
LINEAR ALGEBRA

TSOGTGEREL GANTUMUR

Abstract. We review some concepts from linear algebra over R.
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1. Linear mappings and matrices

The basic object here from our perspective is Rn, whose elements are typically written
as x = (x1, . . . , xn). We have the two basic operations x ± y = (x1 ± y1, . . . , xn ± yn) and
λx = (λx1, . . . , λxn), where x, y ∈ Rn and λ ∈ R. Any vector x ∈ Rn can be written as

x = x1e1 + . . .+ xnen, (1)

where the so-called standard basis vectors ek ∈ Rn, k = 1, 2, . . . , n, are defined as

e1 = (1, 0, 0, . . . , 0, 0),

e2 = (0, 1, 0, . . . , 0, 0),

. . . . . .

en = (0, 0, 0, . . . , 0, 1).

(2)

In other words, the i-th component of the vector ek is given by

(ek)i = δik ≡

{
1 for i = k,

0 otherwise.
(3)

Here, the symbol δik is called Kronecker’s delta.
The central concept of linear algebra is that of linear functions (other names include linear

maps, mappings, and transformations). A function F : Rn → Rm is called linear if

F (αx+ βy) = αF (x) + βF (y), (4)

for any scalars α, β ∈ R and vectors x, y ∈ Rn. In this context, Rn and Rm are called the
domain and the codomain of F .

Example 1.1. The identity map id : Rn → Rn defined by id(x) = x, and the map F : R2 → R
defined by F (x1, x2) = x1 − 3x2 are linear.
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Given any x ∈ Rn, by linearity, we infer

F (x) = F (x1e1 + . . .+ xnen) = x1F (e1) + . . .+ xnF (en). (5)

This means that the collection of vectors F (e1), . . . , F (en) ∈ Rm completely determines the
linear map F . Conversely, given a collection of vectors f1, . . . , fn ∈ Rm, the map F : Rn → Rm

defined by

F (x) = x1f1 + . . .+ xnfn, (6)

is linear. Therefore, a linear map F : Rn → Rm can be identified with a collection of n vectors
from Rm. Furthermore, if we denote the i-the component of F (ek) or fk by ai,k, then

[F (x)]i = ai,1x1 + ai,2x2 . . .+ ai,nxn =

n∑
k=1

ai,kxk. (7)

The coefficients ai,k are usually arranged in a rectangular array, as in

A =


a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n
. . . . . . . . . . . .
am,1 am,2 . . . am,n

 , (8)

and the whole collection A is called an m× n matrix. When there is no risk of confusion, we
simply write a11, aik, etc., instead of a1,1 and ai,k. Thus, any m×n matrix generates a linear
map F : Rn → Rm, and any linear map F : Rn → Rm corresponds to an m × n matrix. In
other words, denoting the space of m × n matrices by Rm×n, and the set of all linear maps
between Rn and Rm by L(Rn,Rm), there is an identification L(Rn,Rm) = Rm×n.

Example 1.2. (a) For the identity map id : Rn → Rn, we have id(ek) = ek, k = 1, . . . , n,
and hence the matrix entries are [id(ek)]i = (ek)i = δik. This matrix

I = In×n =


1 0 . . . 0
0 1 . . . 0
. . . . . . . . . . . .
0 0 . . . 1

 , (9)

is called the n× n identity matrix.
(b) For the zero map F : Rn → Rm defined by F (x) = 0 for all x ∈ Rn, the corresponding

matrix will obviously be the m × n matrix whose entries are all 0. This matrix is called
the m× n zero matrix, and denoted by simply 0, or by 0m×n.

(c) For F : R2 → R2 given by F (x1, x2) = (x1 + 3x2,−x1), the corresponding matrix is

A =

(
1 3
0 −1

)
. (10)

(d) For F : R → R2 given by F (t) = (2t, 5t), the corresponding matrix is

A =

(
2
5

)
. (11)

For A,C ∈ Rm×n and λ ∈ R, the operations A ± C and λA are defined in the same way
as for vectors, by identifying Rm×n with Rmn. In addition, a multiplicative operation for
matrices arises in connection with composition of linear maps, as follows. Let F : Rn → Rm

and G : Rℓ → Rn be linear maps. Then the composition F ◦ G : Rℓ → Rm defined by
(F ◦G)(x) = F (G(x)) is linear, because

F
(
G(αx+ βy)

)
= F

(
αG(x) + βG(y)

)
= αF

(
G(x)

)
+ βF

(
G(y)

)
. (12)



LINEAR ALGEBRA 3

Suppose that A = (aij) ∈ Rm×n and B = (bjk) ∈ Rn×ℓ are the matrices corresponding to F
and G, respectively. Then we have

F
(
G(ek)

)
= F (b1ke1 + . . .+ bnken) = b1kF (e1) + . . .+ bnkF (en), (13)

and hence the (i, k)-th entry of the matrix corresponding to F ◦G is

[F
(
G(ek)

)
]i = b1k[F (e1)]i + . . .+ bnk[F (en)]i = ai1b1k + . . .+ ainbnk. (14)

In view of this, we define the product of A and B as the matrix AB ∈ Rm×ℓ, whose entries
are given by

[AB]ik =

n∑
j=1

aijbjk = ai1b1k + . . .+ ainbnk. (15)

Exercise 1.1. Prove that matrix multiplication is associative ((AB)C = A(BC)) and dis-
tributive (A(B +D) = AB +AD), but not commutative in general.

Recall that the components of F (x) for x ∈ Rn is given by (7). In light of the definition of
matrix multiplication, (7) tells us that F (x) is simply the product of the matrices A and x, if
we consider x as an n× 1 matrix, i.e., as a column vector. Thus we define the (matrix-vector)
product between a matrix A ∈ Rm×n and a vector x ∈ Rn as the vector Ax ∈ Rm, whose
components are given by

[Ax]i =

n∑
k=1

aikxk = ai1x1 + . . .+ ainxn. (16)

With this definition at hand, we can write F (x) = Ax for x ∈ Rn.

Remark 1.3. Given a vector x ∈ Rn, we can define the linear map G : R → Rn by G(t) = tx,
so that the matrix of G is an n× 1 matrix with the entries identical to the components of x.
Let us denote the matrix of G by X ∈ Rn×1. Then the matrix of the map F ◦G is AX ∈ Rm×1,
meaning that we have (F ◦ G)(t) = ty for some y ∈ Rm. This vector y is precisely what we
defined as the matrix-vector product Ax.

2. Linear spaces

Given a linear map F : Rn → Rm with the associated matrix A ∈ Rm×n, we define the
range of F or the range of A as

ran(F ) = ran(A) = {Ax : x ∈ Rn} ⊂ Rm. (17)

This set is also called the image of A or of F , or the column space of A. Furthermore, we
define the kernel of F or the kernel of A as

ker(F ) = ker(A) = {x ∈ Rn : Ax = 0} ⊂ Rn, (18)

Other names for this set include the null space of A, and the zero set of F . The range
and the kernel of F contain important structural information on the map F . This can be
gleaned by considering the equation F (x) = b, where b ∈ Rm is given. It is clear that
F (x) = b has a solution if and only if b ∈ ran(F ). Moreover, if F (x) = F (y) = b, then
F (x− y) = F (x)− F (y) = 0, and hence x− y ∈ ker(F ). On the other hand, if F (x) = b and
h ∈ kerF , then F (x+ h) = F (x) + F (h) = b. This means that the extent of non-uniqueness
of the solutions of F (x) = b is precisely measured by the kernel of F . In particular, F (x) = b
has a unique solution if and only if b ∈ ran(F ) and ker(F ) = {0}.

Let x, y ∈ ker(A) and α, β ∈ R. Then we have

A(αx+ βy) = αAx+ βAy = 0, (19)
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that is, αx+ βy ∈ ker(A). Let ξ, η ∈ ran(A), that is, ξ = Ax and η = Ay for some x, y ∈ Rn.
Then for α, β ∈ R, we have

αξ + βη = αAx+ βAy = A(αx+ βy), (20)

that is, αξ + βη ∈ ran(A). The kernel and the range of A are examples of linear spaces.

Definition 2.1. A nonempty subset V ⊂ Rn is called a linear space (or a linear subspace of
Rn) if αx+ βy ∈ V for all x, y ∈ V and α, β ∈ R.

Let us denote the columns of A by A1, . . . , An ∈ Rm. Then for x ∈ Rn, the matrix-vector
product Ax can be written as

Ax = x1A1 + x2A2 + . . .+ xnAn. (21)

In general, the right hand side is called the linear combination of the vectors A1, . . . , An ∈ Rm,
with the coefficients given by x1, . . . , xn ∈ R. Thus the range of A,

ran(A) = {x1A1 + . . .+ xnAn : x ∈ Rn}, (22)

is simply the collection of all possible linear combinations of the columns of A, which explains
the alternative name “column space.” We say that the space ran(A) is generated, or spanned
by the collection {A1, . . . , An}, or simply that ran(A) is equal to the span of {A1, . . . , An},
with the latter defined by

span{A1, . . . , An} = {x1A1 + . . .+ xnAn : x ∈ Rn}. (23)

The first step towards understanding ran(A) is to try to come up with an “efficient” description
of it, by removing redundant vectors from the collection {A1, . . . , An}. In other words, we
want to have a minimal subcollection {V1, . . . , Vk} ⊂ {A1, . . . , An}, with the property that

span{V1, . . . , Vk} = span{A1, . . . , An}. (24)

The vector An can be removed from the collection {A1, . . . , An} without changing its span if
and only if An can be written as a linear combination of the remaining vectors {A1, . . . , An−1},
that is, if and only if there exist numbers x1, . . . , xn−1 ∈ R such that

An = x1A1 + . . .+ xn−1An−1. (25)

We see that some vector Ai can be removed from the collection {A1, . . . , An} without changing
its span if and only if there exist numbers x1, . . . , xn ∈ R, not all equal to 0, such that

x1A1 + . . .+ xnAn = 0. (26)

In terms of A, the latter condition is the same as ker(A) ̸= {0}. This also means that we
cannot remove any vector from the collection {V1, . . . , Vk} without changing its span if and
only if the only way for the equality

x1V1 + . . .+ xkVk = 0, (27)

to hold is to have x1 = . . . = xk = 0. If we form the matrix V ∈ Rm×k with the vectors
V1, . . . , Vk as columns, then the latter condition means that ker(V ) = {0}.

Definition 2.2. A set {V1, . . . , Vk} ⊂ Rm is called linearly independent if

x1V1 + . . .+ xkVk = 0 implies x1 = . . . = xk = 0. (28)

It is called linearly dependent if there exists x ∈ Rk \ {0} with x1V1 + . . .+ xkVk = 0.

By convention, the empty set is linearly independent.

Definition 2.3. A basis of a linear space X is a linearly independent set that spans X.

If {V1, . . . , Vk} is a basis of X, then we have the following characteristic properties.
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• Any x ∈ X can be written as

x = ξ1V1 + . . .+ ξkVk, (29)

for some ξ ∈ Rk, because {V1, . . . , Vk} spans X.
• This expansion is unique, in the sense that if

ξ1V1 + . . .+ ξkVk = η1V1 + . . .+ ηkVk, (30)

for ξ, η ∈ Rk, then ξ = η. The reason is that we can write the preceding equality as

(ξ1 − η1)V1 + . . .+ (ξk − ηk)Vk = 0, (31)

which implies ξ = η by linear independence.

Example 2.4. (a) With the empty set considered as a subset of a linear space X, we have∑
x∈∅ x = 0 by convention, so the empty set is a basis of the trivial vector space {0}.

(b) The set {e1, e2, . . . , en} ⊂ Rn is a basis of Rn, and called the standard basis of Rn.

Example 2.5. Consider the matrix

A =

1 0 1
0 1 1
2 5 7

 , (32)

so that A1 = (1, 0, 2), A2 = (0, 1, 5), and A3 = (1, 1, 7). Since A1 + A2 − A3 = 0, we can
express any of A1, A2 and A3 in terms of the other two.

(a) Let us remove A3, and consider the resulting collection {A1, A2}. This is linearly inde-
pendent, because the first two components of the equation αA1 + βA2 = 0 already imply
α = β = 0. Thus we have

ran(A) = span{A1, A2}, (33)

and the collection {A1, A2} cannot be reduced any further, meaning that {A1, A2} is a
basis of ran(A).

(b) Let us remove A1, and consider the resulting collection {A2, A3}. This is linearly inde-
pendent, because the first two components of the equation αA2+βA3 = 0 give β = 0 and
α+ β = 0, yielding α = β = 0. Thus {A2, A3} is a basis of ran(A).

Suppose that we started with the collection {A1, . . . , An}, and by removing redundant
vectors one after another, we ended up with the subcollection {V1, . . . , Vk} that is a basis of
ran(A). We have seen in Example 2.5 that different choices in the intermediate steps can result
in a different subcollection, say, {W1, . . . ,Wr} ⊂ {A1, . . . , An}. It is also conceivable that a
basis {W1, . . . ,Wr} of ran(A) that is not necessarily a subcollection of {A1, . . . , An} can be
obtained by some other means. In any case, we prove below that the number of elements in a
basis is a quantity that depends only on the linear space itself, rather than on what particular
vectors we have in the basis. Thus in our situation, it is necessarily true that r = k.

We first prove the following fundamental result.

Theorem 2.6 (Steinitz exchange lemma). Let {V1, . . . , Vk} ⊂ Rn be a linearly independent
set, and let {W1, . . . ,Wr} ⊂ Rn be such that V1, . . . , Vk ∈ span{W1, . . . ,Wr}. Then k ≤ r,
and after a possible reordering of the set {W1, . . . ,Wr}, we have

span{W1, . . . ,Wr} = span{V1, . . . , Vk,Wk+1, . . . ,Wr}. (34)

Proof. Since V1 ∈ Y := span{W1, . . . ,Wr}, we can write

V1 = α1W1 + . . .+ αrWr. (35)
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If α1 = . . . = αr = 0, then V1 = 0, which would contradict the fact that {V1} is linearly
independent. Hence there is at least one nonzero coefficient among α1, . . . , αr. Without loss
of generality, let α1 ̸= 0. Then we have

W1 =
1
α1
V1 − α2

α1
W2 − . . .− αr

α1
Wr, (36)

and hence Y = span{V1,W2, . . . ,Wr}. Thus, we can write

V2 = α1V1 + α2W2 + . . .+ αrWr, (37)

with the coefficients α1, . . . , αr having (possibly) new values. If α2 = . . . = αr = 0, then
V2 = α1V1, which would contradict the fact that {V1, V2} is linearly independent. Therefore
there is at least one nonzero coefficient among α2, . . . , αr. Without loss of generality, let
α2 ̸= 0. Then we have

W2 = −α1
α2
V1 +

1
α2
V2 − α3

α2
W3 − . . .− αr

α2
Wr, (38)

and hence Y = span{V1, V2,W3, . . . ,Wr}. We can repeat this process, and end up with the
conclusion Y = span{V1, . . . , Vk,Wk+1, . . . ,Wr}, which also shows that k ≤ r. □

By applying the preceding theorem with {W1, . . . ,Wr} given by the standard basis {e1, . . . , en}
of Rn, we get the following important corollary.

Corollary 2.7 (Basis completion). Let {V1, . . . , Vk} ⊂ Rn be a linearly independent set. Then
there exist vectors Vk+1, . . . , Vn ∈ Rn such that span{V1, . . . , Vn} = Rn.

In the Theorem2.6, if {W1, . . . ,Wr} is a basis of span{V1, . . . , Vk}, we can switch the roles
of {V1, . . . , Vk} and {W1, . . . ,Wr} in the entire argument, and get r ≤ k as well.

Corollary 2.8 (Dimension theorem). Let {V1, . . . , Vk} ⊂ Rn and {W1, . . . ,Wr} ⊂ Rn be
linearly independent sets such that span{V1, . . . , Vk} = span{W1, . . . ,Wr}. Then k = r.

This corollary motivates the following definition.

Definition 2.9. If a linear space X has a basis with k elements, we call k the dimension of
X, and write k = dimX.

Example 2.10. (a) We have dim{0} = 0.
(b) For A from Example 2.5, we have dim ran(A) = 2.
(c) Since the standard basis {e1, e2, . . . , en} ⊂ Rn has n elements, we have dimRn = n.
(d) If X ⊂ Rn is a linear space and k = dimX, then Corollary 2.7 implies that k ≤ n.

Intuitively, dimX is the number of degrees of freedom in X, or how many “free variables”
we need in order to describe a point in X. At this point, dimX is defined only when X admits
a basis. However, the following result guarantees that this does not pose any restriction.

Theorem 2.11 (Basis theorem). Every linear space X ⊂ Rn admits a basis.

Proof. Since the empty set is a basis of {0}, we can assume that X ̸= {0}. Hence there
is a vector V1 ∈ X with V1 ̸= 0. If X = span{V1}, we are done. If X ̸= span{V1}, then
there is a vector V2 ∈ X with V2 ̸∈ span{V1}. Suppose that we continued this process, and
got X = span{V1, V2, . . . , Vk} for some k. By construction, the set {V1, V2, . . . , Vk} is linearly
independent, and so this set is a basis ofX. Anticipating a contradiction, now suppose that we
never get X = span{V1, V2, . . . , Vk} for any k, so that we have an infinite sequence of vectors
V1, V2, . . . in X. By construction, {V1, . . . , Vn+1} is linearly independent, and so dimY = n+1
for Y = span{V1, . . . , Vn+1}. However, since Vi ∈ Rn for all i, we have Y ⊂ Rn, implying that
dimY ≤ n, a contradiction. □
Exercise 2.1. Let X ⊂ Rn and Y ⊂ Rn be linear spaces satisfying dimX = dimY and
X ⊂ Y . Show that X = Y .
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3. The rank-nullity theorem

Our quest for understanding the range and the kernel of a matrix A ∈ Rm×n has lead
us to the concepts of linear spaces, linear independence, span, basis, and eventually to the
dimension theorem. With these concepts at hand, we now want to get back to the study
of ran(A) and ker(A) proper. In the preceding section, we have encountered the following
argument. Denoting the columns of A by A1, . . . , An ∈ Rm, the columns of A are linearly
independent if and only if the equality

Ax = x1A1 + x2A2 + . . .+ xnAn = 0, (39)

implies x1 = . . . = xn = 0. In other words, dim ran(A) = n if and only if ker(A) = {0}. This
suggests that there might be some law relating the dimensions of ran(A) and ker(A).

Suppose that the columns A1, . . . , An are linearly dependent, and that we remove redundant
columns one by one to get a basis of ran(A). Let us consider the first step of this process.
Thus without loss of generality, we assume that

α1A1 + α2A2 + . . .+ αnAn = 0, (40)

with α1 = 1. Taking this into account, we infer that x ∈ ker(A) if and only if

x1A1 + x2A2 + . . .+ xnAn = (x2 − α2x1)A2 + . . .+ (xn − αnx1)An = 0. (41)

Let us denote by A′ the matrix consisting of the columns A2, . . . , An, that is, the matrix that
results from removing the column A1 from A. Recall that ran(A) = ran(A′) by construction.
By the aforementioned argument, we also have

x ∈ ker(A) ⇐⇒

x2 − α2x1
. . .

xn − αnx1

 ∈ ker(A′). (42)

Hence in order to specify an arbitrary element x ∈ ker(A), we can choose x1 ∈ R freely,
and then choose the remaining components x2, . . . , xn so that the second inclusion in (42)
holds. This suggests that dimker(A) = dimker(A′) + 1. To make this argument absolutely
convincing, let W1, . . . ,Wr ∈ Rn−1 be a basis of ker(A′), and define V0, V1, . . . , Vr ∈ Rn by

V0 =


1
α2

. . .
αn

 , V1 =


0

[W1]1
. . .

[W1]n−1

 , . . . , Vr =


0

[Wr]1
. . .

[Wr]n−1

 , (43)

where [Wi]j denotes the j-th component of the vector Wi ∈ Rn−1. Basically, what we have is
V0 = α and Vi = (0,Wi) for i = 1, . . . , r. The set {V0, V1, . . . , Vr} is linearly independent, and
AVi = 0 for i = 0, . . . , r. The latter implies that span{V0, V1, . . . , Vr} ⊂ ker(A). Moreover, if
x ∈ ker(A), then by (42), for some coefficients β1, . . . , βr ∈ R, we havex2 − α2x1

. . .
xn − αnx1

 = β1W1 + . . .+ βrWr, (44)

or, equivalently,x2
. . .
xn

 = β0

α2

. . .
αn

+ β1W1 + . . .+ βrWr with β0 = x1. (45)

This precisely means that x ∈ span{V0, V1, . . . , Vr}, and hence {V0, V1, . . . , Vr} is a basis of
ker(A). We conclude that

dimker(A) = r + 1 = dimker(A′) + 1. (46)
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Suppose now that we started with A(0) = A, and removed redundant columns one by one to get
a sequence of matrices A(0), A(1), . . . , A(k), with A(k) ∈ Rm×(n−k) having linearly independent
columns. Since ran(A(k)) = ran(A), we have dim ran(A) = n− k. On the other hand, as A(k)

has linearly independent columns, its kernel is trivial, and so (46) yields

dimker(A) = dimker(A(1)) + 1 = . . . = dimker(A(k)) + k = k. (47)

This, at last, gives the sought relationship between dim ran(A) and dimker(A), which turns
out to be the following beautiful equality:

dim ran(A) + dimker(A) = n. (48)

We did not spend much work to prove it, but it is one of most important results from linear
algebra, called the rank-nullity theorem. The name is explained by the following terminology.

Definition 3.1. The rank and the nullity of a matrix A ∈ Rm×n are the dimension of its
range and of its kernel, respectively, and they are denoted by

rank(A) = dim ran(A), nullity(A) = dimker(A). (49)

Let us state (48) in terms of rank and nullity.

Theorem 3.2 (Rank-nullity theorem). For A ∈ Rm×n, we have

rank(A) + nullity(A) = n. (50)

This theorem can be very powerful, because it reduces the complexity of studying two quan-
tities into that of studying either of those quantities. We will see many important applications
in what follows.

4. Invertible matrices

Let F : Rn → Rm be a linear mapping, with the associated matrix A ∈ Rm×n. If for every
ξ ∈ Rm there exists a unique x ∈ Rn satisfying F (x) = ξ, then we say that F is invertible, and
call the map F−1 : ξ 7→ x the inverse of F . As we have discussed in the preceding section,
F is invertible if and only if ran(F ) = Rm and ker(F ) = {0}. By the rank-nullity theorem,
this implies that m + 0 = n, or m = n. In other words, for a linear map to be invertible,
the domain and the codomain spaces must have the same dimensions. Once m = n has been
established, we see that the invertibility of F : Rn → Rn is equivalent to either (and hence
both) of the conditions rank(A) = n and nullity(A) = 0.

Let F : Rn → Rn be invertible. Then by definition, we have F (F−1(ξ)) = ξ for all ξ ∈ Rm.
Furthermore, for each x ∈ Rn, we have F−1(F (x)) = x, because F (y) = F (x) implies y = x.
Hence for ξ, η ∈ Rn and α, β ∈ R, we have

αξ + βη = αF (x) + βF (y) = F (αx+ βy), (51)

where x = F−1(ξ) and y = F−1(η), implying that

F−1(αξ + βη) = αF−1(ξ) + βF−1(η). (52)

This means that the inverse map F−1 : Rn → Rn is also linear. The matrix associated to
F−1 is called the inverse of A, and denoted by A−1 ∈ Rn×n. Since we have F ◦F−1 = id and
F−1 ◦ F = id, the inverse matrix satisfies

AA−1 = I and A−1A = I. (53)

Remark 4.1. Suppose that A,B ∈ Rn×n satisfy AB = I. This means that ABy = y for all
y ∈ Rn, and hence ran(A) = Rn or rank(A) = n. Therefore, the map F : Rn → Rn associated
to A is invertible. Moreover, (53) implies that the matrix of the inverse map is given by
A−1 = B, and that BA = I. We can apply the same argument to the equality BA = I, and
infer that B−1 = A.
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This justifies the following definition.

Definition 4.2. A matrix A ∈ Rn×n is called invertible, if there exists B ∈ Rn×n satisfying
either (and hence both) of the conditions AB = I and BA = I. In this context, the matrix
B is called the inverse of A, and denoted by A−1 = B.

We have previously defined A−1 as the matrix associated to the inverse map of F (x) = Ax.
In view of Remark 4.1, this is equivalent to how we defined A−1 in Definition 4.2. Moreover,
Remark 4.1 also implies that if a matrix is invertible, its inverse is unique.

Theorem 4.3. Let A ∈ Rn×n. Then the following are equivalent.

• A is invertible.
• ran(A) = Rn, or rank(A) = n.
• ker(A) = {0}, or nullity(A) = 0.

Proof. We have actually proved this theorem in the earlier paragraphs of the current section,
but we include a proof here for convenience. Suppose that A is invertible, i.e., there is
B ∈ Rn×n such that AB = I. This implies that ran(A) = Rn. If ran(A) = Rn, then by the
rank-nullity theorem, we have ker(A) = {0}.

Finally, suppose that ker(A) = {0}. We need to show that A is invertible. First of all, the
rank-nullity theorem gives ran(A) = Rn, meaning that for any ξ ∈ Rn, there is x ∈ Rn such
that Ax = ξ. In order to show that x is unique, let Ay = Ax, that is, A(x − y) = 0. Since
ker(A) = {0}, we get x− y = 0 or y − x. Thus, for any ξ ∈ Rn, there exists a unique x ∈ Rn

such that Ax = ξ. Therefore, the map F : Rn → Rn defined by F (x) = Ax is invertible. □

Example 4.4. Let A = (aik) ∈ Rn×n be a matrix satisfying the condition∑
k ̸=i

|aik| < |aii|, i = 1, . . . , n. (54)

We want to show that ker(A) = {0}, and therefore A is invertible. Let x ∈ Rn with x ̸= 0,
and let y = Ax. Pick an index i such that |xi| ≥ |xk| for all k = 1, . . . , n. Then we have

yi =

n∑
k=1

aikxk, or aiixi = yi −
n∑

k ̸=i

aikxk. (55)

This implies that

|aii||xi| ≤ |yi|+
n∑

k ̸=i

|aik||xk| ≤ |yi|+ |xi|
n∑

k ̸=i

|aik| (56)

and so

|yi| ≥ |xi|
(
|aii| −

n∑
k ̸=i

|aik|
)
> 0. (57)

We conclude that Ax ̸= 0 whenever x ̸= 0, meaning that ker(A) = {0}. To take a concrete
example, we can immediately see that

A =


4 1 1 1
0 3 1 −1
3 −1 −5 0
2 −2 1 6

 , (58)

is invertible.
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5. Duality

Our study of matrices gained a lot from writing the matrix-vector product Ax as

Ax = x1A1 + x2A2 + . . .+ xnAn, (59)

where A1, . . . , An ∈ Rm are the columns of the matrix A ∈ Rm×n, and x ∈ Rn. Then a
natural question is: What if we think of a matrix as a collection of its rows, rather than a
collection of columns? This question will lead us to uncover a whole new structure known as
duality. Let A ∈ Rm×n, and let α1, . . . , αm ∈ R1×n be the rows of A. Then we can write

Ax =

α1x
. . .
αmx

 . (60)

The elements of R1×n are called row vectors.

Remark 5.1. It is convenient to introduce the notation Rn∗ = R1×n, and think of the
elements of Rn∗ as n-tuples ξ = (ξ1, . . . , ξn) that behave like 1 × n matrices with respect to
matrix-matrix and matrix-vector multiplication operations. That is, we have

[ξB]k = ξ1b1k + . . .+ ξnbnk, and ξx = ξ1x1 + . . .+ ξnxn, (61)

for ξ ∈ Rn∗, B = (bik) ∈ Rn×m, and x ∈ Rn. A more abstract point of view is that the space
Rn∗ is the set of all linear maps f : Rn → R. Thus (60) is simply the decomposition of a
linear map F : Rn → Rm into its components, as in F (x) = (f1(x), . . . , fm(x)).

Remark 5.2. Given a matrix

B =


b1,1 b1,2 . . . b1,n
b2,1 b2,2 . . . b2,n
. . . . . . . . . . . .
bm,1 bm,2 . . . bm,n

 ∈ Rm×n, (62)

we define its transpose as

BT =


b1,1 b2,1 . . . bm,1

b1,2 b2,2 . . . bm,2

. . . . . . . . . . . .
b1,n b2,n . . . bm,n

 ∈ Rn×m. (63)

For example, we have(
1 0
2 3

)T

=

(
1 2
0 3

)
,

(
3
2

)T

=
(
3 2

)
, and

(
5 7

)T
=

(
5
7

)
. (64)

In particular, under transposition, row vectors become column vectors and vice versa.

Exercise 5.1. Show that (AB)T = BTAT for A ∈ Rm×n and B ∈ Rn×k.

The first thing to notice from (60) is that x ∈ ker(A) if and only if αix = 0 for all
i = 1, . . . ,m. In other words, x ∈ ker(A) if and only if ξx = 0 for all ξ ∈ coran(A), where

coran(A) = {η1α1 + . . .+ ηmαm : η1, . . . , ηm ∈ R} ⊂ Rn∗, (65)

is called the corange of A (also called the coimage of A, or the row space of A). Since the
rows of A are the columns of AT, the corange of A is basically the range of A:

ξ ∈ coran(A) ⇐⇒ ξT ∈ ran(AT). (66)

In particular, the dimension of coran(A), or the row-rank of A, is equal to the rank of AT.
Furthermore, we define the cokernel of A, or the left-null space of A, by

coker(A) = {η ∈ Rm∗ : ηA = 0} ⊂ Rm∗. (67)
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As (ηA)T = ATηT, we have the following characterization

η ∈ coker(A) ⇐⇒ ηT ∈ ker(AT), (68)

that is, the cokernel of A is the kernel of AT under transposition. In particular, the dimension
of coker(A), or the left-nullity of A, is equal to the nullity of AT. Then the rank-nullity
theorem applied to AT yields

dim coran(A) + dim coker(A) = m. (69)

With A1, . . . , An being the columns of A, we can write

ηA = (ηA1, . . . , ηAn), (70)

implying that η ∈ coker(A) if and only if ηx = 0 for all x ∈ ran(A).
Since Rn∗ is really a space of n-tuples, it makes sense to talk about linear subspaces of Rn∗.

Namely, a nonempty subset V ⊂ Rn∗ is called a linear space (or a linear subspace of Rn∗) if
λξ + µη ∈ V for all ξ, η ∈ V and λ, µ ∈ R. In light of this definition, we see that coran(A) is
a linear subspace of Rn∗, and coker(A) is a linear subspace of Rm∗.

Definition 5.3. Given a linear subspace V ∈ Rn, the annihilator of V is

V ◦ = {ξ ∈ Rn∗ : ξx = 0 for all x ∈ V }. (71)

Similarly, for a linear subspace W ∈ Rn∗, the annihilator of W is

W ◦ = {x ∈ Rn : ξx = 0 for all ξ ∈ W}. (72)

Both V ◦ and W ◦ are linear spaces, and we have V ◦◦ = V and W ◦◦ = W . The following
result was derived earlier in this section, which we restate in terms of annihilators.

Theorem 5.4 (Corange and cokernel). For any matrix A ∈ Rm×n, we have

coran(A) = ker(A)◦, and coker(A) = ran(A)◦. (73)

The following theorem is of fundamental importance.

Theorem 5.5 (Row rank equals column rank). For any matrix A ∈ Rm×n, we have

dim coran(A) = dim ran(A). (74)

Proof. Let rank(A) = k, and let B1, . . . , Bk ∈ Rm be a basis of ran(A). Then any column Ai

of A can be written as

Ai = ci1B1 + . . .+ cikBk = BCi, (75)

where Ci = (ci1, . . . , cik) ∈ Rk, and B ∈ Rm×k is the matrix with B1, . . . , Bk as its columns.
In other words, we have

A = BC, (76)

where C ∈ Rk×n is the matrix with C1, . . . , Cn as its columns. Denoting by α1, . . . , αm ∈ Rn∗

the rows of A, then we infer

αj = bj1γ1 + . . .+ bjkγk, (77)

where bjℓ are the entries of B, and γ1, . . . , γk ∈ Rn∗ are the rows of C. This implies that
coran(A) ⊂ span{γ1, . . . , γk}, and hence dim coran(A) ≤ k by the Steinitz exchange lemma.

Now we apply the preceding argument to AT, and infer that dim coran(AT) ≤ dim ran(AT).
Since dim coran(AT) = dim ran(ATT) = dim ran(A) = k and dim ran(AT) = dim coran(A),
we get k ≤ dim coran(A), completing the proof. □
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6. Determinants

As linear independence is such an important concept, it would be convenient if we were
able to detect whether or not a set of vectors is linearly independent simply by computing
a function of the vectors. That is, it would be great if we had a function ω of k arguments
V1, . . . , Vk ∈ Rn, with the property that

ω(V1, . . . , Vk) = 0 ⇐⇒ {V1, . . . , Vk} is linearly dependent. (78)

From the outset, we restrict ourselves to the linear setting. Thus, we look for a function

ω : Rn × . . .× Rn︸ ︷︷ ︸
k times

→ R, (79)

that is linear in each of its arguments, meaning that

ω(. . . , Vi−1, λV +µW,Vi+1, . . .) = λω(. . . , Vi−1, V, Vi+1, . . .)+µω(. . . , Vi−1,W, Vi+1, . . .), (80)

for all V1, . . . , Vk, V,W ∈ Rn, and λ, µ ∈ R. Such functions are called multilinear or k-linear
forms. Since we want ω(V1, . . . , Vk) to be zero if {V1, . . . , Vk} is linearly dependent, a minimal
requirement would be to have it zero when Vi = Vj for some i ̸= j, i.e.,

ω(. . . , V, . . . , V, . . .) = 0 for any V ∈ Rn. (81)

Multilinear forms satisfying (81) are called alternating k-linear forms.

Example 6.1. The requirement (81) is vacuous when k = 1, and therefore any linear function
ω : Rn → R is an alternating 1-linear form (or simply linear form). An example of an
alternating 2-linear form (or bilinear form) in R3 is given by ω(V,W ) = v1w3 − v3w1 for
V = (v1, v2, v3) ∈ R3 and W = (w1, w2, w3) ∈ R3. With this form, note that even though the
vectors ξ = (1, 0, 0) and η = (0, 1, 0) are linearly independent, we have ω(ξ, η) = 0. However,
ω̃(V,W ) = v1w2 − v2w1 is an alternating bilinear form in R3 with ω̃(ξ, η) = 1.

Remark 6.2. The preceding example shows that even though {V,W} is linearly independent,
we can have ω(V,W ) = 0 for some nontrivial alternating bilinear form ω. In other words,
there might not be a single alternating k-linear form ω that can detect linearly independent
vectors as in (78). However, it turns out that the collection of all alternating k-linear forms
is adequate for the task. Suppose that {V1, . . . , Vk} is a linearly dependent set, and let ω be
an alternating k-linear form. Without loss of generality, assume that V1 = α2V2 + . . .+αkVk.
Then we have

ω(V1, V2, . . . , Vk) = α2ω(V2, V2, . . . , Vk) + . . .+ αkω(Vk, V2, . . . , Vk) = 0, (82)

implying that if {V1, . . . , Vk} linearly dependent, then ω(V1, V2, . . . , Vk) = 0 for any alter-
nating k-linear form ω. In the other direction, we will show later in Theorem6.5 that if
{V1, . . . , Vk} is linearly independent, then there is at least one alternating k-linear form ω
such that ω(V1, V2, . . . , Vk) ̸= 0.

When combined with multilinearity, (81) implies an antisymmetry condition as follows.
With the notation α(V,W ) = ω(. . . , V +W, . . . , V +W, . . .), we have

α(V +W,V +W ) = α(V, V ) + α(V,W ) + α(W,V ) + α(W,W )

= α(V, V ) + α(W,W ),
(83)

implying that ω is antisymmetric in each pair of its arguments:

ω(. . . , V, . . . ,W, . . .) + ω(. . . ,W, . . . , V, . . .) = 0 for any V,W ∈ Rn. (84)

Exercise 6.1. Show that if ω as in (79) is linear in its first argument, and if it satisfies the
antisymmetry condition (84), then ω is an alternating k-linear form.
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Let ω be an alternating k-linear form, and define the coefficients

ωi1...ik = ω(ei1 , . . . , eik), i1, . . . , ik = 1, . . . , n, (85)

where ej ∈ Rn are the standard basis vectors. If Vi = vi1e1 + . . .+ vinen for i = 1, . . . , k, then

ω(V1, . . . , Vk) = ω
( n∑

i1=1

v1i1ei1 , . . . ,

n∑
ik=1

vkikeik

)
=

n∑
i1,...,ik=1

ωi1...ikv1i1 · · · vkik , (86)

meaning that the coefficients {ωi1...ik} determine the multilinear form ω completely. Further-
more, the antisymmetry condition (84) implies

ω...i...j... = ω(. . . , ei, . . . , ej , . . .),= −ω(. . . , ej , . . . , ei, . . .) = −ω...j...i..., (87)

that is, ωi1...ik is antisymmetric in each pair of its indices. In particular, we have ωi1...ik = 0
whenever ia = ib for a ̸= b.

Now suppose that {ωi1...ik : i1, . . . , ik = 1, . . . , n} is a collection of coefficients satisfying

ω...i...j... = −ω...j...i.... (88)

Then ω : Rn × . . .× Rn → R defined by

ω(V1, . . . , Vk) =

n∑
i1,...,ik=1

ωi1...ikv1i1 · · · vkik , (89)

is an alternating k-linear form. Thus we have established a one-to-one correspondence between
alternating k-linear forms and the coefficients {ωi1...ik : i1, . . . , ik = 1, . . . , n} satisfying (88).
At this juncture, a crucial question is if and “how many” nontrivial alternating k-linear forms
exist. The set of all possible coefficients {ωi1...ik : i1, . . . , ik = 1, . . . , n} is the same as Rnk,
but the conditions (88) significantly reduce the possibilities. Namely, by permuting indices
and using (88), all coefficients can be expressed only in terms of the coefficients ωi1...ik with
i1 < i2 < . . . < ik. For example, all alternating 2-linear forms in R3 can be generated by
specifying the three coefficients ω12, ω13, and ω23, which yields

ω(V,W ) =

n∑
i,j=1

ωijviwj = ω12(v1w2 − v2w1) + ω13(v1w3 − v3w1) + ω23(v2w3 − v3w2). (90)

In general, the dimension of {ωi1...ik ∈ R : 1 ≤ i1 < i2 < . . . < ik ≤ n} is
(
n
k

)
= n!

k!(n−k)! .

A particular case of interest is alternating n-linear forms in Rn, where we have only one
independent component in the coefficients ωi1...in , because there is only one possibility to have
n integers satisfying 1 ≤ i1 < i2 < . . . < in ≤ n. Thus, if (i1, . . . , in) is an even permutation
of (1, . . . , n), then ωi1...in = ω1...n, and if (i1, . . . , in) is an odd permutation of (1, . . . , n),
then ωi1...in = −ω1...n. In other words, taking into account that ω1...n = ω(e1, . . . , en), any
alternating n-linear form can be written as

ω(V1, . . . , Vn) = ω(e1, . . . , en)

n∑
i1,...,in=1

sign(i1, . . . , in) v1i1 · · · vnin , (91)

where

sign(i1, . . . , in) =


1 if (i1, . . . , in) is an even permutation of (1, . . . , n),

−1 if (i1, . . . , in) is an odd permutation of (1, . . . , n),

0 if (i1, . . . , in) is not a permutation of (1, . . . , n).

(92)

For example, we have sign(1, 2) = 1, sign(2, 1) = −1, and sign(1, 1) = sign(2, 2) = 0. In light
of (91), the condition ω(e1, . . . , en) = 1 uniquely defines an alternating n-linear form, the
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form called the n-dimensional determinant:

det(V1, . . . , Vn) =

n∑
i1,...,in=1

sign(i1, . . . , in) v1i1 · · · vnin . (93)

The determinant is customarily thought of as an n-linear form applied to the columns of an
n× n matrix, and written as

det(B) =

n∑
i1,...,in=1

sign(i1, . . . , in) bi11 · · · binn, B = (bik) ∈ Rn×n. (94)

Example 6.3. For 1× 1 matrices, we have det(b) = b. The 2-dimensional determinant is

det

(
b11 b12
b21 b22

)
= sign(1, 1)b11b12 + sign(1, 2)b11b22 + sign(2, 1)b21b12 + sign(2, 2)b21b22

= b11b22 − b21b22 = b11 det(b22)− b21 det(b22).

(95)

Furthermore, the 3-dimensional case is

det

b11 b12 b13
b21 b22 b23
b31 b32 b33

 = b11b22b33 − b11b32b23 − b21b12b33

+ b21b32b13 + b31b12b23 − b31b22b13

= b11(b22b33 − b32b23)− b21(b12b33 − b32b13) + b31(b12b23 − b22b13)

= b11 det

(
b22 b23
b32 b33

)
− b21 det

(
b12 b13
b32 b33

)
+ b31 det

(
b12 b13
b22 b23

)
.

(96)

Example 6.4. Let B ⊂ Rn×n be an upper triangular matrix, in the sense that bik = 0
whenever i > k. This means that the indices of the nonzero terms in the sum (94) must
satisfy ik ≤ k. Since the only permutation (i1, . . . , in) of (1, . . . , n) with ik ≤ k is (1, . . . , n),
the determinant of a triangular matrix equals the product of the entries on the main diagonal:

det(B) = b11b22 · · · bnn. (97)

Exercise 6.2. Show that det(A) = det(AT).

The property (91) can now be rephrased as

ω(V1, . . . , Vn) = ω(e1, . . . , en) det(V1, . . . , Vn), (98)

for any alternating n-linear form ω. An important application of this is as follows. Given any
matrix A ∈ Rn×n, the formula

ω(V1, . . . , Vn) = det(AV1, . . . , BVn), (99)

defines an alternating n-linear form, with ω(e1, . . . , en) = det(A). Hence by (98), we infer

det(AV1, . . . , AVn) = det(A) det(V1, . . . , Vn), (100)

or simply

det(AB) = det(A) det(B), (101)

for any A,B ∈ Rn×n.

Exercise 6.3. Show that if A is invertible, then det(A−1) = 1
det(A) .

Theorem 6.5. A set {V1, . . . , Vk} of vectors in Rn is linearly dependent if and only if
ω(V1, . . . , Vk) = 0 for any alternating k-linear form ω.
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Proof. We have shown in Remark 6.2 that if {V1, . . . , Vk} is a linearly dependent set and if ω is
any alternating k-linear form, then ω(V1, . . . , Vk) = 0. In the other direction, let {V1, . . . , Vk}
be a linearly independent set. We want to show that there is at least one alternating k-linear
form ω such that ω(V1, . . . , Vk) ̸= 0. We invoke Corollary 2.7 into complete the set {V1, . . . , Vk}
to a basis {V1, . . . , Vn} of Rn. This basis defines the invertible linear map F : Rn → Rn as

F (x) = x1V1 + . . .+ xnVn, (102)

and the inverse F−1 is the map that sends

W = x1V1 + . . .+ xnVn, (103)

to the coefficient vector x ∈ Rn. Let A ∈ Rn×n be the matrix associated to F−1, and let
B ∈ Rk×n be the matrix formed by the first k rows of A. In other words, BW ∈ Rk is equal
to the vector (x1, . . . , xk) in column format, for W ∈ Rn. Finally, we let

ω(W1, . . . ,Wk) = det(BW1, . . . , BWk), (104)

which defines an alternating k-linear form in Rn. Then we have

ω(V1, . . . , Vk) = det(BV1, . . . , BVk) = det(e1, . . . , ek) = 1, (105)

where {e1, . . . , ek} is the standard basis of Rk. □
Since up to scaling, the determinant is the only alternating n-linear form in Rn, in view of

the preceding theorem, we conclude that the columns of A ∈ Rn×n is linearly independent if
and only if det(A) ̸= 0. In other words, A is invertible if and only if det(A) ̸= 0.

Corollary 6.6. A matrix is invertible if and only if its determinant is nonzero.

Determinants do not only give us a way to check if a matrix invertible, but also are able
to provide an explicit formula for the inverse matrix. Let A ∈ Rn×n be invertible, let b ∈ Rn,
and consider the equation Ax = b, which can be written as

Ax = x1A1 + x2A2 + . . .+ xnAn = b, (106)

where A1, . . . , An ∈ Rn are the columns of A. Since A is invertible, there exists a unique
solution x = A−1b ∈ Rn. We want to derive an explicit formula for the entries of x. To this
end, invoking the properties of the determinant, we compute

det(b, A2, . . . , An) = det(x1A1 + . . .+ xnAn, A2, . . . , An) = x1 det(A1, A2, . . . , An)

= x1 det(A),
(107)

which yields

x1 =
det(b, A2, . . . , An)

det(A)
. (108)

This argument can be generalized as

det(. . . , Ai−1, b, Ai+1, . . .) = det(. . . , Ai−1, x1A1 + . . .+ xnAn, Ai+1, . . .)

= xi det(. . . , Ai−1, Ai, Ai+1, . . .) = xi det(A),
(109)

leading to the so-called Cramer’s rule

xi =
det(. . . , Ai−1, b, Ai+1, . . .)

det(A)
, i = 1, . . . , n. (110)

To compute the entries of A−1, we start with the observation that AC = I means ACk = ek,
k = 1, . . . , n, where Ck ∈ Rn is the k-th column of C = A−1, and ek is the k-th standard basis
vector in Rn. Thus Cramer’s rule yields

cik =
det(. . . , Ai−1, ek, Ai+1, . . .)

det(A)
, i, k = 1, . . . , n, (111)
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for the entries of C. We define the adjugate of A, as the matrix adj(A) ∈ Rn×n whose (i, k)-th
entry is given by

det(. . . , Ai−1, ek, Ai+1, . . .). (112)

Then we have
det(A)A−1 = adj(A). (113)
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