we have∫ c

a
g +

∫ b

c
g →

∫ c

a
f +

∫ b

c
f as ε→ 0. (49)

On the other hand, we have∫ c

a
g +

∫ b

c
g =

∫ b

a
g →

∫ b

a
f as ε→ 0, (50)

which completes the proof. �

Theorem 3.2 (Fundamental theorem of calculus). Let f : [a, b]→ R be an integrable function,
and let

F (x) =

∫ x

a
f, x ∈ [a, b]. (51)

Then there exists a constant M ≥ 0 such that

|F (x)− F (y)| ≤M |x− y|, x, y ∈ [a, b]. (52)

In addition, if f is continuous at x ∈ (a, b), then F is differentiable at x with

F ′(x) = f(x). (53)

Proof. Let g and h be step functions subordinate to some grid G of [a, b], such that g ≤ f ≤ h
in each q ∈ G. Then for any x, y ∈ [a, b] with x < y, we have

(y − x) min
[a,b]

g ≤
∫ y

x
g ≤

∫ y

x
f ≤

∫ y

x
h ≤ (y − x) max

[a,b]
h, (54)

implying that ∣∣∣ ∫ y

x
f
∣∣∣ ≤M(y − x), (55)

for some constant M independent of x and y. Since we have

F (y)− F (x) =

∫ y

x
f, (56)

this proves the first part of the theorem.
For x, y ∈ [a, b] with x < y, we have

(y − x) inf
[x,y]

f ≤
∫ y

x
f ≤ (y − x) sup

[x,y]
f, (57)

meaning that

inf
[x,y]

f ≤ F (y)− F (x)

y − x
≤ sup

[x,y]
f. (58)

If f is continuous at x, then both inf [x,y] f and sup[x,y] f tend to f(x) as y → x, and if f is

continuous at y, then both inf [x,y] f and sup[x,y] f tend to f(y) as x → y. Therefore, F ′(x)

exists and is equal to f(x) whenever f is continuous at x. �

Exercise 3.3. In the setting of the preceding theorem, show that if f is continuous at a, then
F is differentiable at a, in the sense that

F (x)− F (a)

x− a
→ f(a) as (a, b) 3 x→ a. (59)
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Remark 3.4. Let f ∈ C ([a, b]), and let F be as in Theorem 3.2. Suppose that G ∈ C ([a, b])
is differentiable and G′ = f in (a, b). Since F ′ = f in (a, b), this implies that F (x) = G(x)+C
for some constant C. Moreover, taking into account that F (a) = 0, we infer

F (x) = G(x)−G(a). (60)

This gives us a way to compute the integral F (x) =
∫ x
a f , provided that we have some

antiderivative G of f available.

Example 3.5. For f(x) = cosx, we have∫ x

a
f = sinx− sin a, (61)

since G(x) = sinx is an antiderivative of f .

Remark 3.6. In Section 1, we started with the definition Ia,x(f) = F (x) − F (a), where f
and F are related by F ′ = f , and derived some simple properties of Ia,x(f), such as linearity,
monotonicity, and domain additivity. Then in Section 2, using those simple properties as a
guiding light, we introduced the Riemann integral

∫
[a,x] f for a ≤ x, and showed that it is

well-defined at least when f is continuous. We have also shown that the Riemann integral∫
[a,x] f satisfies the aforementioned simple properties of Ia,x(f). Finally, in the current section

(Theorem 3.2), we proved that when f is continuous, the function F (x) =
∫

[a,x] f satisfies

F ′ = f . Thus by employing the Riemann integral, we have constructed antiderivatives for
continuous functions. Now, as promised in Remark 1.2, we shall remove the restriction a ≤ x.
In fact, for x ≤ y, we simply define ∫ x

y
f = −

∫
[x,y]

f, (62)

whenever f is integrable on [x, y]. It follows from Lemma 3.1 that if f : [a, b] → R is an
integrable function, then for any x, y, z ∈ [a, b], we have∫ y

x
f +

∫ z

y
f =

∫ z

x
f. (63)

Moreover, by Theorem 3.2, if f : [a, b]→ R is continuous and if y ∈ (a, b), then

F (x) =

∫ x

y
f, x ∈ [a, b], (64)

satisfies F ′ = f in (a, b).

Exercise 3.7. Give detailed proofs of (63) and (64).

4. Fubini’s theorem

In practice, higher dimensional integrals are often computed by reduction to repeated one
dimensional integrals, which is justified by Fubini’s theorem that we will prove below. Let
Q = [a1, b1] × . . . × [an, bn] ⊂ Rn, and let f : Q → R. Let R = [a1, b1] × . . . × [am, bm] for
some m < n, and for some fixed t, let g : R → R be given by g(x) = f(x, t). We can call g
the restriction of f to a slice of Q defined by t = const. Then we write∫

R
f(x, t) dmx =

∫
R
g. (65)

For m = 1, we simply write dx instead of d1x.
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Theorem 4.1 (Fubini). Let Q′ ⊂ Rn−1 be a rectangle, and let Q = Q′ × [a, b]. Suppose that
f : Q→ R is integrable, and

F (t) =

∫
Q′
f(x, t) dn−1x, (66)

exists for each t ∈ [a, b]. Then F : [a, b]→ R is integrable, and∫
Q
f =

∫
[a,b]

F. (67)

Proof. Let ε > 0, and let g and h be step functions subordinate to a grid Γ, satisfying
g ≤ f ≤ h in each q ∈ Γ, and

∫
Q(h− g) ≤ ε. For each t ∈ [a, b], let

G(t) =

∫
Q′
g(x, t) dn−1x, and H(t) =

∫
Q′
h(x, t) dn−1x. (68)

Let P be the grid on [a, b], that is induced by the grid Γ on Q = Q′ × [a, b]. Then we have
G ≤ F ≤ H on each interval I ∈ P . Moreover, for any q = q′ × I ∈ Γ, we have∫ b

a

∫
Q′
χq(x, t) dn−1x dt =

∫ b

a
χI(t)|q′|dt = |I||q′| = |q| =

∫
Q
χq, (69)

and hence∫ b

a

∫
Q′

∑
q∈Γ

Aqχq(x, t) dn−1x dt =
∑
q∈Γ

Aq

∫ b

a

∫
Q′
χq(x, t) dn−1x dt =

∫
Q

∑
q∈Γ

Aqχq. (70)

This means in particular that∫
Q
g =

∫
[a,b]

G, and

∫
Q
h =

∫
[a,b]

H, (71)

and ∫
[a,b]

(H −G) =

∫
Q

(h− g) ≤ ε. (72)

Since ε > 0 is arbitrary, we infer that F is integrable. Furthermore, invoking∫
[a,b]

G ≤
∫

[a,b]
F ≤

∫
[a,b]

H and

∫
Q
g ≤

∫
Q
f ≤

∫
Q
h, (73)

we get

− ε ≤
∫
Q
g −

∫
[a,b]

H ≤
∫
Q
f −

∫
[a,b]

F ≤
∫
Q
h−

∫
[a,b]

G ≤ ε, (74)

and using again the fact that ε > 0 is arbitrary, (67) is obtained. �

Example 4.2. In light of Theorem 2.6, provided that f : Q→ R is continuous, all conditions
of the preceding theorem are satisfied. For example, we can compute a multidimensional
integral as follows.∫

[0,1]3
x1x2e

x3d3x =

∫ 1

0

∫
[0,1]2

x1x2e
x3d2(x1, x2) dx3 =

∫ 1

0

∫ 1

0

∫ 1

0
x1x2e

x3dx1 dx2 dx3

=

∫ 1

0

∫ 1

0
x2e

x3
(x2

1

2

∣∣∣1
0

)
dx2 dx3 =

1

2

∫ 1

0

∫ 1

0
x2e

x3dx2 dx3

=
1

2

∫ 1

0
ex3
(x2

2

2

∣∣∣1
0

)
dx3 =

1

4

∫ 1

0
ex3dx3 =

e

4
.

(75)
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5. Negligible sets

Definition 5.1. A set B ⊂ Q is called negligible, or of volume zero, if for any ε > 0, there
exist a grid Γ on Q and a finite collection q1, . . . , qk ∈ Γ, such that

B ⊂ q̄1 ∪ . . . ∪ q̄k, and |q1|+ . . .+ |qk| ≤ ε. (76)

Lemma 5.2. Let Q′ ⊂ Rn−1 be a closed rectangle, and let h : Q′ → R be a continuous
function. Then the graph B = {(x, h(x)) : x ∈ Q′} is negligible as a subset of Q = Q′ × [a, b],
for any a ≤ min

Q′
h and b ≥ max

Q′
h.

Proof. Let ε > 0, and let δ > 0 be such that |h(x) − h(y)| < ε whenever x, y ∈ Q′ satisfy
|x − y|∞ ≤ δ. This is possible since h is uniformly continuous in Q′. Then we construct a
grid G in Q′ by subdividing each side of Q′ into m equal subintervals, with m so large that
the length of each side of any cell r ∈ G is less than δ. Thus we have

|h(x)− h(y)| ≤ ε whenever x, y ∈ r, r ∈ G. (77)

For r ∈ G, we let
αr = min

x∈r̄
h(x), βr = max

x∈r̄
h(x), (78)

and pick a grid P on the interval [a, b] such that αr and βr (r ∈ G) are among the nodes of
P . Finally, we construct the grid Γ in Q = Q′ × [a, b], by combining the grid G along Q′ and
the grid P along the interval [a, b]. Then by construction, for each r ∈ G, there exist finitely
many p1, . . . , pi ∈ Γ such that p̄1 ∪ . . .∪ p̄i = r̄× [αr, βr], whose combined volume is bounded
by |p1|+ . . .+ |pi| = |r|(βr − αr) ≤ |r|ε. This means that the set

⋃
{r̄ × [αr, βr] : r ∈ G} can

be covered by finitely many q1, . . . , qk ∈ Γ with the combined volume

|q1|+ . . .+ |qi| ≤
∑
r∈G
|r|ε = |Q′|ε. (79)

Since B ⊂
⋃
{r̄ × [αr, βr] : r ∈ G}, the proof is established. �

Remark 5.3. It is obvious that any subset of a negligible set is negligible. Moreover, the
union of two negligible sets is negligible.

Exercise 5.4. Show that the surface of a sphere, and the surface of a cube are negligible.

Theorem 5.5. Let B ⊂ Q be a negligible set, and let f : Q→ R be a bounded function, which
is continuous in Q \B. Then f is integrable.

Proof. Let ε > 0. Then by definition, there exist a grid Γ on Q and a finite collection
q1, . . . , qk ∈ Γ, such that

B ⊂ q̄1 ∪ . . . ∪ q̄k, and |q1|+ . . .+ |qk| ≤ ε. (80)

From the complementary perspective, there exists a finite collection p1, . . . , pj ∈ Γ, such that

p1 ∪ . . . ∪ pj ⊂ Q \B, and |p1|+ . . .+ |pj | ≥ |Q| − ε. (81)

In other words, we have Γ = {q1, . . . , qk, p1, . . . , pj}. Now, by adding more grid nodes in each
direction, and shrinking each pi slightly, we can assume that

K = p̄1 ∪ . . . ∪ p̄j ⊂ Q \B, and |K| ≥ |Q| − 2ε. (82)

Note that the latter is equivalent to |Q \ K| ≤ 2ε. Since K is closed and bounded, f is
uniformly continuous in K by the Heine-Cantor theorem (Theorem 2.8). Let δ > 0 be such
that |f(x)− f(y)| < ε whenever x, y ∈ K satisfy |x− y|∞ ≤ δ. Then we refine the grid Γ so
that the length of each side of any cell q ∈ Γ is less than δ. Thus with ΓK = {q ∈ Γ : q ⊂ K},
we have

|f(x)− f(y)| ≤ ε whenever x, y ∈ q, q ∈ ΓK . (83)
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Finally, we construct the step functions

g =
∑
q∈Γ

Aqχq, and h =
∑
q∈Γ

Bqχq, (84)

with the coefficients given by

Aq = inf
q
f and Bq = sup

q
f for q ∈ ΓK , (85)

and

Aq = −M and Bq = M for q ∈ Γ \ ΓK . (86)

where M ∈ R is such that |f(x)| ≤ M for all x ∈ Q. By construction, we have g ≤ f ≤ h in
each q ∈ Γ. Moreover, we have∫

Q
(h− g) =

∑
q∈Γ

(Bq −Aq)|q| ≤
∑
q∈ΓK

ε|q|+
∑

q∈Γ\ΓK

2M |q| ≤ ε|Q|+ 2M · 2ε, (87)

where in the last step we have invoked |Q \K| ≤ 2ε. �

Let us prove one more useful criterion on negligibility.

Lemma 5.6. Let Q ⊂ Rm be a rectangle, and let φ : Q → Rn be a Lipschitz continuous
function, in the sense that

|φ(x)− φ(y)|∞ ≤ λ|x− y|∞, for all x, y ∈ Q, (88)

with some constant λ ≥ 0. If m < n, then φ(Q) is negligible. If m = n and B ⊂ Q is
negligible, then φ(B) is negligible.

Proof. We prove the case m = n first. Since φ(B) is negligible, by definition, for any ε > 0,
there exists a finite collection q1, . . . , qk of rectangles, such that

B ⊂ q̄1 ∪ . . . ∪ q̄k, and |q1|+ . . .+ |qk| ≤ ε. (89)

By introducing a very fine grid whose elements are cubes, and replacing each qi by a collection
of cubes covering it, we can assume that q1, . . . , qk are cubes, with |q1|+ . . .+ |qk| ≤ 2ε. Let
2ri be the side length of qi, and let xi ∈ Rn be the centre of of qi. Then for any x ∈ q̄i, the
Lipschitz condition gives

|φ(x)− φ(xi)|∞ ≤ λ|x− xi|∞ ≤ λri, (90)

meaning that φ(q̄i) is contained in p̄i, where pi = {y ∈ Rn : |y − φ(xi)|∞ < λri}. We have

φ(B) ⊂ p̄1 ∪ . . . ∪ p̄k, (91)

and

|p1|+ . . .+ |pk| = 2nλn(rn1 + . . .+ rnk ) = λn(|q1|+ . . .+ |qk|) ≤ 2λnε. (92)

As ε > 0 is arbitrary, this shows that φ(B) is negligible.
We now turn to the case m < n. Let P = Q × [0, 1]n−m ⊂ Rn, and let ψ : P → Rn be

defined by ψ(x1, . . . , xn) = φ(x1, . . . , xm) for x ∈ P . Then ψ is Lipschitz continuous, and we
have ψ(B) = φ(Q) with B = Q×{0} ⊂ Q× [0, 1]n−m. Since B ⊂ P is negligible, we conclude
by the previous paragraph that φ(Q) is negligible. �

Exercise 5.7. Let U ⊂ Rm be open, and let φ : U → Rn be a continuously differentiable
map. Let K ⊂ U be a closed and bounded set. Then show that the restriction φ : K → Rn is
Lipschitz continuous. Furthermore, show that for k < n, any k-dimensional bounded manifold
in Rn is negligible.
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6. Jordan sets

Definition 6.1. A set K ⊂ Q is called a Jordan (measurable) set if the characteristic function
χK is integrable, and

|K| =
∫
Q
χK , (93)

is called the Jordan content or the volume of K. For a Jordan set K ⊂ Q, we say that
f : K → R is integrable over K, if fχK is integrable, and∫

K
f =

∫
Q
fχK , (94)

is called the integral of f over K.

Example 6.2. Let us find the area of the disk D = {(x, y) : x2 + y2 < 1}. For any fixed
x ∈ (−1, 1), the restriction g(y) = χD(x, y) as a function of y ∈ (−1, 1) is equal to the

characteristic function of the interval (−
√

1− x2,
√

1− x2). Thus we compute

|D| =
∫

[−1,1]2
χD =

∫ 1

−1

∫ 1

−1
χD(x, y) dy dx =

∫ 1

−1

∫ √1−x2

−
√

1−x2
dy dx =

∫ 1

−1
2
√

1− x2 dx. (95)

An antiderivative of 2
√

1− x2 for x ∈ (−1, 1) can be found by the substitution x = cos t, as∫
2
√

1− x2 dx = −
∫

2 sin2 tdt =

∫
(cos 2t− 1)dt =

sin 2t

2
− t+ C, (96)

yielding

|D| =
∫ 1

−1
2
√

1− x2 dx =
(sin 2t

2
− t
)∣∣∣0
π

= π. (97)

Exercise 6.3. Let K ⊂ Q be a Jordan set. Prove the following.

(a) If f and g are integrable over K, and λ, µ ∈ R, then λf + µg is integrable over K, and∫
K

(λf + µg) = λ

∫
K
f + µ

∫
K
g. (98)

(b) If f and g are integrable over K satisfying f ≤ g, then we have∫
K
f ≤

∫
K
g. (99)

(c) If f is integrable over K, then |f | is integrable, and∣∣∣ ∫
K
f
∣∣∣ ≤ ∫

K
|f |. (100)

Exercise 6.4. Let K ⊂ Q and L ⊂ Q be Jordan sets, and suppose that f : Q → R is
integrable over both K and L. Show that f is integrable over both K ∪ L and K ∩ L, with∫

K∪L
f +

∫
K∩L

f =

∫
K
f +

∫
L
f. (101)

7. Linear transformations

Let f be a continuous function defined in R, and let F be its antiderivative (which can be
constructed by using the Riemann integral). Let φ be a continuously differentiable function
defined in R. Then by applying the chain rule, we get

d

dx
F (φ(x)) = F ′(φ(x))φ′(x) = f(φ(x))φ′(x), (102)
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which shows that F ◦ φ is an antiderivative of (f ◦ φ)φ′. Since f and (f ◦ φ)φ′ are both
continuous, in light of the fundamental theorem of calculus, we also have∫ φ(b)

φ(a)
f = F (φ(b))− F (φ(a)) =

∫ b

a
(f ◦ φ)φ′, (103)

which is called the substitution rule, or the change of variables formula for integrals. In this
and the next sections, we want to extend the substitution rule to integrable functions (as
opposed to continuous functions only), and to higher dimensional Riemann integrals.

We start with (homogeneous) linear transformations in one dimension. Thus we let λ ∈ R
and φ(x) = λx. Under the mapping φ, the interval [a, b] is transformed to

P = φ([a, b]) =

{
[λa, λb] if λ ≥ 0,

[λb, λa] if λ < 0.
(104)

If λ = 0, then P = {0} and φ′ = 0, meaning that the substitution rule (103) becomes a
triviality. Hence in the following, we assume that λ 6= 0. Suppose that f is integrable on P .
Then for any given ε > 0, there exist step functions g and h subordinate to a grid Γ, such
that g ≤ f ≤ h in each J ∈ Γ and ∫

P
(h− g) ≤ ε. (105)

The grid Γ induces a grid on [a, b], as Γ′ = {φ−1(J) : J ∈ Γ}. Then the functions g̃ = g◦φ and

h̃ = h◦φ are step functions subordinate to Γ′, and g̃ ≤ f ◦φ ≤ h̃ in each I ∈ Γ′. Furthermore,
we have∫ b

a
(h̃− g̃) =

∑
J∈Γ

(h− g)
∣∣
J
|φ−1(J)| =

∑
J∈Γ

(h− g)
∣∣
J

|J |
|λ|

= |λ|−1

∫
P

(h− g) ≤ ε

|λ|
, (106)

implying that f ◦ φ is integrable over [a, b], with∫ b

a
f ◦ φ = lim

ε→0

∫ b

a
g̃ = lim

ε→0
|λ|−1

∫
P
g = |λ|−1

∫
P
f. (107)

We can write it as ∫
P
f = |λ|

∫
[a,b]

f ◦ φ, (108)

which gives the substitution rule (103) in the particular case φ(x) = λx with λ > 0, because
in this case we have φ′(x) = λ = |λ| and P = [φ(a), φ(b)]. In fact, for λ < 0, we have∫ φ(b)

φ(a)
f = −

∫ φ(a)

φ(b)
f = −

∫
P
f = −|λ|

∫
[a,b]

f ◦ φ = λ

∫ b

a
f ◦ φ, (109)

meaning that (103) holds regardless of the sign of λ.

Remark 7.1 (Oriented intervals). In order to generalize (109) to higher dimensions, we need
to discuss what

∫ c
a f with c < a would become in higher dimensions. Note that the integral∫ c

a f with c < a may be considered as an integral of f over [c, a], but the interval [c, a] is
equipped with a negative length (or a negative density). Thinking along these lines leads
to the notion of oriented intervals, which yields a form of (109) that is more amenable to
generalization. An oriented interval is an interval, together with a choice of a sign (that is,
+1 or −1). Thus the interval I = [0, 1] may have positive orientation, meaning that we choose
+1 as the orientation of I, or it may have negative orientation, where we choose −1 as the
orientation of I. In this context, the interval [0, 1] with negative orientation will be denoted
by [1, 0]. More generally, when J = [a, b] is declared to be an oriented interval, we will assume
that the orientation of J is equal to the sign of b − a, where of course a > b is allowed. We



THE RIEMANN INTEGRAL 15

sometimes write −J = [b, a] when J = [a, b], to indicate orientation reversing. Furthermore,
we define ∫

[b,a]
f = −

∫
[a,b]

f, (110)

for a < b. Finally, we orient the image φ([a, b]) of [a, b] under φ(x) = λx according to the
following rule. If λ > 0, then φ([a, b]) and [a, b] have the same orientation, and if λ < 0, then
φ([a, b]) and [a, b] have the opposite orientations. In other words, we set the orientation of
φ([a, b]) as sgn(λ) times the orientation of [a, b]. We now can write (109) as∫

φ([a,b])
f = λ

∫
[a,b]

f ◦ φ. (111)

The reader may verify that this is valid even for a > b.

In the rest of this section, we want to generalize (111) to maps Φ : Rn → Rn of the
form Φ(x) = Ax, where A ∈ Rn×n. This will be achieved in several steps. As a first
step, let us assume that A is diagonal, that is, Φ(x) = (λ1x1, . . . , λnxn) for some constants
λ1, . . . , λn ∈ R. Let Q ⊂ Rn be a rectangle, and let f : Φ(Q)→ R be an integrable function,
where Φ(Q) = {Φ(x) : x ∈ Q}. We expect that the eventual formula will be of the form∫

Φ(Q)
f = c

∫
Q
f ◦ Φ, (112)

with some constant c = c(λ1, . . . , λn). It is easy to see that Φ(Q) ⊂ Rn is a rectangle, possibly
degenerate (meaning that |Φ(Q)| = 0). The degeneracy occurs if λk = 0 for some k. This will
turn out to be a trivial case, and from now on, we assume that λ1 · · ·λn 6= 0, that is, the map
Φ is invertible. For any rectangle q ⊂ Rn, the image Φ−1(q) is again a rectangle, with volume

|Φ−1(q)| = |q|
|λ1 · · ·λn|

. (113)

We can now basically repeat what we did in the one dimensional case. For any given ε > 0,
there exist step functions g and h subordinate to a grid Γ of Φ(Q), such that g ≤ f ≤ h in
each q ∈ Γ and ∫

Φ(Q)
(h− g) ≤ ε. (114)

The grid Γ induces a grid on Q, as Γ′ = {Φ−1(q) : q ∈ Γ}. Then the functions g̃ = g ◦ Φ and

h̃ = h◦Φ are step functions subordinate to Γ′, and g̃ ≤ f ◦Φ ≤ h̃ in each q ∈ Γ′. Furthermore,
we have ∫

Q
(h̃− g̃) =

∑
q∈Γ

(h− g)
∣∣
q
|Φ−1(q)| =

∑
q∈Γ

(h− g)
∣∣
q

|q|
|λ1 · · ·λn|

= |λ1 · · ·λn|−1

∫
P

(h− g) ≤ ε

|λ1 · · ·λn|
,

(115)

implying that f ◦ Φ is integrable over Q, with∫
Q
f ◦ Φ = lim

ε→0

∫
Q
g̃ = lim

ε→0
|λ1 · · ·λn|−1

∫
Φ(Q)

g = |λ1 · · ·λn|−1

∫
Φ(Q)

f. (116)

We can write it as ∫
Φ(Q)

f = |λ1 · · ·λn|
∫
Q
f ◦ Φ, (117)

which is the substitution rule we have been looking for. We can also check that if λk = 0 for
some k, then both sides of the preceding equality vanish, and therefore it is trivially true.
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Remark 7.2 (Oriented domains). It is now a matter of introducing new definitions to extend
(117) to the “oriented” setting. We define an oriented domain as a set K ⊂ Rn, together with
a choice of a sign (that is, +1 or −1). If K is an oriented domain, the same domain with the
opposite orientation is denoted by −K. For positively oriented domains, the integral

∫
Q f is

defined to be the same integral, where Q is considered to be a subset of Rn, that is, we may
simply forget about the orientation. For negatively oriented domains, we define∫

−Q
f = −

∫
Q
f, (118)

where Q is positively oriented. Furthermore, if Q is an oriented domain and if Φ : Rn → Rn
is defined by Φ(x) = (λ1x1, . . . , λnxn), then the orientation of Φ(Q) is set to be sgn(λ1 · · ·λn)
times the orientation of Q. With these new concepts at hand, it is not difficult to derive∫

Φ(Q)
f = λ1 · · ·λn

∫
Q
f ◦ Φ, (119)

which now holds even when Q is an oriented rectangle. As there is a slight danger of confusion
between (117) and (119), one must be careful to specify whether the integrals are in the
“oriented” setting as in (119), or in the “plain vanilla” setting as in (117).

To extend the substitution rule to general linear transformations Φ(x) = Ax, we need to
prove a couple of preliminary lemmata. The first lemma generalizes the integrability criterion
to allow approximation by integrable functions, as opposed to step functions only.

Lemma 7.3. Let f : Q→ R, and suppose that for any ε > 0, there exist integrable functions
gε and hε, such that gε ≤ f ≤ hε and ∫

Q
(hε − gε) ≤ ε. (120)

Then f is integrable, and ∫
Q
f = lim

ε→0

∫
Q
gε. (121)

Proof. Let ε > 0 be arbitrary, and let gε and hε be as in the statement. Since gε and hε are
integrable, there exist step functions g̃ε and h̃ε, subordinate to some grid Γ, such that g̃ε ≤ gε
and hε ≤ h̃ε in each q ∈ Γ, and that∫

Q
(gε − g̃ε) ≤ ε, and

∫
Q

(h̃ε − hε) ≤ ε. (122)

This implies that g̃ε ≤ f ≤ h̃ε in each q ∈ Γ, and that∫
Q

(h̃ε − g̃ε) ≤
∫
Q

(h̃ε − hε) +

∫
Q

(hε − gε) +

∫
Q

(gε − g̃ε) ≤ 3ε. (123)

As ε > 0 is arbitrary, we conclude that f is integrable. �

The following lemma reduces the computation of the volume |Φ(Q)| for an arbitrary rec-
tangle Q ⊂ Rn to that of |Φ(Q1)|, where Q1 = [0, 1]n is the unit cube.

Lemma 7.4. Let Q ⊂ Rn be a rectangle, and let Φ : Rn → Rn be defined by Φ(x) = Ax, with
some A ⊂ Rn×n. Then we have |Φ(Q)| = |Q||Φ(Q1)|, where Q1 = [0, 1]n is the unit cube.

Proof. If A is singular, then dim Φ(Rn) < n, and hence |Φ(Q)| = |Φ(Q1)| = 0. In the following,
we assume that A is invertible.

For λ > 0, let Qλ = [0, λ]n. Then we have Qλ = Λ(Q1), where Λ : Rn → Rn is
defined by Λ(x) = λx. Since Φ(λx) = λΦ(x), we have Φ(Qλ) = Λ(Φ(Q1)), and hence
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|Φ(Qλ)| = λn|Φ(Q1)|. Now, by using the nodal points 0, λ, 2λ, . . . in each coordinate direc-
tion, we construct a grid Γ in a rectangle R containing Q = [0, b1]× . . .× [0, bn]. Thus, each
q ∈ Γ is a cube with side-length λ, and the region R must be strictly larger than Q whenever
any of b1, . . . , bn is a non-integer multiple of λ. More precisely, let `k ∈ N be such that λ`k < bk
and λ(`k + 1) ≥ bk, for k = 1, . . . , n, and we set R = [0, λ(`1 + 1)]× . . .× [0, λ(`n + 1)]. Next,
we set h = χR, and define g to be the characteristic function of R′ = [0, λ`1]× . . .× [0, λ`n].
It is clear that g ≤ χQ ≤ h, and that∫

R
(h− g) = |R \R′| ≤ Cλ, (124)

for some constant C independent of λ. We let g̃ = g ◦ Φ−1 and h̃ = h ◦ Φ−1. Then we have
g̃ ≤ χΦ(Q) ≤ h̃ and∫

P
(h̃− g̃) =

∑
q∈Γ\Γ′

|Φ(q)| =
∑

q∈Γ\Γ′

λn|Φ(Q1)| = |R \R′||Φ(Q1)| ≤ C|Φ(Q1)|λ, (125)

where P ⊂ Rn is some large rectangle containing Φ(Q), and Γ′ = {q ∈ Γ : q ⊂ R′}. As λ > 0
is arbitrary, Lemma 7.3 guarantees that the integral of χΦ(Q) can be computed by taking the
limit λ→ 0 in ∫

P
g̃ =

∑
q∈Γ′

|Φ(q)| =
∑
q∈Γ′

λn|Φ(Q1)| = |R′||Φ(Q1)|. (126)

Since |R′| → |Q| as λ→ 0, we have |Φ(Q)| = |Q||Φ(Q1)|. �

To compute the volume |Φ(Q1)|, we consider it as a function of the matrix A, or equivalently,
as a function of the columns A1, . . . , An of A, as

ω(A) = ω(A1, . . . , An) := |Φ(Q1)|. (127)

Geometrically, Φ(Q1) is an n-dimensional parallelogram whose sides are given by the columns
of A. First of all, we know that ω(A) = 0 if A is singular. In particular, we have

ω(. . . , V, . . . , V, . . .) = 0 for V ∈ Rn. (128)

Let us scale one of the columns of A by a factor λ ≥ 0, and see how ω changes. We can write
Φ in terms of the columns of A as Φ(x) = x1A1 + . . .+ xnAn. If we scale the first columns of
A by λ, we get the new map Φλ(x) = x1λA1 +x2A2 + . . .+xnAn. The parallelogram Φλ(Q1)
is obtained by scaling Φ(Q1) along the side represented by A1. We have

Φλ(Q1) = {x1λA1 + x2A2 + . . .+ xnAn : 0 ≤ xk ≤ 1, k = 1, . . . , n}
= {x1A1 + x2A2 + . . .+ xnAn : 0 ≤ x1 ≤ λ, 0 ≤ xk ≤ 1, k = 2, . . . , n}
= Φ([0, λ]× [0, 1]× . . .× [0, 1]),

(129)

and since the volume of [0, λ]× [0, 1]× . . .× [0, 1] is λ, Lemma 7.4 gives

ω(λA1, A2, . . . , An) = |Φλ(Q1)| = λ|Φ(Q1)| = λω(A1, A2, . . . , An). (130)

If we pick λ < 0, then the same argument yields

Φλ(Q1) = Φ([λ, 0]× [0, 1]× . . .× [0, 1]), (131)

and therefore, for λ ∈ R, we have

ω(λA1, A2, . . . , An) = |λ|ω(A1, A2, . . . , An). (132)
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Now, we consider the map Ψβ(x) = x1(A1 +βA2)+x2A2 + . . .+xnAn where β ∈ R, that is,
we add a multiple of the second column to the first column of A. The parallelogram Ψβ(Q1)
is obtained by applying a shear transformation to Φ(Q1). In this case, we have

Ψβ(Q1) = {x1(A1 + βA2) + x2A2 + . . .+ xnAn : 0 ≤ xk ≤ 1, k = 1, . . . , n}
= {x1A1 + (x2 + βx1)A2 + . . .+ xnAn : 0 ≤ xk ≤ 1, k = 1, . . . , n}
= Φ(Sβ),

(133)

where Sβ would be a shear transformation of Q1, and is defined by

Sβ = {(x1, x2 + βx1, x3, . . . , xn) : x ∈ Q1}. (134)

It is not difficult to show that |Sβ| = 1, and hence Lemma 7.4 yields

ω(A1 + βA2, A2, . . . , An) = |Ψβ(Q1)| = |Φ(Sβ)| = |Sβ||Φ(Q1)| = ω(A1, A2, . . . , An). (135)

We conclude that shear transformations do not change volume.

Exercise 7.5. Show that |Sβ| = 1.

Supposing that A is invertible, any vector V ∈ Rn can be written as

V = β1A1 + . . .+ βnAn. (136)

Then by using the transformation properties (130) and (135), for β1 ≥ 0, we have

ω(A1 + V,A2, . . . , An) = ω(A1 + β1A1, A2, . . . , An) = (1 + β1)ω(A1, A2, . . . , An)

= ω(A1, A2, . . . , An) + β1ω(A1, A2, . . . , An)

= ω(A1, A2, . . . , An) + ω(β1A1, A2, . . . , An)

= ω(A1, A2, . . . , An) + ω(V,A2, . . . , An).

(137)

For −1 ≤ β1 < 0, we have

ω(A1 + V,A2, . . . , An) = (1 + β1)ω(A1, A2, . . . , An)

= ω(A1, A2, . . . , An)− (−β1)ω(A1, A2, . . . , An)

= ω(A1, A2, . . . , An)− ω(−β1A1, A2, . . . , An)

= ω(A1, A2, . . . , An)− ω(−V,A2, . . . , An).

(138)

Finally, for β1 < −1, we have

ω(A1 + V,A2, . . . , An) = −(1 + β1)ω(−A1, A2, . . . , An)

= −ω(−A1, A2, . . . , An) + (−β1)ω(−A1, A2, . . . , An)

= −ω(−A1, A2, . . . , An) + ω(β1A1, A2, . . . , An)

= −ω(−A1, A2, . . . , An) + ω(V,A2, . . . , An).

(139)

We notice from the preceding equalities that all three cases would be special cases of

ω(A1 + V,A2, . . . , An) = ω(A1, A2, . . . , An) + ω(V,A2, . . . , An), (140)

if we had the property ω(−A1, A2, . . . , An) = −ω(A1, A2, . . . , An). This idea leads to the
proof of the following result.

Lemma 7.6. We have ω(A) = | det(A)|.

Proof. We introduce

ω̃(A) = sgn(det(A))ω(A) =

{
ω(A) for det(A) ≥ 0,

−ω(A) for det(A) < 0.
(141)
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Then (132) implies

ω̃(λA1, A2, . . . , An) = λω̃(A1, A2, . . . , An), λ ∈ R, (142)

and an inspection of (137)-(139) reveals that the additivity property (140) holds for ω̃. Of
course, (140) and (142) hold not only for the first argument, but for each argument of ω̃. We
also have (128) for ω̃, meaning that ω̃ is a totally antisymmetric n-linear function. Now linear
algebra tells us that

ω̃(A) = ω̃(I) det(A) = det(A). (143)

Finally, we conclude that ω(A) = sgn(det(A))ω̃(A) = sgn(det(A)) det(A) = | det(A)|. �

In combination with Lemma 7.4, the preceding lemma implies that |Φ(Q)| = |Q||det(A)|
for any rectangle Q ⊂ Rn and a linear map Φ(x) = Ax with some A ⊂ Rn×n.

Theorem 7.7. Let Q ⊂ Rn be a rectangle, and let Φ : Rn → Rn be defined by Φ(x) = Ax,
with some A ⊂ Rn×n. Let f : Φ(Q) → R be a bounded function such that f ◦ Φ is integrable
over Q. Then f is integrable over Φ(Q), with∫

Φ(Q)
f = | det(A)|

∫
Q
f ◦ Φ. (144)

Proof. We assume that A is invertible, since otherwise the theorem is trivial. For any given
ε > 0, there exist step functions g and h subordinate to a grid Γ of Q, such that g ≤ f ◦Φ ≤ h
in each q ∈ Γ and ∫

Q
(h− g) ≤ ε. (145)

Let B = Q \
⋃
{q : q ∈ Γ} be the space between the grid rectangles. We can modify g and h

in B, such that g ≤ f ◦Φ ≤ h holds everywhere in Q. Then g̃ = g ◦Φ−1 and h̃ = h ◦Φ−1 are
integrable functions satisfying g̃ ≤ f ≤ h̃, and∫

Φ(Q)
(h̃− g̃) =

∑
q∈Γ

(h− g)
∣∣
q
|Φ(q)| =

∑
q∈Γ

(h− g)
∣∣
q
|det(A)||q|

= |det(A)|
∫
Q

(h− g) ≤ |det(A)|ε.
(146)

Invoking Lemma 7.3, we infer that f is integrable over Φ(Q), with∫
Φ(Q)

f = lim
ε→0

∫
Φ(Q)

g̃ = lim
ε→0
| det(A)|

∫
Q
g = |det(A)|

∫
Q
f ◦ Φ. (147)

This completes the proof. �

Remark 7.8. Here we extend Theorem 7.7 to the setting where the domains are equipped
with orientations. If Q is an oriented domain and if Φ : Rn → Rn is a linear transformation
Φ(x) = Ax, then the orientation of Φ(Q) is defined to be sgn(det(A)) times the orientation of
Q. In other words, transformations with det(A) > 0 preserve the orientation of Q, and those
with det(A) < 0 flip the orientation of Q. Then (144) in Theorem 7.7 should be replaced by∫

Φ(Q)
f = det(A)

∫
Q
f ◦ Φ, (148)

where it is now understood that the integrals take into account the orientation of their do-
mains, cf. (118) in Remark 7.2.
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8. General change of variables

In this section, we will extend the substitution rule from the preceding section to a gen-
eral class of differentiable mappings. The main device that makes everything work is local
approximation of differentiable mappings by linear maps.

Let U ⊂ Rn be an open set, and let Φ : U → Rn be a continuously differentiable map.
Let Q ⊂ U be a closed rectangle. We assume that the restriction Φ : Q → Rn is injective,
and that the inverse Φ−1 : Φ(Q) → Q is continuously differentiable. Let f : Φ(Q) → R be a
bounded function such that f ◦ Φ is integrable over Q. Following the proof of Theorem 7.7,
for any given ε > 0, there exist step functions g and h subordinate to a grid Γ of Q, such that
g ≤ f ◦ Φ ≤ h in each q ∈ Γ and ∫

Q
(h− g) ≤ ε. (149)

Let B = Q \
⋃
{q : q ∈ Γ}. We can modify g and h in B, such that g ≤ f ◦ Φ ≤ h holds

everywhere in Q. By Lemma 5.6, the set Φ(B) is negligible, and hence g̃ = g ◦ Φ−1 and

h̃ = h ◦ Φ−1 are integrable functions satisfying g̃ ≤ f ≤ h̃.

• If a rectangle q ∈ Γ is very small, then Φ(x) ≈ Φ(xq) + DΦ(xq)(x − xq) for x ∈ q,
where xq ∈ q is some point. Hence we expect that |Φ(q)| ≈ | det(DΦ(xq))|, and∫

Φ(Q)
(h̃− g̃) =

∑
q∈Γ

(h− g)
∣∣
q
|Φ(q)| ≈

∑
q∈Γ

(h− g)
∣∣
q
|det(DΦ(xq))||q|

≤ max
Q
|det(DΦ)|

∫
Q

(h− g) ≤ Cε.
(150)

If we can justify this expectation, then by Lemma 7.3 we would infer that f is integrable
over Φ(Q).
• The next step would be to take the limit ε→ 0 in∫

Φ(Q)
g̃ =

∑
q∈Γ

g
∣∣
q
|Φ(q)| ≈

∑
q∈Γ

g
∣∣
q
|det(DΦ(xq))||q| ≈

∫
Q
g |det(DΦ)|, (151)

which suggests the guess∫
Φ(Q)

f =

∫
Q
f ◦ Φ |det(DΦ)|. (152)

We shall now rigorously justify the aforementioned heuristic reasoning. The following result
will be of fundamental importance.

Theorem 8.1. For any δ > 0, there exists ρ > 0 such that whenever q ⊂ Q is a rectangle
with diameter not exceeding ρ, we have

(1− γδ)| det(DΦ(xq))||q| ≤ |Φ(q)| ≤ (1 + γδ)| det(DΦ(xq))||q|, (153)

where xq is the centre of q, and γ is the ratio between the longest and the shortest sides of q.

Proof. Let δ > 0 be a small number, and let q = [a1, b1] × . . . × [an, bn] ⊂ Q be a rectangle.
Without loss of generality, we assume that q is closed, and that q is nondegenerate in the sense

that |q| > 0. Let Λ : Rn → Rn be defined by Λ(x) =
(a1+b1+(b1−a1)x1

2 , . . . , an+bn+(bn−an)xn
2

)
.

Note that Λ(Q1) = q, where Q1 = [−1, 1]n, and Λ(0) = xq. We can write Λ(x) = xq + Ax
with a diagonal matrix A ∈ Rn×n. Next, we define F : Q1 → Rn by

F (x) = Λ−1(DΦ(xq)
−1Φ(Λ(x))). (154)

By Lemma 8.2 below, for all x, y ∈ Q1, we have

|F (y)− F (x)−DF (0)(y − x)|∞ ≤ n|y − x|∞ sup
z∈Q1

|DF (z)−DF (0)|∞. (155)
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We compute

DF (x) = A−1DΦ(xq)
−1DΦ(Λ(x))A, (156)

which implies that DF (0) = I and

DF (z)−DF (0) = A−1DΦ(xq)
−1(DΦ(Λ(z))−DΦ(xq))A. (157)

Taking into account that A is diagonal, we infer

|DF (z)−DF (0)|∞ ≤ γ|DΦ(xq)
−1(DΦ(Λ(z))−DΦ(xq))|∞

≤ γn sup
Q
|(DΦ)−1|∞|DΦ(Λ(z))−DΦ(xq))|∞ (158)

By the uniform continuity of DΦ, we can choose ρ > 0 such that

n2 sup
Q
|(DΦ)−1|∞ sup

z∈q
|DΦ(z)−DΦ(xq)|∞ ≤ δ, (159)

whenever diam(q) ≤ ρ, yielding

|F (y)− F (x)− (y − x)|∞ ≤ γδ|y − x|∞, (160)

for all x, y ∈ Q1. From this, we have

|F (y)− F (x)|∞ ≤ |y − x|∞ + |F (y)− F (x)− (y − x)|∞ ≤ (1 + γδ)|y − x|∞, (161)

and putting y = 0, we get

|F (x)|∞ ≤ (1 + γδ)|x|∞, (162)

meaning that F (Q1) ⊂ (1 + γδ)Q1 := {(1 + γδ)x : x ∈ Q1}. A similar reasoning gives

|F (y)− F (x)|∞ ≥ |y − x|∞ − |F (y)− F (x)− (y − x)|∞ ≥ (1− γδ)|y − x|∞, (163)

implying that F is injective if γ is suitably controlled.
Our next goal is to show that (1 − γδ)Q1 ⊂ F (Q1), that is, to show that the equation

F (x) = z can be solved for the unknown x ∈ Q1 for any given z ∈ (1− γδ)Q1. Suppose that
z ∈ (1− γδ)Q1, and define the map ψ : Q1 → Rn by ψ(x) = z+ x−F (x). We have ψ(x) = x
if and only if F (x) = z. Moreover, from (160) we get

|ψ(x)− ψ(y)|∞ = |x− y + F (y)− F (x)|∞ ≤ γδ|y − x|∞, (164)

and

|ψ(x)|∞ ≤ |z|∞ + |x− 0 + F (0)− F (x)|∞ ≤ |z|∞ + γδ|x|∞ ≤ (1− γδ) + γδ = 1, (165)

meaning that ψ(Q1) ⊂ Q1 and ψ is a contraction. Therefore, by the contraction mapping
principle, there is a unique x ∈ Q1 satisfying ψ(x) = x. This shows that F (x) = z has a
solution for any given z ∈ (1− γδ)Q1, and hence (1− γδ)Q1 ⊂ F (Q1).

At this point, we can write

(1− γδ)Q1 ⊂ F (Q1) ⊂ (1 + γδ)Q1. (166)

Taking into account the definition F (x) = Λ−1(DΦ(xq)
−1Φ(Λ(x))), and unwinding the above

inclusion, we get

DΦ(xq)(Λ((1− γδ)Q1)) ⊂ Φ(q) ⊂ DΦ(xq)(Λ((1 + γδ)Q1)), (167)

which completes the proof. �

Lemma 8.2. Let Ω ⊂ Rn be an open set, and let F : Ω→ Rn be differentiable in Ω. Suppose
that DF (x∗) is invertible for some x∗ ∈ K, where K ⊂ Ω is a convex set. Then we have

|F (y)− F (x)−DF (x∗)(y − x)|∞ ≤ n|y − x|∞ sup
z∈K
|DF (z)−DF (x∗)|∞, (168)

for any x, y ∈ K.
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Proof. Let x, y ∈ K, and let g(t) = F (x+ tV ), where V = y − x. Then we have

F (y)− F (x) = g(1)− g(0), (169)

and
g(t) = DV F (x+ tV ) = DF (x+ tV )V. (170)

By the mean value theorem, for each k, there exists 0 < tk < 1 such that gk(1)−gk(0) = g′k(tk),
that is,

Fk(x)− Fk(y) = DV Fk(x+ tkV ) = DFk(x+ tkV )V = DFk(x+ tkV )(y − x). (171)

This implies that

Fk(y)− Fk(x)−DFk(x∗)(y − x) = (DFk(x+ tkV )−DFk(x∗))(y − x), (172)

and hence

|Fk(y)− Fk(x)−DFk(x∗)(y − x)| ≤
n∑
i=1

|∂iFk(x+ tkV )− ∂iFk(x∗)||yi − xi|. (173)

Note that ∂iFk is simply an entry in the Jacobian matrix DF , and so we have

|∂iFk(x+ tkV )− ∂iFk(x∗)| ≤ sup
z∈K
|DF (z)−DF (x∗)|∞, (174)

because x+ tkV ∈ K by convexity. This completes the proof. �

Finally, we are ready to state and prove the general change of variables formula.

Theorem 8.3. Let U ⊂ Rn be an open set, and let Φ : U → Rn be a continuously differentiable
map. Let Q ⊂ U be a closed rectangle. We assume that the restriction Φ : Q→ Rn is injective,
and that the inverse Φ−1 : Φ(Q) → Q is continuously differentiable. Let f : Φ(Q) → R be a
bounded function such that f ◦ Φ is integrable over Q. Then f is integrable over Φ(Q), with∫

Φ(Q)
f =

∫
Q
f ◦ Φ |det(DΦ)|. (175)

Proof. Without loss of generality, we assume f ≥ 0, since otherwise, we can decompose
f = max{f, 0} − max{−f, 0} and work with two positive functions. For any given ε > 0,
there exist step functions g and h subordinate to a grid Γ of Q, such that 0 ≤ g ≤ f ◦ Φ ≤ h
in each q ∈ Γ and ∫

Q
(h− g) ≤ ε. (176)

Let B = Q \
⋃
{q : q ∈ Γ}. We can modify g and h in B, such that g ≤ f ◦ Φ ≤ h holds

everywhere in Q. By Lemma 5.6, the set Φ(B) is negligible, and hence g̃ = g ◦ Φ−1 and

h̃ = h ◦ Φ−1 are integrable functions satisfying g̃ ≤ f ≤ h̃. Without loss of generality, we can
assume that the diameter ρ and the degeneracy parameter γ of q ∈ Γ are suitably controlled,
so that Theorem 8.1 can be applied to any q ∈ Γ, regardless of the choice of ε, with δ > 0
that can be chosen at will. Thus we have∫

Φ(Q)
(h̃− g̃) =

∑
q∈Γ

(h− g)
∣∣
q
|Φ(q)| ≤ (1 + γδ)

∑
q∈Γ

(h− g)
∣∣
q
| det(DΦ(xq))||q|

≤ (1 + γδ) max
Q
| det(DΦ)|

∫
Q

(h− g) ≤ Cε,
(177)

implying that f is integrable over Φ(Q), cf. Lemma 7.3.
Now we need to take the limit ε→ 0 in∫

Φ(Q)
g̃ =

∑
q∈Γ

g
∣∣
q
|Φ(q)|, and/or

∫
Φ(Q)

h̃ =
∑
q∈Γ

h
∣∣
q
|Φ(q)|. (178)
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We have ∑
q∈Γ

g
∣∣
q
|Φ(q)| ≥ (1− γδ)

∑
q∈Γ

g
∣∣
q
|det(DΦ(xq))||q|, (179)

∑
q∈Γ

h
∣∣
q
|Φ(q)| ≤ (1 + γδ)

∑
q∈Γ

h
∣∣
q
|det(DΦ(xq))||q|, (180)

which yield

(1− γδ)
∑
q∈Γ

Gq|q| ≤
∑
q∈Γ

g
∣∣
q
|Φ(q)|,

∑
q∈Γ

h
∣∣
q
|Φ(q)| ≤ (1 + γδ)

∑
q∈Γ

Hq|q|, (181)

where

Gq = inf
q

(
g
∣∣
q
|det(DΦ)|

)
, and Hq = sup

q

(
h
∣∣
q
|det(DΦ)|

)
. (182)

Then for

G =
∑
q∈Γ

Gqχq, and H =
∑
q∈Γ

Hqχq, (183)

we have G ≤ (f ◦ Φ) |det(DΦ)| ≤ H, and∫
Q

(f ◦ Φ) |det(DΦ)| = lim
ε→0

∫
Q
G = lim

ε→0

∫
Q
H. (184)

Since we have

(1− γδ)
∫
Q
G ≤

∫
Φ(Q)

g̃ ≤
∫

Φ(Q)
h̃ ≤ (1 + γδ)

∫
Q
H, (185)

and δ > 0 can be made arbitrarily small while keeping γ bounded, we infer

lim
ε→0

∫
Φ(Q)

g̃ = lim
ε→0

∫
Φ(Q)

h̃ =

∫
Q

(f ◦ Φ) |det(DΦ)|, (186)

which completes the proof. �

Remark 8.4. Following the pattern of Remark 7.8, we can easily extend Theorem 8.3 to the
setting where the domains are equipped with orientations. If Q is an oriented domain and
if Φ : Q → Rn is a differentiable transformation where det(DΦ) does not change sign in Q,
then the orientation of Φ(Q) is defined to be sgn(det(DΦ)) times the orientation of Q. In
other words, transformations with det(DΦ) > 0 preserve the orientation of Q, and those with
det(DΦ) < 0 flip the orientation of Q. Then (175) in Theorem 8.3 should be replaced by∫

Φ(Q)
f =

∫
Q

(f ◦ Φ) det(DΦ), (187)

where it is now understood that the integrals take into account the orientation of their do-
mains, cf. (118) in Remark 7.2. Said it plainly, the latter simply means that to compute an
integral over a negatively oriented domain, one computes the integral in the usual way, and
then takes its negative. Nothing changes if the domain is positively oriented. Finally, we
reemphasize that one must be mindful of whether the integrals are in the “oriented” setting
as in (187), or in the “plain vanilla” setting as in (175), since there is no notational difference
between the two integrals.
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Appendix A. Antidifferentiation in elementary terms

Consider the problem of finding F satisfying

F ′ = f, (188)

where f is a given function. Given f , finding F is called antidifferentiation, and F is called
an antiderivative of f .

Remark A.1. Suppose that f is a function defined on (a, b), and let F ′ = G′ = f on (a, b),
that is, let F and G be antiderivatives of f . Then (F − G)′ = F ′ − G′ = 0 on (a, b), and
invoking the mean value theorem we infer that

F (x) = G(x) + C, x ∈ (a, b), (189)

for some constant C ∈ R. On the other hand, if G′ = f on (a, b), and if C ∈ R, then a new
function F defined by (189) is also an antiderivetive of f , because

F ′(x) = (G(x) + C)′ = G′(x) + 0 = f(x), x ∈ (a, b). (190)

What this means is that the antiderivative of a given function can only be found up to
an additive constant, and that if we know one antiderivative of a given function, all other
antiderivatives are found by adding an arbitrary constant to it.

Definition A.2. Let G be an antiderivative of g on some interval (a, b), i.e., let G′(x) = g(x)
for x ∈ (a, b). Then the set of all antiderivatives of g is denoted by∫

g(x)dx = {G+ C : C ∈ R}, (191)

which is called the indefinite integral of g. Alternatively and more informally, it is a standard
practice to think of the indefinite integral as a notation for infinitely many functions (one
function for each value of C ∈ R), and write∫

g(x)dx = G(x) + C, (192)

where C ∈ R is considered to be an “arbitrary constant.”

Example A.3. (a) We have G′ = 0 for the zero function G(x) = 0, i.e., G ≡ 0 is an
antiderivative of g ≡ 0. Hence we can write∫

0 dx = 0 + C = C. (193)

(b) More generally, for α ∈ R we have (xα)′ = αxα−1 at each x > 0, i.e., G(x) = 1
αx

α is an

antiderivative of g(x) = xα−1 on the interval (0,∞), for each α ∈ R \ {0}. Hence we have∫
xα−1dx =

xα

α
+ C, (194)

for α ∈ R \ {0}. Note that if α ∈ N, the relation G′(x) = g(x) is true for x ∈ R, and if
α ∈ {−1,−2,−3, . . .}, it is true for x ∈ R \ {0}.

(c) As for the case α = 0, we recall (log x)′ = 1
x for x > 0, which leads to∫

dx

x
= log x+ C. (195)

(d) Since (ex)′ = ex for x ∈ R, we have∫
exdx = ex + C. (196)
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(e) From (sinx)′ = cosx and (cosx)′ = − sinx for x ∈ R, we infer∫
cosx dx = sinx+ C, and

∫
sinx dx = − cosx+ C. (197)

(f) Similarly, we have∫
dx

1 + x2
= arctanx+ C, and

∫
dx√

1− x2
= arcsinx+ C, (198)

where the former is valid for x ∈ R, and the latter is for x ∈ (−1, 1).

Exercise A.4. By a direct guess, find the indefinite integrals of the following functions.

(a) g(x) = (cosx)−2.
(b) g(x) = 2 sinx cosx.
(c) g(x) = e2x.
(d) g(x) = 2x.

Example A.5. (a) Since (2x3 + ex)′ = 2(x3)′ + (ex)′ = 6x2 + ex, we have∫
(6x2 + ex)dx = 2x3 + ex + C. (199)

(b) Let α ∈ R be a constant. Then we have (sin(αx))′ = α cos(αx), and hence∫
cos(αx)dx =

sin(αx)

α
+ C for α 6= 0. (200)

(c) We have (log log x)′ = 1
log x ·

1
x , which means that∫

dx

x log x
= log log x+ C. (201)

Remark A.6. Starting with the power functions xa (a ∈ R), the exponential, logarithm,
trigonometric and inverse trigonometric functions, and by combining them by using finitely
many addition, subtraction, multiplication, quotient, and composition operations, we can
generate a wide variety of functions. Let us call these functions elementary functions. Then
the derivative of an elementary function is an elementary function, because we have differen-
tiation rules that tell us how to compute (f + g)′, (fg)′, (f ◦ g)′, etc., based on the knowledge
of f ′ and g′. Each differentiation rule can be applied “in reverse” to compute antiderivatives
of a large number of elementary functions. However, these “antidifferentiation rules” cannot
give antiderivatives of all elementary functions, because as discovered by Joseph Liouville
around 1840, there are elementary functions whose antiderivatives are not elementary. As a
reflection, for example, there is no useful formula that gives an antiderivative of fg, based on
antiderivatives of f and g. This makes antidifferentiation of elementary functions somewhat of
a challenge, as opposed to differentiation, which is completely straightforward. Nevertheless,
there exist algorithms, such as the Risch algorithm, that can decide whether an elementary
function is the derivative of an elementary function, and if so, compute the antiderivative.
More generally, by using the Riemann integral, we can construct an antiderivative of, say,
any continuous function as the limit of a sequence of functions, and thus demonstrate that
continuous functions admit antiderivatives.

In this appendix, we will develop a few useful antidifferentiation rules.

Lemma A.7. a) Let F ′ = f on (a, b), and let α ∈ R \ {0} be a nonzero constant. Then we
have (αF )′ = αf on (a, b), that is,∫

αf(x)dx = α

∫
f(x)dx. (202)
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b) Let F ′ = f on (a, b), and let α ∈ R. Then we have

(F (αx))′ = αF ′(αx) = αf(αx) for x ∈ (a, b). (203)

In other words, for α 6= 0 we have∫
f(αx)dx =

1

α
F (x) + C =

1

α

∫
f(x)dx. (204)

c) Let F ′ = f and G′ = g on (a, b). Then we have (F +G)′ = f + g on (a, b), that is,∫
(f(x) + g(x))dx =

∫
f(x)dx+

∫
g(x)dx. (205)

Exercise A.8. Give a detailed proof of the preceding lemma. Is (202) true for α = 0?

The chain rule of differentiation leads to the following rule for antidifferentiation.

Theorem A.9 (Substitution). Let F ′ = f on (a, b), and let φ : (c, d) → (a, b) be a differen-
tiable function. Then F ◦ φ is an antiderivative of (f ◦ φ)φ′ on (c, d), that is, we have∫

f(φ(x))φ′(x)dx = F (φ(x)) + C =
(∫

f(y)dy
)∣∣∣
y=φ(x)

. (206)

Proof. Taking into account that F ′ = f , we get

d

dx
F (φ(x)) = F ′(φ(x))φ′(x) = f(φ(x))φ′(x) for x ∈ (c, d), (207)

which shows that F ◦ φ is an antiderivative of (f ◦ φ)φ′ on (c, d). �

Recognizing if a given integral is amenable to substitution is the same as deciding if the
expression under the integral can be written in the form f(φ(x))φ′(x).

Example A.10. We have∫
x√

1 + x2
dx =

1

2

∫
(x2)′√
1 + x2

dx =
1

2

∫
(1 + x2)′√

1 + x2
dx =

1

2

(∫ 1
√
y

dy
)∣∣∣
y=1+x2

=
1

2

(∫
y−

1
2 dy
)∣∣∣
y=1+x2

= y
1
2

∣∣∣
y=1+x2

+ C =
√

1 + x2 + C.

(208)

Exercise A.11. Compute the following indefinite integrals.

(a)

∫
cos2 x sinx dx (b)

∫
(8x+ 2)e2x2+x dx (c)

∫
sin log x

x
dx

There is no “product rule” for antidifferentiation, and the following statement is basically
the best we can do, in the sense that it is the most useful antidifferentiation rule that can
be derived from the product rule of differentiation. In practical terms, this rule allows us to
replace fg′ by f ′g under integration.

Theorem A.12 (Integration by parts). Let f and g be functions differentiable on (a, b), and
let F ′ = f ′g on (a, b). Then fg − F is an antiderivative of fg′ on (a, b), that is, we have∫

f(x)g′(x)dx = f(x)g(x)−
∫
f ′(x)g(x)dx. (209)

Proof. By a direct computation, we infer

(fg − F )′ = f ′g + fg′ − F ′ = f ′g + fg′ − f ′g = fg′, (210)

which shows that fg − F is an antiderivative of fg′ on (a, b). �
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Example A.13. We have∫
log x dx =

∫
log x · (x)′ dx = x log x−

∫
(log x)′ · x dx = x log x−

∫
1

x
· x dx

= x log x−
∫

dx = x log x− x+ C.

(211)

Exercise A.14. Compute the following indefinite integrals.

(a)

∫
xexdx (b)

∫
x2 cosx dx (c)

∫
ex sinx dx
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