PRACTICE PROBLEMS FOR THE FINAL EXAM

MATH 248 FALL 2016

1. Show that $M = \{(x, y) \in \mathbb{R}^2 : (x + y)^5 - xy = 1\}$ is a manifold in \mathbb{R}^2 . Sketch this curve. 2. Let $(x_*, y_*, z_*) \in \mathbb{R}^3$, and let a, b, c be positive numbers. Then with

$$\phi(x, y, z) = \frac{(x - x_*)^2}{a^2} + \frac{(y - y_*)^2}{b^2} + \frac{(z - z_*)^2}{c^2},$$

show that $M = \{(x, y, z) \in \mathbb{R}^3 : \phi(x, y, z) = 1\}$ is a manifold in \mathbb{R}^3 . Do you recognize this surface?

3. Find and classify the critical points of $f(x,y) = (x^2 + y^2)e^{x^2 - y^2}$.

4. Find, with full justifications, the minimum value of

$$f(x,y) = (x-y)y + \frac{1}{x-y} + \frac{1}{y},$$

over the set $\Omega = \{(x, y) : x > y > 0\}.$

- 5. Let $\gamma : \mathbb{R} \to \mathbb{R}^n$ and $\eta : \mathbb{R} \to \mathbb{R}^n$ be two smooth curves. Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix, and define $d(p,q) = (p-q)^T A(p-q)$ for $p,q \in \mathbb{R}^n$. Suppose that $p = \gamma(s_*)$ and $q = \eta(t_*)$ are two points such that $d(p,q) \leq d(\gamma(s),\eta(t))$ for any other pair of points $\gamma(s)$ and $\eta(t)$ on the two curves. Then show that $(p-q)^T A \gamma'(s_*) = (p-q)^T A \eta'(t_*) = 0$.
- 6. Compute the area of the region enclosed by the loops of Bernoulli's lemniscate

$$(x^{2} + y^{2})^{2} - 2(x^{2} - y^{2}) = 0.$$

Possible approaches include direct computation, polar coordinates, and other suitable change of coordinates.

7. Compute the integral

$$\int_A xyz(1-x-y-z)\,\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z,$$

where A is the tetrahedron defined by

$$A = \{(x, y, z) : x \ge 0, y \ge 0, z \ge 0, x + y + z \le 1\}$$

8. Let $T \subset \mathbb{R}^3$ be the solid torus in \mathbb{R}^3 obtained by rotating the disk

$$\{(0, y, z) \in \mathbb{R}^3 : (y - a)^2 + z^2 \le b^2\}$$

about the z-axis, where $|b| \leq |a|$. Compute the volume of T.

9. Let $S \subset \mathbb{R}^3$ be the intersection of the cylinders $x^2 + y^2 \leq 1$ and $y^2 + z^2 \leq 1$. Compute its volume.

Date: December 12, 2016.

MATH 248 FALL 2016

10. Let $u(x, y) = \log(x^2 + y^2)$ be defined for $(x, y) \neq (0, 0)$, and let γ be the unit circle oriented counter-clockwise. For any given 1-form $\alpha = f dx + g dy$, define the so-called *Hodge star* operation

$$\star \alpha = g \mathrm{d}x - f \mathrm{d}y$$

Intuitively, $\star \alpha$ is obtained by rotating α by 90°. Compute the line integral $\int_{\gamma} \star du$. 11. Let $(x_k, y_k, q_k) \in \mathbb{R}^3$, k = 1, ..., n, and let

$$u(x,y) = \sum_{k=1}^{n} q_k \log \left((x - x_k)^2 + (y - y_k)^2 \right).$$

Compute the line integral $\int_{\gamma} \star du$, where γ is a counterclockwise-oriented smooth closed curve enclosing the points $(x_1, y_1), \ldots, (x_n, y_n)$, and the Hodge star is defined as in the previous exercise.

12. Let C be the curve of intersection of the cylinder $x^2 + y^2 = 1$ and the surface z = xy + 1, oriented counterclockwise around the cylinder. Compute the line integral

$$\int_C z(x-1)\,\mathrm{d}y + y(x+1)\,\mathrm{d}z.$$

13. Let F(x) = |x|x, where $|x| = \sqrt{x_1^2 + x_2^2 + x_3^2}$. Compute div F, and the volume integral $\int_{B_r} |x| \, \mathrm{d}^3 x,$

where $B_r = \{ x \in \mathbb{R}^3 : |x| < r \}.$

14. Let $E \subset \mathbb{R}^3$ be the solid ellipsoid defined by

$$\frac{x_1^2}{a^2} + \frac{x_2^2}{b^2} + \frac{x_3^2}{c^2} \le 1.$$

For $x \in \partial E$, let $n(x) \in \mathbb{R}^3$ be the outward unit normal to ∂E at x, and let $V(x) \in \mathbb{R}^3$ be a vector field defined by $V(x) = (0, 0, x_3)$. Compute the surface integral

$$\int_{\partial E} V(x) \cdot n(x) \, \mathrm{d}^2 x,$$

where $V \cdot n = V_1 n_1 + V_2 n_2 + V_3 n_3$. Here ∂E denotes the boundary of E, and $d^2 x$ is the surface area element of ∂E .

 $\mathbf{2}$