
INTRODUCTION TO MANIFOLDS

TSOGTGEREL GANTUMUR

Abstract. We discuss manifolds embedded in Rn and the implicit function theorem.
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1. Differentiable curves

Intuitively, a differentiable curves is a curve with the property that the tangent line at each
of its points can be defined. To motivate our definition, let us look at some examples.

Example 1.1. (a) Consider the function γ : (0, π) → R2 defined by

γ(t) =

(
cos t
sin t

)
. (1)

As t varies in the interval (0, π), the point γ(t) traces out the curve

C = [γ] ≡ {γ(t) : t ∈ (0, π)} ⊂ R2, (2)

which is a semicircle (without its endpoints). We call γ a parameterization of C. If γ(t)
represents the coordinates of a particle in the plane at time t, then the “instantaneous
velocity vector” of the particle at the time moment t is given by

γ′(t) =

(
− sin t
cos t

)
. (3)

Obviously, γ′(t) ̸= 0 for all t ∈ (0, π), and γ is smooth (i.e., infinitely often differentiable).
The direction of the velocity vector γ′(t) defines the direction of the line tangent to C at
the point p = γ(t).

(b) Under the substitution t = s2, we obtain a different parameterization of C, given by

η(s) ≡ γ(s2) =

(
cos s2

sin s2

)
. (4)

Note that the parameter s must take values in (0,
√
π).

(c) Now consider the function ξ : [0, π] → R2 defined by

ξ(t) =

(
cos t
sin t

)
. (5)
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The only difference between the curve C̄ = [ξ] and the curve C = [γ] from (a) is that C̄
contains its endpoints, while C does not. In order to make sense of the velocity vector of
ξ at the endpoints of the interval [0, π], we may think of ξ as the restriction of another

function ξ̃ : (−ε, π + ε) → R2 to the interval [0, π], where ε > 0 is a small number, and

ξ̃(t) =

(
cos t
sin t

)
, t ∈ (−ε, π + ε). (6)

We call ξ̃ an extension of ξ. With such an extension at hand, the velocity vector of ξ at
the endpoints of the interval [0, π] can be defined as ξ′(0) = ξ̃′(0) and ξ′(π) = ξ̃′(π).

Exercise 1.1. Let δ : R → R2 be given by

δ(t) =

(
(1− θ(t))t3

θ(t)t3

)
, where θ(t) =

{
1 for t > 0,

0 for t ≤ 0.
(7)

Show that δ is continuously differentiable in R. Sketch the curve defined by δ. Why there is
a “corner” at the origin?

The preceding discussions motivate us to state the following points.

• A curve is a set that admits a parameterization γ.
• In order to have a tangent line at every point of the curve, we require that γ is
differentiable and γ′ ̸= 0 everywhere.

• By introducing an extension if necessary, we can always assume that γ is defined on
some open interval (a, b).

In addition, we require that the tangent lines vary continuously as we traverse along the
curve, i.e., we want velocity vector γ′(t) to depend continuously on t. This gets rid of the
pathological curves such as the graph of the function f : R → R defined by f(x) = x2 sin 1

x
for x ̸= 0 and f(0) = 0.

Definition 1.2. A set L ⊂ Rn is called an open curve if there exists a continuously differen-
tiable function γ : (a, b) → Rn with −∞ ≤ a < b ≤ ∞, such that L = {γ(t) : t ∈ (a, b)} and
γ′(t) ̸= 0 for all t ∈ (a, b). In this setting, γ is called a parameterization of L.

Remark 1.3. Strictly speaking, the preceding definition is that of differentiable open curves.
However, all curves in these notes will be assumed to be differentiable, and we will simply
omit the adjective “differentiable.”

Example 1.4. (a) Consider the function γ : R → R2 defined by

γ(t) =

(
t2 − 1

t(t2 − 1)

)
. (8)

We have

γ′(t) =

(
2t

3t2 − 1

)
̸=

(
0
0

)
for t ∈ R, (9)

and thus γ defines an open curve in R2. However, we have γ(−1) = γ(1), indicating
that the curve intersects with itself. At the self-intersection point, we have two possible
tangent directions γ′(1) = (2, 2) and γ′(−1) = (−2, 2). This is not a particularly serious
problem, but it is useful to introduce a concept that rules out self-intersecting curves.
An idea would be to require injectivity of the parameterization, that is, to require that
γ(s) = γ(t) implies s = t.

(b) Consider the unit circle. We may try to parameterize it by

ξ(t) =

(
cos t
sin t

)
, t ∈ (−ε, 2π), (10)



INTRODUCTION TO MANIFOLDS 3

but this is not injective, as ξ(t) = ξ(t + 2π) for t ∈ (−ε, 0). This cannot be avoided if
we want a parameterization with an open interval as its domain. A way out would be
to “cover” the circle by using multiple parameterizations, meaning that we consider the
circle as multiple arcs glued together “nicely.”

Definition 1.5. A set L ⊂ Rn is called an (embedded) curve if for each p ∈ L, there exists
δ > 0 such that L ∩ Qδ(p) is an open curve admitting an injective parameterization. Recall
that a function γ is called injective if γ(s) = γ(t) implies s = t.

Example 1.6. Let us show that the unit circle C = {(x, y) ∈ R2 : x2 + y2 = 1} is a
curve in the sense of the preceding definition. Pick an arbitrary p = (x∗, y∗) ∈ C. We
consider a few cases. First, assume y∗ > 0. In this case, we choose δ > 0 so small that
Qδ(p) ⊂ {(x, y) : −1 < x < 1, y > 0}, and use the parameterization γ : (x∗ − δ, x∗ + δ) → R2

defined by γ(t) = (t,
√
1− t2). We can check that this is an injective parameterization of

Qδ(p) ∩ C. The second case, where we assume y∗ < 0, can be treated similarly, by using

the parameterization γ(t) = (t,−
√
1− t2). The remaining case is y = 0, which can be

separated into two subcases: x∗ = 1 and x∗ = −1. For x∗ = 1, we use γ(t) = (
√
1− t2, t) for

t ∈ (−1, 1), which parameterizes Q1(p)∩C injectively. Similarly, for x∗ = −1, we can use the

paremeterization γ(t) = (−
√
1− t2, t).

Definition 1.7. Given a parameterization γ : (a, b) → Rn of a curve, the velocity vector of γ
at the point p = γ(t) is γ′(t) ∈ Rn.

Remark 1.8. Let γ : (a, b) → Rn be a parameterization of a curve L, and let γ̄(s) = γ(ϕ(s))
be another parameterization of L, where ϕ : (ā, b̄) → (a, b) is continuously differentiable.
One can think of ϕ as a reparameterization or a coordinate change on the curve. Under this
reparameterization, the velocity vector at p = γ̄(s) transforms as

γ̄′(s) = γ′(ϕ(s))ϕ′(s). (11)

Since ϕ′(s) ∈ R, we see that even though the velocity vector may change during reparameter-
ization, its direction stays the same. This direction defines the tangent line of L at p, which
is an intrinsic property of the curve L independent of parameterization.

2. Manifolds

In this section, we will generalize the concept of curves to higher dimensional objects called
manifolds. Curves, surfaces, and hypersurfaces will be special cases of manifolds. We will
only be concerned with smooth (or differentiable) manifolds, but in practice, non-smooth
objects such as the surface of a cube do not cause much trouble because they can be treated
as consisting of a number of smooth pieces.

Example 2.1. The defining characteristic of a curve is that near any of its points, it can
be parameterized “nicely” by a single parameter. Intuitively, to parameterize a surface, we
need to use two parameters. Let Ω = (−1, 1)2 ⊂ R2, and let Ψ : Ω → R3 be continuously
differentiable in Ω. We imagine that the set S = {Ψ(x) : x ∈ Ω} is a piece of a surface in R3,
so that Ψ is its parameterization. Consider the 2-dimensional curve γα(t) = αt, t ∈ (−1, 1),
where α ∈ R2 is a fixed vector. Under the parameterization Ψ, this curve becomes the 3-
dimensional curve ηα(t) = Ψ(αt), which is contained in the surface S. The velocity vector of
ηα at ηα(0) ∈ S is

η′α(0) = DΨ(0)γ′α(0) = DΨ(0)α =
∂Ψ

∂x1
(0)α1 +

∂Ψ

∂x2
(0)α2, (12)

where α = (α1, α2) ∈ R2. If S is a smooth surface, then we expect that the velocity vectors
η′α(0) with different α ∈ R2 are not all aligned to each other. In light of the preceding formula,
this means that the columns of DΨ(0) are expected to be linearly independent.
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The linear independence condition discussed in the preceding example will appear in the
definition of manifolds later. Before that, we need to introduce the concept of open sets.

Definition 2.2. A set Ω ⊂ Rn is called open if for any p ∈ Ω, there is δ > 0 such that
Qδ(p) ⊂ Ω.

Example 2.3. (a) The square Ω = (0, 1)2 is open, because given any (x, y) ∈ Ω, we have
(x− δ, x+ δ)× (y − δ, y + δ) ⊂ Ω for δ = min{x, 1− x, y, 1− y}.

(b) Ω = [0, 1)2 is not open, because taking p = (0, 0) ∈ Ω, there is no δ > 0 with Qδ(p) ⊂ Ω.
(c) The disk Ω = {(x, y) : x2 + y2 < 1} is open, because given any (x, y) ∈ Ω, we have

(x− δ, x+ δ)× (y − δ, y + δ) ⊂ Ω for δ =
√

1− x2 − y2/
√
2.

Definition 2.4. A set M ⊂ RN is called an n-dimensional manifold (embedded in RN ) if for
each p ∈ M , there exist open sets U ⊂ RN , Ω ⊂ Rn, and a map Ψ : Ω → RN such that

(i) U ∩M = Ψ(Ω) and p ∈ U ∩M .
(ii) Ψ is injective, and continuously differentiable.
(iii) For each x ∈ Ω, the columns of DΨ(x) are linearly independent.

In this setting, Ψ is called a local parameterization, and the triple (Ψ,Ω, U ∩M) is called a
coordinate chart. Since Ψ is injective, the inverse Ψ−1 : U ∩M → Ω exists, and it is called a
local coordinate system on M .

Remark 2.5. A manifold of dimension 1 is a curve, and a 2-dimensional manifold is called
a surface. If n = N − 1, the manifold is called a hypersurface in RN .

Example 2.6. Let M ⊂ Rn be an open set. Given any p ∈ M , we use the coordinate chart
Ω = U = M , and Ψ(x) = x for x ∈ Ω. This makes M an n-dimensional manifold.

Example 2.7. Let us show that the 2-sphere S2 = {y ∈ R3 : y21 + y22 + y23 = 1} is a manifold
(i.e., a surface). It will be done similarly to Example 1.6. Pick an arbitrary point y∗ ∈ S2.
We will consider 6 different cases, corresponding to 6 coordinate charts covering S2. The first
case is y∗3 > 0. In this case, we set U = {y ∈ R3 : y3 > 0}, Ω = {x ∈ R2 : x21 + x22 < 1},
and Ψ(x) = (x1, x2,

√
1− x21 − x22). It is easy to see that U ∩ S2 = Ψ(Ω), and Ψ is injective.

Moreover, we have

DΨ(x) =

 1 0
0 1

−x1/y3 −x2/y3

 , (13)

where y3 =
√

1− x21 − x22, which shows that Ψ is continuously differentiable in Ω, and that
the columns of Ψ(x) are linearly independent for each x ∈ Ω. The remaining 5 cases are (ii)
y∗3 < 0, (iii) y∗3 = 0 and y∗2 > 0, (iv) y∗3 = 0 and y∗2 < 0, (v) y∗3 = y∗2 = 0 and y∗1 > 0, and
finally, (vi) y∗3 = y∗2 = 0 and y∗1 < 0. All these cases can be handled similarly to the first case,
with each case corresponding to the positive or the negative half of a coordinate axis, and its
associated hemisphere.

Definition 2.8. Given a manifold M ⊂ RN and its point p ∈ M , the tangent space of M at
p is defined as

TpM = {γ′(0) : γ ∈ C 1((−ε, ε),M) for some ε > 0, γ(0) = p}, (14)

where γ ∈ C 1((−ε, ε),M) means that γ : (−ε, ε) → RN is continuously differentiable in
(−ε, ε) and γ(t) ∈ M for all t ∈ (−ε, ε).

Example 2.9. Let us identify the tangent space TpS
2, for p = (x, y, z), z > 0. Consider an

arbitrary function γ ∈ C 1((−ε, ε), S2), with γ(0) = p. Taking the derivative of the relation
γ1(t)

2 + γ2(t)
2 + γ3(t)

2 = 1 with respect to t, we get

γ1(t)γ
′
1(t) + γ2(t)γ

′
2(t) + γ3(t)γ

′
3(t) = 0, (15)



INTRODUCTION TO MANIFOLDS 5

and therefore
xγ′1(0) + yγ′2(0) + zγ′3(0) = 0. (16)

This shows that TpS
2 ⊂ X, where X = {V ∈ R3 : V T p = 0}. Geometrically, X is the space

perpendicular to the vector p. Now let V = (a, b, c) be an arbitrary element of X, meaning
that ax+ by + cz = 0, and let

γ(t) =

 x+ at
y + bt√

1− (x+ at)2 − (y + bt)2

 . (17)

By construction, we have γ(0) = p. We also have

d
√

1− (x+ at)2 − (y + bt)2

dt

∣∣∣∣∣
t=0

=
−a(x+ at)− b(y + bt)√
1− (x+ at)2 − (y + bt)2

∣∣∣∣∣
t=0

=
−ax− by√
1− x2 − y2

, (18)

and hence

γ′(0) =

 a
b

−(ax+ by)/z

 =

a
b
c

 = V, (19)

where we have used the fact that ax + by + cz = 0. This implies V ∈ TpS
2, and as V is

an arbitrary element of X, we have X ⊂ TpS
2. Since we already established TpS

2 ⊂ X, we
conclude that TpS

2 = X ≡ {V ∈ R3 : V T p = 0}.

Remark 2.10 (Coordinate transformation in Rn). If Ω is an open set of Rn, then TxΩ = Rn

for each x ∈ Ω, since for any V ∈ Rn, we can take γ(t) = x + V t for t ∈ (−ε, ε), with
ε > 0 small enough, and we will have γ′(0) = V . This situation may seem trivial, but we
can appreciate the “manifold aspect” of Ω by introducing a “curvilinear” coordinate system
in Ω. Let U ⊂ Rn be an open set, and let Ψ : U → Ω be a continuously differentiable and
invertible map, whose inverse Ψ−1 : Ω → U is also continuously differentiable. By default,
the points in Ω will be denoted by x = (x1, . . . , xn), and the points in U will be denoted
by y = (y1, . . . , yn). We can and should think of y as a new coordinate system in Ω, with
y = Ψ−1(x) being the y-coordinates of the point x ∈ Ω. It will sometimes be convenient to
write y = y(x) and x = x(y) instead of y = Ψ−1(x) and x = Ψ(y), respectively. Thus a curve
y = y(t) in U corresponds to the curve x = x(y(t)) in Ω, and

x′(t) = DΨ(y(t))y′(t), (20)

which tells us how the components of a vector should transform under change of coordinates:

α = DΨ(y)β, i.e., αi =
n∑

k=1

∂xi
∂yk

(y)βk, (i = 1, . . . , n), (21)

where y ∈ U , x = x(y), α ∈ TxΩ, and β ∈ TyU . In fact we see that the columns of DΨ(y)
plays the role of a new basis in TxΩ, and β1, . . . , βn are the coordinates of α with respect to
this basis. On the other hand, from the point of view of the domain U , we would have

β = DΨ−1(x)α, i.e., βk =

n∑
i=1

∂yk
∂xi

(y)αi, (k = 1, . . . , n), (22)

which means that α1 . . . , αn are the coordinates of β ∈ TyU when the columns of DΨ−1(x)
are used as a basis of TyU .

Example 2.11 (Polar coordinates). Consider the map Ψ : U → Ω, defined by

Ψ(r, ϕ) =

(
x(r, ϕ)
y(r, ϕ)

)
=

(
r cosϕ
r sinϕ

)
, (23)
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where U = (0,∞) × (−π, π) and Ω = R2 \ {(x, 0) : x ≤ 0}. If Ψ(r, ϕ) = (x, y) ∈ Ω, then

x2 + y2 = r2, or r =
√

x2 + y2 > 0. This yields cosϕ = x
r ∈ [−1, 1], and hence with the

function arccos t ∈ [0, π], we have arccos x
r = ϕ or arccos x

r = −ϕ, depending on the sign of ϕ.
In other words, knowing x and r determines ϕ up to a sign. The sign of ϕ can be determined
with the help of the conditions sinϕ = y

r and −π < ϕ < π, because these imply that the sign
of ϕ is the same as the sign of y. To conclude, (x, y) ∈ Ω determines (r, ϕ) ∈ U uniquely, i.e.,
the map Ψ is invertible. We can compute

DΨ(r, ϕ) =

(
∂rx ∂ϕx
∂ry ∂ϕy

)
=

(
cosϕ −r sinϕ
sinϕ r cosϕ

)
, (24)

which is nonsingular everywhere in U . Then by the inverse function theorem, Ψ−1 : Ω → U
is continuously differentiable in Ω, with

DΨ−1(x, y) =

(
∂xr ∂yr
∂xϕ ∂yϕ

)
=

1

r

(
r cosϕ r sinϕ
− sinϕ cosϕ

)
, (25)

where r = r(x, y) and ϕ = ϕ(x, y) are now understood to be the components of Ψ−1. Now, in
view of the preceding remark, any vector α ∈ TpΩ ≡ R2 with p ∈ Ω can be written as

α = DΨ(q)β, (26)

with β ∈ TqU ≡ R2, where q = Ψ−1(p). Conversely, any β ∈ TqU ≡ R2 can be written as

β = DΨ−1(p)α, (27)

for some α ∈ TpΩ ≡ R2. If we give names to the components of α and β according to
α = (αx, αy) and β = (βr, βϕ), then we have

α = βrêr + βϕêϕ, β = αxêx + αy êy, (28)

where êr and êϕ are the columns of DΨ(q), and êx and êy are the columns of DΨ−1(p).
For example, the vector β = (1, 0) in the (r, ϕ)-coordinate system becomes α = êr in the
(x, y)-coordinate system, and the vector β = (0, 1) in the (r, ϕ)-coordinate system becomes
α = êϕ in the (x, y)-coordinate system. Similarly, the vector α = (1, 0) in the (x, y)-coordinate
system becomes β = êx in the (r, ϕ)-coordinate system, and the vector α = (0, 1) in the (x, y)-
coordinate system becomes β = êy in the (r, ϕ)-coordinate system.

3. The implicit function theorem

In this section, we want to investigate if the equation g(x, y) = 0 can be solved as y = y(x).
The results will be applied in the next section to derive a convenient criterion to recognize if
a set of the form {z : ϕ(z) = 0} is a manifold. Our approach will be based on differentiability,
meaning that we fix some point (x∗, y∗), and approximate g as

g(x, y) ≈ g(x∗, y∗) + ∂xg(x∗, y∗)(x− x∗) + ∂yg(x∗, y∗)(y − y∗), (29)

for y ≈ y∗ and x ≈ x∗. If ∂yg(x∗, y∗) ̸= 0, this approximate equation can be solved for y:

y − y∗ ≈
g(x, y)− g(x∗, y∗)− ∂xg(x∗, y∗)(x− x∗)

∂yg(x∗, y∗)
. (30)

Solving this equation for g(x, y) ̸= g(x∗, y∗) would not yield a good approximation, because
then x ≈ x∗ would not imply y ≈ y∗. Thus we put g(x, y) = g(x∗, y∗) = 0, and get

y − y∗ ≈ −∂xg(x∗, y∗)

∂yg(x∗, y∗)
(x− x∗). (31)

This suggests that the conditions g(x∗, y∗) = 0 and ∂yg(x∗, y∗) ̸= 0 might be sufficient to solve
g(x, y) = 0 for a function y = y(x), at least when x is in a small interval containing x∗. In
the following remark, we will justify this expectation in full detail.
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Remark 3.1. Let Qa = (−a, a)2 ⊂ R2 be an open square, with a > 0, and let g : Qa → R
be a continuously differentiable function, satisfying g(0, 0) = 0 and ∂yg(0, 0) ̸= 0. We want
to find a function y = h(x), defined for x ∈ (−δ, δ) with some δ > 0, such that g(x, h(x)) = 0
for all x ∈ (−δ, δ). Note that the point (x∗, y∗) from the previous discussion is now the
origin. This is no loss of generality, since we may think of g(x, y) as g̃(x∗ + x, y∗ + y) for
some function g̃. To proceed further, we introduce the auxiliary map f : Qa → R2, given
by f(x, y) = (x, g(x, y)) for (x, y) ∈ Qa. The motivation for considering such a map is that
if we can solve f(x, y) = (α, 0) for (x, y) depending on α, then we would have x = α and
g(α, y(α)) = 0. In order to invert f near the origin, we shall invoke the inverse function
theorem. The Jacobian of f is

J(x, y) =

(
1 0

∂xg(x, y) ∂yg(x, y)

)
, (32)

and since g is continuously differentiable, J is continuous in Qa, and hence we conclude that
f is continuously differentiable in Qa with Df = J . At the origin, Df is invertible, and

(Df)−1 =

(
1 0

−∂xg/∂yg 1/∂yg

)
, (33)

where all functions are evaluated at the origin 0 ∈ R2. Now the inverse function theorem
guarantees that there exist of r > 0 and f−1 : f(Qr) → R2, satisfying f−1(f(x, y)) = (x, y)
for all (x, y) ∈ Qr. Note that f−1(0, 0) = (0, 0). Moreover, Df(x, y) is nonsingular for each
(x, y) ∈ Qr, and f−1 is continuously differentiable with Df−1 ◦ f = (Df)−1 in Qr. If we
let f−1(α, β) = (x(α, β), y(α, β)), then from f(f−1(α, β)) = (α, β), we infer that x(α, β) = α
and g(α, y(α, β)) = β for (α, β) ∈ f(Qr). In addition to what we have already mentioned,
the inverse function theorem tells us that there is δ > 0 such that Qδ ∈ f(Qr), implying that
we have g(α, y(α, β)) = β for all (α, β) ∈ Qδ. In particular, setting h(α) = y(α, 0), we get
g(α, h(α)) = 0 for all α ∈ (−δ, δ). From f−1(0, 0) = (0, 0), we get h(0) = 0.

The function h we found in the preceding paragraph in fact solves our problem, but our
assumptions are strong enough to yield additional results. As a component of f−1, the function
y = y(α, β) is continuously differentiable in Qδ, and we have

Df−1 =

(
1 0

∂αy ∂βy

)
. (34)

Comparing this with (33), we get ∂αy ◦ f = −∂xg/∂yg and ∂βy ◦ f = 1/∂yg. In particular,
taking into account that h′(α) = ∂αy(α, 0), we conclude that

h′(x) = −∂xg(x, h(x))

∂yg(x, h(x))
, for x ∈ (−δ, δ). (35)

Before closing this remark, we make one crucial observation. Fix x ∈ (−δ, δ), and consider
I = {(x, y) : y ∈ (−r, r)}. The map f sends I to f(I) = {(x, g(x, y)) : y ∈ (−r, r)} ⊂ f(Qr).
Since f is invertible in Qr, the only point (x, y) ∈ I with g(x, y) = 0 is (x, h(x)). In other
words, apart from the curve {(x, h(x)) : x ∈ (−δ, δ)}, there are no other points (x, y) exist in
the rectangle (−δ, δ)× (−r, r) satisfying g(x, y) = 0.

The preceding remark is the implicit function theorem in two dimensions.

Example 3.2. (a) Let us apply the implicit function theorem to the equation x2 + y2 = 1.
Thus we set g(x, y) = x2 + y2 − 1, and compute ∂yg(x, y) = 2y. This means that as long
as (x∗, y∗) satisfies g(x∗, y∗) = 0 and y∗ ̸= 0, we can apply the result at the point (x∗, y∗),
and infer the existence of δ > 0 and h : (x∗ − δ, x∗ + δ) → R such that g(x, h(x)) = 0 for
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all x ∈ (x∗ − δ, x∗ + δ). We can also compute the derivative of h as

h′(x) = −∂xg(x, y)

∂yg(x, y)
= −2x

2y
= − x

h(x)
, for x ∈ (x∗ − δ, x∗ + δ). (36)

The intuitive reason why the case y∗ = 0 must be excluded is the fact that then the
derivative h′(x∗) would have to become infinity.

(b) Let g(x, y) = y3−x, and let us try to solve g(x, y) = 0 for y = y(x) near (x, y) = (0, 0). We
have g(0, 0) = 0, but ∂yg(0, 0) = (3y2)|y=0 = 0. Therefore the implicit function theorem
cannot be applied, even though we can explicitly solve the equation as y(x) = 3

√
x. This

has of course to do with the fact that 3
√
x is not differentiable at x = 0.

(c) Let g(x, y) = x2 − y2, and let us try to solve g(x, y) = 0 for y = y(x) near (x, y) = (0, 0).
We have g(0, 0) = 0, but ∂yg(0, 0) = (−2y)|y=0 = 0, and hence the implicit function
theorem cannot be applied. A close inspection reveals that the solution of g(x, y) = 0 is
y = ±x, which cannot be written as a function y = y(x) near (x, y) = (0, 0).

Let Ω ⊂ Rn and Σ ⊂ Rm be open sets. Then their product Ω× Σ ⊂ Rn+m is given by

Ω× Σ = {(x, y) : x ∈ Ω, y ∈ Σ}, (37)

where (x, y) = (x1, . . . , xn, y1, . . . , ym) ∈ Rn+m. Let g : Ω × Σ → Rm be a differentiable
function. The value of g at (x, y) ∈ Ω × Σ is denoted by g(x, y) ∈ Rm. For any fixed x ∈ Ω,
the correspondence y 7→ g(x, y) is a function of y ∈ Σ, and its derivative will be denoted by
Dyg Similarly, we can introduce Dxg. In the following, sometimes it will be convenient to
specify the dimension of a cube in the notation, as in Qn

r (a) = (a− r, a+ r)n ⊂ Rn.

Theorem 3.3. Let Ω ⊂ Rn and Σ ⊂ Rm be open sets, and let g : Ω×Σ → Rm be continuously
differentiable. Suppose that (a, b) ∈ Ω× Σ satisfies g(a, b) = 0, and that Dyg(a, b) is nonsin-
gular. Then there exist δ > 0 and h : Qn

δ (a) → Rm with h(a) = b, such that g(x, h(x)) = 0
for all x ∈ Qn

δ (a). Moreover, h is continuously differentiable in Qn
δ (a), with

Dh(x) = −(Dyg(x, h(x)))
−1Dxg(x, h(x)), x ∈ Qn

δ (a), (38)

and we have {(x, h(x)) : x ∈ Qn
δ (a)} = {(x, y) ∈ Qn

δ (a)×Qm
r (b) : g(x, y) = 0} for some r > 0.

Proof. Let f : Ω×Σ → Rn+m be defined by f(x, y) = (x, g(x, y)). This function is continuously
differentiable, and

Df(x, y) =

(
I 0

Dxg Dyg

)
, (39)

where I ∈ Rn×n is the identity matrix. Since detDf(a, b) = detDyg(a, b) ̸= 0, the matrix
Df(a, b) is invertible. Consequently, the inverse function theorem guarantees that there exist
of r > 0 and f−1 : f(Qr) → Rn+m, satisfying f−1(f(x, y)) = (x, y) for all (x, y) ∈ Qr, where
Qr = Qn+m

r (a, b). Note that f−1(a, 0) = (a, b). Moreover, Df(x, y) is nonsingular for each
(x, y) ∈ Qr, and f−1 is continuously differentiable with Df−1 ◦ f = (Df)−1 in Qr. If we
let f−1(α, β) = (x(α, β), y(α, β)), then from f(f−1(α, β)) = (α, β), we infer that x(α, β) = α
and g(α, y(α, β)) = β for (α, β) ∈ f(Qr). In addition to what we have already mentioned,
the inverse function theorem tells us that there is δ > 0 such that Qn+m

δ (a, 0) ∈ f(Qr),

implying that we have g(α, y(α, β)) = β for all (α, β) ∈ Qn+m
δ (a, 0). In particular, setting

h(α) = y(α, 0), we get g(α, h(α)) = 0 for all α ∈ Qn
δ (a). From f−1(a, 0) = (a, b), we get

h(a) = b. Furthermore, since (α, h(α)) = f−1(α, 0) for all α ∈ Qn
δ (a), we infer that the points

(x, y) ∈ Qn
δ (a) × Qm

r (b) with g(x, y) = 0 are only of the form (x, h(x)). In other words, we
have {(x, h(x)) : x ∈ Qn

δ (a)} = {(x, y) ∈ Qn
δ (a)×Qm

r (b) : g(x, y) = 0}.
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As a collection of components of f−1, the function y = y(α, β) is continuously differentiable
in Qn+m

δ (a, 0), and we have

Df−1 =

(
I 0

Dαy Dβy

)
. (40)

Comparing this with

(Df)−1 =

(
I 0

−(Dyg)
−1Dxg (Dyg)

−1

)
, (41)

we infer

Dαy ◦ f = −(Dyg)
−1Dxg, Dβy ◦ f = (Dyg)

−1. (42)

In particular, taking into account that Dh(α) = Dαy(α, 0), we conclude that

Dh(x) = −(Dyg(x, h(x)))
−1Dxg(x, h(x)), (43)

for all x ∈ Qn
δ (a). □

Example 3.4. (a) Consider the equation

g(x, y, z) ≡ sin(xy + z) + log(yz2) = 0. (44)

The triple p = (x, y, z) = (1, 1,−1) is a solution: g(1, 1,−1) = 0, and g is continuously
differentiable in the open set {(x, y, z) : x ∈ R, y > 0, z < 0}. Can we express z as a
function of x and y near p? This is exactly the kind of question that could be answered
by the implicit function theorem. We have

∂zg(x, y, z) = cos(xy + z) +
2z

yz2
= cos(xy + z) +

2

yz
, (45)

and hence

∂zg(1, 1,−1) = cos 0− 2 = −1 ̸= 0. (46)

Thus there exist δ > 0 and a continuously differentiable function h : Q2
δ(1, 1) → R such

that g(x, y, h(x, y)) = 0 for all (x, y) ∈ Q2
δ(1, 1).

(b) Can we solve

xu2 + yzv + x2z = 3,

yv5 + zu2 − xv = 1,
(47)

for (u, v) near (1, 1) as a function of (x, y, z) near (1, 1, 1)? We can formulate the problem
as solving g(α, β) = 0 for β = β(α), where α = (x, y, z), β = (u, v), and

g(α, β) = g(x, y, z, u, v) =

(
xu2 + yxv + x2z − 3
yv5 + 2zu− v2 − 2

)
. (48)

Obviously, g is continuously differentiable in R5, and g(1, 1, 1, 1, 1) = 0. We can compute
the relevant derivative as

Dβg(α, β) =

(
2xu yz
2zu 5yv4 − x

)
. (49)

so that the matrix

Dβg(1, 1, 1, 1, 1) =

(
2 1
2 4

)
, (50)

is invertible. Thus there exist δ > 0 and h : Q3
δ(1, 1, 1) → R2 continuously differentiable,

such that g(α, h(α)) = 0 for all α ∈ Q3
δ(1, 1, 1).
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4. The preimage theorem

With the implicit function theorem at hand, we are now ready to answer the question when
the equation ϕ(x) = 0 defines a manifold. We discuss the two dimensional case first, as it
involves most of the main ideas. Thus let g : R2 → R be a continuously differentiable function,
and let L = {(x, y) ∈ R2 : g(x, y) = 0}. We assume that Dg(x, y) ̸= 0 for all (x, y) ∈ L, that
is, at least one component of Dg(x, y) ∈ R1×2 is nonzero whenever (x, y) satisfies g(x, y) = 0.
Under these assumptions, we want to show that L is a manifold. Recall from the definition
that L would be a 1-dimensional manifold (or a curve) if for each (x̄, ȳ) ∈ L, there exist an
open set U ⊂ R2, an interval I = (a, b), and a map Ψ : I → R2 such that

(i) U ∩ L = Ψ(I) and (x̄, ȳ) ∈ U ∩ L.
(ii) Ψ is injective, and continuously differentiable.
(iii) For each t ∈ I, the derivative DΨ(t) ∈ R2 has at least one nonzero component.

Now pick an arbitrary (x̄, ȳ) ∈ L, and we shall build the triple (Ψ, I, U) satisfying the afore-
mentioned conditions. We will consider the cases ∂yg(x̄, ȳ) ̸= 0 and ∂yg(x̄, ȳ) = 0 separately.

Case 1. We assume that ∂yg(x̄, ȳ) ̸= 0. Then the implicit function theorem guarantees
that we can write y in terms of x at least when x is near x̄. Namely, there exist δ > 0 and
a continuously differentiable function h : I → R such that g(x, h(x)) = 0 for all x ∈ I, with
I = (x̄ − δ, x̄ + δ). Moreover, apart from the curve {(x, h(x)) : x ∈ I}, there are no other
points (x, y) exist in the rectangle U = I × (ȳ − r, ȳ + r) satisfying g(x, y) = 0, where r > 0
is some constant. Therefore, with Ψ : I → R2 defined by Ψ(t) = (t, h(t)), conditions (i) and
(ii) are satisfied. Condition (iii) is also satisfied, since we have Ψ′(t) = (1, h′(t)) ̸= 0.

Case 2. We assume that ∂yg(x̄, ȳ) = 0. In this case, we must have ∂xg(x̄, ȳ) ̸= 0, because
Dg(x̄, ȳ) ̸= 0, and hence the preceding arguments apply with the roles of x and y switched.

We have proved the following result.

Lemma 4.1 (Level curve theorem). Let A ⊂ R2 be an open set, and let g : A → R be a
continuously differentiable function. Suppose that Dg(x, y) ̸= 0 whenever (x, y) ∈ A satisfies
g(x, y) = 0. Then the set L = {(x, y) ∈ A : g(x, y) = 0} is a differentiable curve.

Example 4.2. Consider g(x, y) = x2+y2−ρ, where ρ ∈ R is some constant. This function is
continuously differentiable in R2, with Dg(x, y) = (2x, 2y) ∈ R1×2. We see that Dg(x, y) = 0
if and only if x = y = 0. Now let L = {(x, y) : g(x, y) = 0}.

• If ρ = 0, then L is a single point {(0, 0)}, and Dg = 0 there. Hence the level curve
theorem cannot be applied.

• If ρ < 0, then L = ∅. Since (0, 0) ̸∈ L, we have Dg(x, y) ̸= 0 for all (x, y) ∈ L. Thus
the level curve theorem can be applied, to conclude that L is a curve. This example
suggests that it is always a good idea to explicitly check if a manifold is nonempty, in
order not to waste efforts working with an empty set.

• If ρ > 0, then L is nonempty, because, for example, we have (0,
√
ρ) ∈ L. Moreover,

we have (0, 0) ̸∈ L, implying that Dg(x, y) ̸= 0 for all (x, y) ∈ L. This means that L
is a differentiable curve.

Theorem 4.3 (Preimage theorem). Let A ⊂ RN be an open set, and let ϕ : A → Rk be a
continuously differentiable function. Suppose that for each x ∈ A satisfying ϕ(x) = 0, there is
a k × k submatrix of Dϕ(x) that is nonsingular. Then the set M = {x ∈ A : ϕ(x) = 0} is an
(N − k)-dimensional manifold.

Proof. In view of the definition of a manifold, what we need to do is to show that for each
y ∈ M , there exist open sets U ⊂ RN , Ω ⊂ RN−k, and a map Ψ : Ω → RN such that

(i) U ∩M = Ψ(Ω) and y ∈ U ∩M .
(ii) Ψ is injective, and continuously differentiable.
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(iii) For each x ∈ Ω, the columns of DΨ(x) are linearly independent.

Thus we pick y ∈ M arbitrary, and write Dϕ(y) = [b1 b2 . . . bN ], where bi ∈ Rk are the
columns ofDϕ(y). Without loss of generality, we assume that the matrix B = [bN−k+1 . . . bN ]
is invertible. Given x ∈ RN , let us introduce the notation x′ = (x1, . . . , xn) ∈ Rn and
x′′ = (xn+1, . . . , xN ) ∈ Rk, where n = N − k. Now by the implicit function theorem, there
exist δ > 0 and a continuously differentiable function h : Qn

δ (y
′) → Rk with h(y′) = y′′, such

that ϕ(α, h(α)) = 0 for all α ∈ Qn
δ (y

′). Moreover, there exists r > 0 such that

Qn
δ (y

′)×Qk
r (y

′′) ∩M = {(α, h(α)) : α ∈ Qn
δ (y

′)}. (51)

Thus if we set U = Qn
δ (y

′) × Qk
r (y

′′), Ω = Qn
δ (y

′), and Ψ(α) = (α, h(α)), then conditions (i)
and (ii) are satisfied. As for (iii), we have

DΨ(α) =

(
I

Dh(α)

)
, (52)

where I ∈ Rn×n is the identity matrix, which makes it clear that the columns of DΨ(α) are
linearly independent. □

If k = 1 in the preceding theorem, then Dϕ(x) is a 1 × N matrix, and the existence of a
nonsingular k × k submatrix of Dϕ(x), simply means that Dϕ(x) has a nonzero entry. This
special case is important enough to deserve a separate display.

Corollary 4.4 (Level surface theorem). Let A ⊂ Rn be an open set, and let ϕ : A → R
be a continuously differentiable function. Suppose that Dϕ(x) ̸= 0 whenever x ∈ A satisfies
ϕ(x) = 0. Then the set M = {x ∈ A : ϕ(x) = 0} is a hypersurface in Rn.

Example 4.5. Let a ∈ Rn be a nonzero vector, and let

M = {x ∈ Rn : a1x
2
1 + a2x

2
2 + . . .+ anx

2
n = 1}. (53)

We would like to show that M is a hypersurface. Thus we let

ϕ(x) = a1x
2
1 + a2x

2
2 + . . .+ anx

2
n − 1, (54)

so that M = {ϕ = 0}, and compute

Dϕ(x) = (2a1x1, 2a2x2, . . . , 2anxn). (55)

Since a is a nonzero vector, Dϕ(x) = 0 if and only if x = 0. We know that 0 ̸∈ M , because
ϕ(0) = −1, and hence Dϕ(x) ̸= 0 for all x ∈ M . Then the level surface theorem implies that
M is a hypersurface in Rn.

Remark 4.6. A matrix B ∈ Rk×N has an invertible k × k submatrix if and only if it has k
linearly independent columns. The latter is equivalent to the condition that B is surjective,
i.e., that for any s ∈ Rk there exists y ∈ RN such that By = s. Therefore in the preimage
theorem (Theorem4.3), the condition “there is a k×k submatrix ofDϕ(x) that is nonsingular”
can be replaced by “Dϕ(x) is surjective.” Now, the surjectivity ofDϕ(x) is equivalent to saying
that for any s ∈ Rk there exists V ∈ RN such that Dϕ(y)V = s, i.e., such that DV ϕ(y) = s.

Example 4.7. Consider the set

M = {X ∈ Rn×n : XTX = I}, (56)

which is called the group of orthogonal matrices. This can be written as the zero set of
ϕ : Rn×n → Rn×n, which is given by

ϕ(X) = XTX − I. (57)

Although ϕ sends n × n matrices to n × n matrices, the output ϕ(X) has fewer than n2

independent components, because ϕ(X) is always a symmetric matrix. Thus we think of ϕ as



12 TSOGTGEREL GANTUMUR

a mapping ϕ : RN → Rk, with N = n2 and k = 1
2n(n + 1). In view of Remark 4.6, our first

task is to compute the directional derivative of ϕ along a matrix B ∈ Rn×n. Let us denote
the components of ϕ, X, and B by ϕij , xlm, and blm, respectively. Then we have

∂ϕij

∂xlm
(X) =

∂

∂xlm

n∑
q=1

xqixqj =

n∑
q=1

(δqlδimxqj + xqiδqlδjm) = δimxlj + xliδjm, (58)

for the partial derivatives, and

DBϕij(X) =

n∑
l,m=1

(δimxlj + xliδjm)blm =

n∑
l=1

(xljbli + xliblj) = (BTX +XTB)ij , (59)

for the directional derivative, yielding

DBϕ(X) = XTB +BTX. (60)

Our next task is to show that for each X ∈ M and for any symmetric matrix S ∈ Rn×n, there
exists B ∈ Rn×n such that DBϕ(X) = S. This would guarantee that Dϕ(X), as a linear map
sending Rn×n into the space of symmetric n × n matrices, is surjective. Let S ∈ Rn×n be a
symmetric matrix. We observe that (XTB)T = BTX, and so the equation XTB+BTX = S
is of the form C +CT = S. It is not difficult to construct a matrix C satisfying C +CT = S.
For example, one can check that the following works.

Cij =


sij for i < j,
1
2sii for i = j,

0 for i > j.

(61)

Now that we have C, we need to solve XTB = C. At this point, we recall that X ∈ M , that
is, XTX = I. This means that (XT )−1 = X, and hence B = XXTB = XC. We can also
independently check that

XTB +BTX = XTXC + (XC)TX = C + CTXTX = C + CT = S. (62)

We conclude that the orthogonal group M = {X ∈ Rn×n : XTX = I} is a manifold of
dimension N − k = 1

2n(n− 1). The standard notation for this manifold is O(n) = M (not to
be confused with the big-O notation).

5. Tangent spaces

Let M ⊂ RN be an n-dimensional manifold, and let Ψ : Ω → M ∩ U be a local parame-
terization, with Ω ⊂ Rn and U ⊂ RN open. Let p ∈ M and q ∈ Ω be such that p = Ψ(q).
Then for any η ∈ C 1((−ε, ε),Ω) with η(0) = q, we have γ = Ψ ◦ η ∈ C 1((−ε, ε),M ∩ U), and
γ(0) = p, implying that

γ′(0) = DΨ(q)η′(0) ∈ TpM. (63)

By taking η(0) = q + V t for an arbitrary V ∈ Rn, thus with η′(0) = V , we infer

ranDΨ(q) ⊂ TpM. (64)

Now suppose that M ∩ U is described by the equation ϕ(x) = 0, where ϕ : U → Rk is a
continuous differentiable function with Dϕ(x) is surjective for all x ∈ M ∩U , and k = N −n.
Then for any γ ∈ C 1((−ε, ε),M ∩ U) with γ(0) = p, we have ϕ(γ(t)) = 0 for t ∈ (−ε, ε), and
differentiation gives

Dϕ(p)γ′(0) = 0. (65)

By definition, the vector γ′(0) represents an arbitrary vector in the tangent space TpM , and
hence we conclude that

TpM ⊂ kerDϕ(p). (66)
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In combination with (64), we have

ranDΨ(q) ⊂ TpM ⊂ kerDϕ(p). (67)

We want to show that all inclusions appearing in the preceding formula are in fact equalities.
Since the columns of DΨ(q) ∈ RN×n are linearly independent, we have dim ranDΨ(q) = n.
On the other hand, Dϕ(p) ∈ Rk×N is surjective, i.e., the rank of Dϕ(p) is k. Then by the rank-
nullity theorem, dimkerDϕ(p) = N − k = n. As ranDΨ(q) ⊂ kerDϕ(p) and the dimensions
agree, we conclude that

TpM = ranDΨ(q) = kerDϕ(p). (68)

Example 5.1. (a) Let Sn−1 = {x ∈ Rn : xTx = 1}, which can be written as {ϕ(x) = 0}
with ϕ(x) = xTx− 1. Then Dϕ(x) = 2xT , and hence

TxS
n−1 = kerDϕ(x) = {V ∈ Rn : xTV = 0}. (69)

(b) The unit 2-sphere S2 can be described locally by the parameterization

Ψ(θ, ϕ) =

cos θ cosϕ
cos θ sinϕ

sin θ

 . (70)

Therefore the tangent space TpS
2 at p = Ψ(θ, ϕ) has the columns of

DΨ(θ, ϕ) =

− sin θ cosϕ − cos θ sinϕ
− sin θ sinϕ cos θ cosϕ

cos θ 0

 , (71)

as a basis.
(c) In Example 4.7, we showed that the orthogonal group

O(n) = {X ∈ Rn×n : XTX = I}, (72)

is a manifold of dimension 1
2n(n− 1). For ϕ(X) = XTX − I, we have also computed

DY ϕ(X) = XTY + Y TX. (73)

Thus, the tangent space of O(n) at X is given by {Y ∈ Rn×n : XTY + Y TX = 0}. In
particular, the tangent space of O(n) at the identity matrix is simply the set of all n× n
antisymmetric matrices.
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