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Abstract. We discuss differentiation in Rn and the inverse function theorem.
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1. Continuity of scalar functions

Let us recall first a definition of continuous functions. Intuitively, a continuous function f
sends nearby points to nearby points, i.e, if x is close to y then f(x) is close to f(y).

Definition 1.1. Let K ⊂ R be a set. A function f : K → R is called continuous at y ∈ K if
for any ε > 0 there exists δ > 0 such that x ∈ (y − δ, y + δ) ∩K implies |f(x)− f(y)| < ε.

In order for f to be continuous at y, first, the value f(x) must be getting closer and closer
to some number, say α ∈ R, as x tends to y, and second, that number α must be equal to the
value f(y). The first requirement alone leads to the notion of the limit of a function.

Definition 1.2. Let K ⊂ R be a set, and let f : K → R be a function. We say that f(x)
converges to α ∈ R as x→ y ∈ R, and write

f(x)→ α as x→ y, or lim
x→y

f(x) = α, (1)

if for any ε > 0 there exists δ > 0 such that |f(x) − α| < ε whenever 0 < |x − y| < δ and
x ∈ K. One can write lim

x∈K,x→y
f(x), K 3 x→ y, etc., to explicitly indicate the domain K.

Remark 1.3. Note that the point y is not required to be in K, and even if y ∈ K, the
existence and the value of the limit lim

x→y
f(x) does not depend on the value f(y), since we

never consider x = y due to the condition 0 < |x − y|. In other words, we can replace K by
K \ {y} with no effect on the existence and the value of the limit.

Example 1.4. Let K = [0, 1), and let f : K → R be a function. Take y = 2, and α ∈ R. Then
as long as δ ≤ 1, there is no x satisfying 0 < |x − y| < δ and x ∈ K. Hence by convention,
when δ ≤ 1, we must assume that the implication x ∈ K and 0 < |x−y| < δ ⇒ |f(x)−α| < ε
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is true for any ε > 0, because there is no x for which we need to check the condition. This
means that by Definition 1.2, any possible function f : [0, 1)→ R would have a limit as x→ 2,
and this limit can be an arbitrary number α ∈ R. We could have removed this inconvenience
by modifying our definition to require that the set {x ∈ K : 0 < |x− y| < δ} is nonempty for
any δ > 0, but we have not done so because any consideration of situations where y is “far
away” from K as in this example would only lead to useless and trivial statements.

The following lemma expresses the limit of a function in terms of the limit of a sequence.

Lemma 1.5. Let K ⊂ R be a set, and let f : K → R be a function. Let y ∈ R and
α ∈ R. Then f(x) → α as x → y if and only if f(xn) → α as n → ∞ for every sequence
{xn} ⊂ K \ {y} converging to y.

Proof. Suppose that f(x)→ α as x→ y, and let {xn} ⊂ K \ {y} be a sequence converging to
y. We want to show that f(xn)→ α as n→∞. Let ε > 0 be arbitrary. Then by definition,
there exists δ > 0 such that 0 < |x− y| < δ and x ∈ K imply |f(x)−α| < ε. Since xn → y as
n → ∞, there is N such that |xn − y| < δ whenever n > N . Hence we have |f(xn) − α| < ε
whenever n > N . As ε > 0 is arbitrary, we conclude that f(xn)→ α as n→∞.

To prove the other direction, assume that f(x) does not converge to α as x→ y, i.e., that
there is some ε > 0, such that for any δ > 0, there exists some x ∈ K with 0 < |x−y| < δ and
|f(x) − α| ≥ ε. In particular, taking δ = 1

n , we infer the existence of a sequence {xn} ⊂ K

satisfying 0 < |xn − y| < 1
n , with |f(xn) − α| ≥ ε for all n. Thus we have a sequence

{xn} ⊂ K \ {y} converging to y, with f(xn) 6→ α as n→∞. �

An immediate corollary is that continuous functions are precisely the ones that send con-
vergent sequences to convergent sequences. This is sometimes called the sequential criterion
of continuity.

Corollary 1.6. Let K ⊂ R be a set. Then f : K → R is continuous at y ∈ K if and only if
f(xn)→ f(y) as n→∞ for every sequence {xn} ⊂ K \ {y} converging to x.

Proof. The second condition is equivalent to f(x)→ f(y) as x→ y by Lemma 1.5, and hence
we only need to show that continuity at y is equivalent to f(x) → f(y) as x → y. Let us
explicitly write the definitions of these two concepts side by side to compare.

• Continuity of f at y: For any ε > 0 there exists δ > 0 such that |f(x) − f(y)| < ε
whenever |x− y| < δ and x ∈ K.
• Convergence of f(x) to f(y) as x → y: For any ε > 0 there exists δ > 0 such that
|f(x)− f(y)| < ε whenever 0 < |x− y| < δ and x ∈ K.

We see that the only difference is in whether we allow x = y. Hence it is immediate that
continuity implies the convergence property. Now if the convergence property is satisfied,
then everything for continuity is there, except the condition |f(x) − f(y)| < ε when x = y.
But this is trivially true, because |f(y)− f(y)| = 0. �

Exercise 1.7. Let K ⊂ R be a set. Show that f : K → R is continuous at y ∈ K if and only
if f(xn)→ f(y) as n→∞ for every sequence {xn} ⊂ K converging to y.

Example 1.8. (a) Let f : R → R be the function given by f(x) = x2 for x ∈ R. Then f is
continuous at every point y ∈ R, because given any sequence {xn} ⊂ R converging to y,
we have f(xn) = x2n → y2 = f(y) as n→∞.

(b) Let g : R → R be the function given by g(x) = |x| for x ∈ R. Then f is continuous
at every point y ∈ R, because given any sequence {xn} ⊂ R converging to y, we have
f(xn) = |xn| → |y| = f(y) as n→∞.
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(c) We define the Heaviside step function θ : R→ R by

θ(x) =

{
1 for x > 0,

0 for x ≤ 0.
(2)

It is clear that θ is continuous at every x ∈ R \ {0} . Our intuition tells us that θ is
not continuous at x = 0. Indeed, let xn = 1

n and yn = − 1
n for n ∈ N. Then we have

xn → 0 and yn → 0, but θ(xn)→ 1 and θ(yn)→ 0 as n→∞. Since 1 6= 0, the sequential
criterion of continuity implies that θ is not continuous at x = 0.

(d) The Dirichlet function h : R→ R is defined by

h(x) =

{
1 for x ∈ Q,
0 for x ∈ R \Q.

(3)

For any x ∈ R, we can find two sequences {xn} ⊂ Q and {yn} ⊂ R \Q satisfying xn → x
and yn → x as n→∞. Since h(xn) = 1 and h(yn) = 0, we have h(xn)→ 1 and h(yn)→ 0,
and hence we conclude that h is not continuous at any point x ∈ R.

Exercise 1.9. In each of the following cases, verify if the value f(0) can be defined so
that the resulting function f is continuous in R. Choose from the following phrases to best
describe the situation in each case: jump discontinuity, removable singularity, blow up or pole,
essential/oscillatory singularity.

(a) f(x) =
1

x
(b) f(x) =

1

|x|
(c) f(x) =

|x|
x

(d) f(x) =
sinx

x

(e) f(x) = sin 1
x (f) f(x) = x sin 1

x (g) f(x) = 1
x sin 1

x

Now we want to introduce a way to compare asymptotic magnitudes of two functions.

Definition 1.10 (Little ‘o’ notation). Let K ⊂ R be a set, let y ∈ R, and let f : K → R and
g : K → R be functions. Then we write

f(x) = o(g(x)) as x→ y, (4)

to mean that
f(x)

g(x)
→ 0 as x→ y. (5)

Furthermore, for h : K → R, the notation

f(x) = h(x) + o(g(x)) as x→ y, (6)

is understood to be
f(x)− h(x) = o(g(x)) as x→ y. (7)

Example 1.11. (a) We have x3 = o(x2) as x→ 0, because x3

x2
→ 0 as x→ 0.

(b) We have sinx 6= o(x) as x→ 0, because sinx
x 6→ 0 as x→ 0.

(c) We have
√
x =
√

2 + o(1) as x→ 2, because
√
x−
√
2

1 → 0 as x→ 2.

(d) We have (1 + x)2 = 1 + 2x+ o(x) as x→ 0, because (1+x)2−1−2x
x → 0 as x→ 0.

Exercise 1.12. Verify if the following statements are true.

(a) sinx = 1 + o(x− π
2 ) as x→ π

2 .
(b) cosx = sinx+ o(1) as x→ 0.
(c) tanx = cotx+ o(1) as x→ π

4 .
(d) log x = o(x) as x→ 0.
(e) 1 = o(tanx) as x→ π

2 .

Remark 1.13. We see that the following statements are equivalent.
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• f(x)→ α as x→ y.
• xn → y implies f(xn)→ α, as n→∞.
• f(x) = α+ o(1) as x→ y.

Similarly, the following statements are equivalent.

• f is continuous at y.
• f(x)→ f(y) as x→ y.
• xn → y implies f(xn)→ f(y), as n→∞.
• f(x) = f(y) + o(1) as x→ y.

Remark 1.14. Intuitively, the condition f(x) = f(y) + o(1) says that if f is continuous at
y, the value f(x) can be approximated by the constant f(y) with the error of o(1).

2. Differentiability of scalar functions

Let us recall the usual definition of differentiability. This is essentially the definition intro-
duced by Augustin-Louis Cauchy in 1821.

Definition 2.1. Let K ⊂ R be a set, and let f : K → R be a function. We say that f is
differentiable at y ∈ K, if there exists λ ∈ R such that

f(x)− f(y)

x− y
→ λ as K 3 x→ y. (8)

We call f ′(y) = λ the derivative of f at y. If f is differentiable at each point of K, then f is
said to be differentiable in K.

We now prove several useful criteria of differentiability. In the following lemma, (b) is called
the sequential criterion, (c) is the criterion introduced by Constantin Carathéodory in 1950,
and finally, (d) is introduced by Karl Weierstrass in his 1861 lectures.

Lemma 2.2. Let K ⊂ R, let y ∈ K, and let f : K → R be a function. Then the following
are equivalent.

(a) f is differentiable at y.
(b) There exists a number λ ∈ R, such that

f(xn)− f(y)

xn − y
→ λ as n→∞, (9)

for every sequence {xn} ⊂ K \ {y} converging to y.
(c) There exists a function g : K → R, continuous at y, such that

f(x) = f(y) + g(x)(x− y) for x ∈ K. (10)

(d) There exists a number λ ∈ R, such that

f(x) = f(y) + λ(x− y) + o(x− y) as K 3 x→ y. (11)

Proof. Equivalence of (a) and (b) is immediate from Lemma 1.5.
Suppose that (a) holds. We define the function g : K → R by

g(x) =

{
f(x)−f(y)

x−y for x ∈ K \ {y}
f ′(y) for y = x.

(12)

This function satisfies (10) by construction. Since g(x)→ f ′(y) ≡ g(y) as x→ y by differen-
tiability, g is continuous at y. Hence (c) holds.

Now suppose that (c) holds. Let λ = g(y) and h(x) = g(x)− λ. Then h is continuous at y
with h(y) = 0, and

f(x) = f(y) + λ(x− y) + h(x)(x− y) for x ∈ K. (13)

http://www-history.mcs.st-andrews.ac.uk/Biographies/Cauchy.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Caratheodory.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Weierstrass.html


DIFFERENTIATION 5

This implies (d), since

h(x)(x− y)

x− y
= h(x)→ 0 as K 3 x→ y, (14)

by continuity of h and the fact that h(y) = 0.
Finally, let (d) hold. By definition of the little ‘o’ notation (Definition 1.10), this means

that
f(x)− f(y)− λ(x− y)

x− y
→ 0 as K 3 x→ y, (15)

or equivalently,
f(x)− f(y)

x− y
− λ→ 0 as K 3 x→ y. (16)

Thus (a) holds, i.e., f is differentiable at y, cf. Definition 2.1. �

Remark 2.3. We see from (11) that if f is differentiable at y then f is continuous at y, since
λ(x− y) + o(x− y) = o(1) as x→ y.

Remark 2.4. By (11), differentiability of f at y is equivalent to the condition that f(x) can
be approximated by the linear function `(x) = f(y) + λ(x − y) with the error of o(x − y).
Recall that continuity of f at y is equivalent to saying that f(x) can be approximated by the
constant f(y) with the error of o(1), cf. Remark 1.14.

Example 2.5. (a) Let c ∈ R, and let f(x) = c be a constant function. Then since f(x) =
f(y) + 0 · (x− y) for all x, y, we get f ′(y) = 0 for all y.

(b) Let a, c ∈ R, and let f(x) = ax + c be a linear (also known as affine) function. Since
f(x) = f(y) + a(x− y) for all x, y, we get f ′(y) = a for all y.

(c) Let f(x) = 1
x , fix y ∈ R \ {0}, and for x ∈ R \ {0, y} define

g(x) =

1
x −

1
y

x− y
= − 1

xy
. (17)

Upon defining g(y) = − 1
y2

, the function g(x) = − 1
x ·

1
y becomes continuous at x = y, and

therefore f is differentiable at y with

f ′(y) =
(1

y

)′
= − 1

y2
(y 6= 0). (18)

(d) Let us try to differentiate f(x) = |x| at x = 0. With xn = 1
n for n ∈ N, we have

{xn} ⊂ R \ {0} and xn → 0 as n→∞. On one hand, we get

lim
n→∞

f(xn)− f(0)

xn − 0
= lim

n→∞

|xn|
xn

= 1, (19)

but on the other hand, with yn = −xn, we infer

lim
n→∞

f(yn)− f(0)

yn − 0
= lim

n→∞

|yn|
yn

= − lim
n→∞

xn
xn

= −1. (20)

The definition of derivative requires these two limits to be the same, and thus we conclude
that f(x) = |x| is not differentiable at x = 0.

(e) Consider the differentiability of f(x) = 3
√
x at x = 0. Let xn = 1

n3 . It is obvious that
xn 6= 0 and xn → 0. We have

f(xn)− f(0)

xn − 0
=

3
√
xn
xn

= n2, (21)

which diverges as n→∞. Hence f(x) = 3
√
x is not differentiable at x = 0.

Exercise 2.6. Show that f(x) = xn is differentiable in R, for n ∈ N, with f ′(x) = nxn−1.
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Exercise 2.7. Let K ⊂ K, and suppose that f : K → R satisfies

f(x) = a+ bx+ o(x− y) as x→ y ∈ K, (22)

for some constants a, b ∈ R. Show that f is differentiable at y with f ′(y) = b, and f(y) = a+by.

We now review differentiability of various combinations of differentiable functions.

Theorem 2.8. Let f, g : (a, b) → R be functions differentiable at x ∈ (a, b). Then the
following are true.

a) The sum and difference f ± g are differentiable at x, with

(f ± g)′(x) = f ′(x)± g′(x). (23)

These are called the sum and difference rules.
b) The product fg is differentiable at x, with

(fg)′(x) = f ′(x)g(x) + f(x)g′(x). (24)

This is called the product rule.
c) If F : (c, d) → R is a function differentiable at g(x), with g((a, b)) ⊂ (c, d), then the

composition F ◦ g : (a, b)→ R is differentiable at x, with

(F ◦ g)′(x) = F ′(g(x))g′(x). (25)

This is called the chain rule.
d) If f : (a, b) → f((a, b)) is bijective and f ′(x) 6= 0, then the inverse f−1 : f((a, b)) → (a, b)

is differentiable at y = f(x), with

(f−1)′(y) =
1

f ′(x)
. (26)

Proof. b) By definition, there is a function f̃ : (a, b)→ R, continuous at x, satisfying

f(y) = f(x) + f̃(y)(y − x), y ∈ (a, b), (27)

and f ′(x) = f̃(x). Similarly, there is a function g̃ : (a, b) → R, continuous at x, and with
g′(x) = g̃(x), such that

g(y) = g(x) + g̃(y)(y − x), y ∈ (a, b). (28)

By multiplying (27) and (28), we get

f(y)g(y) = f(x)g(x) + g(x)f̃(y)(y − x) + f(x)g̃(y)(y − x) + f̃(y)g̃(y)(y − x)2

= f(x)g(x) + [g(x)f̃(y) + f(x)g̃(y) + f̃(y)g̃(y)(y − x)](y − x).
(29)

The expression in the square brackets, as a function of y, is continuous at y = x, with

[g(x)f̃(y) + f(x)g̃(y) + f̃(y)g̃(y)(y − x)]
∣∣
y=x

= g(x)f̃(x) + f(x)g̃(x)

= g(x)f ′(x) + f(x)g′(x),
(30)

which shows that fg is differentiable at x, and that (24) holds.

c) Since F is differentiable at g(x), by definition, there is a function F̃ : (c, d) → R,

continuous at g(x), and with F ′(g(x)) = F̃ (g(x)), such that

F (z) = F (g(x)) + F̃ (z)(z − g(x)), z ∈ (c, d). (31)

Plugging z = g(y) into (31), we get

F (g(y)) = F (g(x)) + F̃ (g(y))(g(y)− g(x)) = F (g(x)) + F̃ (g(y))g̃(y)(y − x), (32)

where in the last step we have used (28). The function y 7→ F̃ (g(y))g̃(y) is continuous at

y = x, with F̃ (g(x))g̃(x) = F ′(g(x))g′(x), which confirms that F ◦ g is differentiable at x, and
that (25) holds.



DIFFERENTIATION 7

d) By definition, there is g : (a, b)→ R, continuous at x, with g(x) = f ′(x) 6= 0, such that

f(z) = f(x) + g(z)(z − x) for z ∈ (a, b). (33)

Since g is continuous at x, we infer the existence if an open interval (c, d) 3 x such that
g(z) 6= 0 for all z ∈ (c, d). For t ∈ f((c, d)), we have z = f−1(t) ∈ (c, d), and

f−1(t)− f−1(y) = z − x =
f(z)− f(x)

g(z)
=

t− y
g(f−1(t))

. (34)

The function 1
g(f−1(t))

is continuous at t = y, meaning that f−1 is differentiable at y, and that

(26) holds. �

Exercise 2.9. Prove a) of the preceding theorem.

Exercise 2.10. Prove that differentiability is a local property, in the sense that f : (a, b)→ R
is differentiable at y ∈ (a, b) if and only if g = f |(y−ε,y+ε) is differentiable at y, where ε > 0 is
small. Here g = f |(y−ε,y+ε) means that g : (y − ε, y + ε) → R is defined by g(x) = f(x) for
x ∈ (y − ε, y + ε). We say that g is the restriction of f to the interval (y − ε, y + ε).

Example 2.11. (a) By the product rule, we have

(x2)′ = 1 · x+ x · 1 = 2x,

(x3)′ = (x2 · x)′ = 2x · x+ x2 · 1 = 3x2, . . .

(xn)′ = nxn−1 (n ∈ N).

(35)

(b) By the sum and product rules, all polynomials are differentiable in R, and the derivative
of a polynomial is again a polynomial.

(c) Given a function f : (a, b)→ R that does not vanish anywhere in (a, b), we can write the
reciprocal function 1

f as F ◦ f with F (z) = 1
z . If f is differentiable at x ∈ (a, b), then by

the chain rule, 1
f is differentiable at x and( 1

f

)′
(x) = (F ◦ f)′(x) = F ′(f(x))f ′(x) = − f ′(x)

[f(x)]2
. (36)

In particular, we have

(x−n)′ = −nx
n−1

x2n
= −nx−n−1 (n ∈ N). (37)

(d) Let f(x) = xn for x ∈ [0,∞), where n ∈ N. We have f ′(x) = nxn−1 at x > 0, and the
inverse function is the arithmetic n-th root f−1(y) = n

√
y (y ≥ 0). Since f ′(x) > 0 for

x > 0, the inverse f−1 is differentiable at each y > 0, with

(f−1)′(y) =
1

f ′(f−1(y))
=

1

n( n
√
y)n−1

=
1

n
y

1−n
n . (38)

Moreover, by the chain rule, for m ∈ Z and n ∈ N, we infer

(x
m
n )′ = (( n

√
x)m)′ = m( n

√
x)m−1 · 1

n
x

1−n
n =

m

n
x

m−1
n

+ 1−n
n =

m

n
x

m
n
−1, (39)

that is
(xa)′ = axa−1 at each x > 0, for a ∈ Q. (40)

Exercise 2.12. Let f, g : (a, b) → R be functions differentiable at x ∈ (a, b), with g(x) 6= 0.
Show that the quotient f/g is differentiable at x, and the following quotient rule holds.(f

g

)′
(x) =

f ′(x)g(x)− f(x)g′(x)

[g(x)]2
. (41)

Compute the derivative of q(x) = 3x3

x2+1
.
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3. Continuity of vector functions

The set of all ordered pairs of real numbers is denoted by

R2 = R× R = {(x1, x2) : x1, x2 ∈ R}. (42)

Ordered means that, for instance, (1, 3) 6= (3, 1). As an example, the position of a point on
the surface of the Earth can be described by an element of R2, by its latitude and longitude.
More generally, for n ∈ N, we let

Rn = R× . . .× R︸ ︷︷ ︸
n times

= {(x1, x2, . . . , xn) : x1, x2, . . . , xn ∈ R}. (43)

An element of Rn is called an n-tuple, an n-vector, a point, or simply a vector. In a context
where both R and Rn (with n > 1) are present, an element of R (i.e., a real number) is called a
scalar. Given a vector x = (x1, . . . , xn) ∈ Rn, the number xk ∈ R is called the k-th component
of x, for k ∈ {1, . . . , n}.

Example 3.1. Consider n foreign currencies, and let xk be the exchange rate between the
k-th currency and Canadian dollar (at a certain moment of time). Then any possible outcome
(x1, . . . , xn) can be considered as an element of Rn.

Let K ⊂ R, and let f : K → Rn be a function. Such functions are called vector valued
functions (of a single variable), or vector functions. In contrast, R-valued functions (i.e.,
n = 1) are called scalar valued functions, or scalar functions. For t ∈ K, the value f(t) is
an n-vector; Let us denote the k-th component of f(t) ∈ Rn by fk(t) ∈ R. Since t can be
any point in K, this defines a function fk : K → R, called the k-th component of f , for each
k ∈ {1, . . . , n}. Thus a vector valued function is simply a collection of scalar valued functions.

In this and the next sections, we will study vector valued functions of a single variable. It
is more or less straightforward, but will give us a chance to introduce notations and concepts
that will be important later.

First, let us briefly discuss vector sequences. A vector sequence is simply a sequence
x(1), x(2), . . . , x(i), . . . , consisting of vectors x(i) ∈ Rn, i ∈ N. It can also be thought of as
a function f : N→ Rn, whose domain is the set of natural numbers. The correspondence can
be defined by identifying the i-th term x(i) ∈ Rn of the sequence with the value f(i) ∈ Rn

of the function at i ∈ N. The k-th component of x(i) ∈ Rn is denoted by x
(i)
k ∈ R, for

k ∈ {1, . . . , n}. If we fix k ∈ {1, . . . , n}, then {x(1)k , x
(2)
k , . . .} is a scalar (i.e., real number)

sequence, called the k-th component of the vector sequence {x(i)}. Hence a vector sequence
is simply a collection of scalar sequences.

Definition 3.2. We say that a vector sequence {x(i)} ⊂ Rn converges to y ∈ Rn if for each

k ∈ {1, . . . , n}, the k-th component of {x(i)} converges to the k-th component of y. That is,

we write x(i) → y as i→∞ if x
(i)
k → yk as i→∞ for each k ∈ {1, . . . , n}.

Remark 3.3. Let us write out the preceding definition explicitly. Thus x(i) → y as i → ∞
if and only if for each k ∈ {1, . . . , n}, and for any ε > 0, there exists an index Nk,ε such that

|x(i)k − yk| < ε whenever i > Nk,ε. In this setting, let Nε = max{N1,ε, . . . , Nn,ε} for ε > 0.

Then we have |x(i)k − yk| < ε whenever i > Nε for each k and for any ε > 0. In other words, if

x(i) → y as i→∞, then for any ε > 0, there exists an index Nε such that max
k=1,...,n

|x(i)k −yk| < ε

whenever i > Nε. It is obvious that if the latter condition holds, then x(i) → y as i → ∞.
We have expressed the convergence x(i) → y of a vector sequence in terms of the convergence

di → 0 of the scalar sequence {di} defined by di = max
k=1,...,n

|x(i)k − yk|. We can think of di as
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some kind of “distance” between the points x(i) and y, so that the convergence x(i) → y is
identified with the convergence of the distance di → 0.

Definition 3.4. We define the maximum norm of x ∈ Rn as

|x|∞ = max
k=1,...,n

|xk|. (44)

Moreover, for x, y ∈ Rn and t ∈ R, we define

x± y = (x1 ± y1, . . . , xn ± yn) and tx = xt = (tx1, . . . , txn). (45)

Example 3.5. For x = (1,−3) ∈ R2, we have |x|∞ = 3. Moreover, 2x = x · 2 = (2,−6), and
x+ (−2, 3) = (−1, 0).

In light of the new notations, Remark 3.3 says that the convergence x(i) → y is equivalent to
the scalar sequence {di} defined by di = |x(i) − y|∞ being convergent to 0. Let us summarize
it in the following lemma.

Lemma 3.6. A sequence {x(i)} ⊂ Rn converges to y ∈ Rn iff |x(i) − y|∞ → 0 as i→∞.

Analogously to the limit of a vector sequence, we initially define the limit of a vector
function component-wise, and then express it in terms of the maximum norm.

Definition 3.7. Let K ⊂ R be a set, and let f : K → Rn be a vector function. We say that
f(x) converges to α ∈ Rn as x→ y ∈ R, and write

f(x)→ α as x→ y, or lim
x→y

f(x) = α, (46)

if fk(x)→ αk as x→ y, for each k ∈ {1, . . . , n}.

Exercise 3.8. In the context of this definition, show that the following are equivalent.

• f(x)→ α as x→ y.
• |f(x)− α|∞ → 0 as x→ y.
• f(xi)→ α as i→∞ for every sequence {xi} ⊂ K \ {y} converging to y.

Finally, we are ready to define continuity for vector functions of a single variable.

Definition 3.9. Let K ⊂ R be a set, and let f : K → Rn be a vector function. We say
that f is continuous at y ∈ K if each component of f is continuous at y, or equivalently, if
f(x)→ f(y) as x→ y.

Example 3.10. (a) The function f : R→ R2 defined by f(x) = (x cosx, x sinx) is obviously
continuous at each x ∈ R.

(b) The function f(x) = (θ(x), x2) is discontinuous at 0, and continuous everywhere in R\{0}.

Exercise 3.11. In the context of this definition, show that the following are equivalent.

• f is continuous at y ∈ K.
• |f(x)− f(y)|∞ → 0 as x→ y.
• The scalar function d : K → R defined by d(x) = |f(x) − f(y)|∞ is continuous at y,

with d(y) = 0.
• f(xi)→ f(y) as i→∞ for every sequence {xi} ⊂ K \ {y} converging to y.

In particular, from the preceding exercise, we see that continuity of f at y is equivalent to
f(x) = f(y) + e(x), with |e(x)|∞ → 0 as x→ y, that is, f(x) is approximated by the constant
vector f(y) with the error of o(1), when the error is measured in the maximum norm. To be
able to write this fact in one line we extend the little ‘o’ notation to vector valued functions.
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Definition 3.12 (Little ‘o’ notation). Let K ⊂ R be a set, let y ∈ R, and let f : K → Rn
and g : K → R. Then we write

f(x) = o(g(x)) as x→ y, (47)

to mean that
|f(x)|∞
|g(x)|

→ 0 as x→ y. (48)

Furthermore, for h : K → Rn, the notation

f(x) = h(x) + o(g(x)) as x→ y, (49)

is understood to be

f(x)− h(x) = o(g(x)) as x→ y. (50)

Remark 3.13. Continuity of f at y is equivalent to f(x) = f(y) + o(1) as x→ y.

4. Differentiability of vector functions

Similarly to continuity, differentiability of vector functions is defined component-wise.

Definition 4.1. Let K ⊂ R be a set, and let f : K → Rn be a vector function. We say
that f is differentiable at y ∈ K, if each component of f is differentiable at y. We call
f ′(y) = (f ′1(y), . . . , f ′n(y)) ∈ Rn the derivative of f at y. If f is differentiable at each point of
K, then f is said to be differentiable in K.

Lemma 4.2. Let K ⊂ R, let y ∈ K, and let f : K → Rn be a vector function. Then the
following are equivalent.

(a) f is differentiable at y.
(b) There exists a function g : K → Rn, continuous at y, such that

f(x) = f(y) + g(x)(x− y) for x ∈ K. (51)

(c) There exists a vector λ ∈ Rn, such that

f(x) = f(y) + λ(x− y) + o(x− y) as K 3 x→ y. (52)

(d) There exists a vector λ ∈ Rn, such that

f(xi)− f(y)

xi − y
→ λ as i→∞, (53)

for every sequence {xi} ⊂ K \ {y} converging to y.

Proof. Let f be differentiable at y. Then by definition, for each k, there exists gk : K → R,
continuous at y, such that

fk(x) = fk(y) + gk(x)(x− y) for x ∈ K. (54)

The vector function g : K → Rn defined by g(x) = (g1(x), . . . , gn(x)) is clearly continuous at
y, and satisfies the condition in (b).

Suppose that (b) holds. Let λ = g(y) and let h(x) = g(x) − λ. Then h is continuous at y
with h(y) = 0, and we have

f(x) = f(y) + λ(x− y) + h(x)(x− y) for x ∈ K. (55)

This implies (c), since

|h(x)(x− y)|∞
|x− y|

= |h(x)|∞ → 0 as K 3 x→ y, (56)

where we have taken into account the fact that |ta|∞ = |t| · |a|∞ for t ∈ R and a ∈ Rn.
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Now suppose that (c) holds, that is,

f(x)− f(y)

x− y
− λ =

f(x)− f(y)− λ(x− y)

x− y
→ 0 as K 3 x→ y. (57)

In view of Exercise 3.8, this means that for every sequence {xi} ⊂ K \ {y} converging to y,
we have (53), which is (d).

Finally, suppose that (d) holds. In components, it reads as follows. For each k, we have

fk(xi)− fk(y)

xi − y
→ λk as i→∞, (58)

for every sequence {xi} ⊂ K\{y} converging to y. Hence each component of f is differentiable
at y, that is, f is differentiable at y, cf. Definition 4.1 �

Remark 4.3. Functions ` : R→ Rn of the form

`(x) = α+ βx, (59)

where α, β ∈ Rn are fixed vectors, are called linear functions. By (c) of the preceding lemma,
f is differentiable at y if and only if f(x) can be approximated by a linear function with the
error of o(x − y). The “only if” part is immediate, because `(x) = f(y) + f ′(y)(x − y) is a
linear function. In the other direction, since `(x) → f(y) as x → y, we get f(y) = α + βy,
and thus `(x) = f(y) + β(x− y).

Exercise 4.4. Let f : (a, b) → Rn and φ : (a, b) → R be both differentiable at y ∈ (a, b).
Show that the product φf : (a, b)→ Rn is differentiable at y, with

(φf)′(y) = φ′(y)f(y) + φ(y)f ′(y).

Exercise 4.5. Let f : (a, b)→ Rn and φ : (c, d)→ (a, b), where φ is differentiable at t ∈ (c, d),
and f is differentiable at φ(t) ∈ (a, b). Show that the composition f ◦ φ : (c, d) → Rn is
differentiable at t, with

(f ◦ φ)′(y) = f ′(φ(t))φ′(t).

5. Functions of several variables: Continuity

In this section, we start our study of functions of several variables. A function of several
variables is simply a function f : K → R or f : K → Rm, where K ⊂ Rn. For now, we
will keep m = 1, that is, we temporarily focus on scalar valued functions. Examples of such
functions are given by f(x) = log(x1+x2) with K = {x ∈ R2 : x1+x2 > 0}, and f(x) = −|x|∞
with K = Rn. If x = (x1, x2, . . . , xn), we have f(x) = f((x1, x2, . . . , xn)), but we typically
omit one set of brackets and simply write it as f(x) = f(x1, x2, . . . , xn).

The first question is how we define continuity for functions of several variables. For functions
of the sort g : R → Rn, we defined continuity as continuity of its components gk : R → R,
and then reformulated it in terms of the maximum norm, which gives a way to measure the
distance between two points in Rn. For a function of the sort f : Rn → R, taking n = 2
for simplicity, the component-wise approach to continuity would be to require that the single
variable functions h1(t) = f(t, x2) with x2 fixed, and h2(s) = f(x1, s) with x1 fixed, are both
continuous. In this context, the distance-based approach to continuity would be to require
that the values f(x) and f(y) be close when the points x and y are close, in the sense that
|x− y|∞ is small. It is interesting to note that Cauchy wrote in his 1821 book that these two
approaches would lead to the same notion of continuity, just as in the case of g : R→ Rn, but
it was later discovered that the two notions are different.

Definition 5.1. Let K ⊂ Rn be a set, and let f : K → R be a function. We say that f is sepa-
rately continuous at y ∈ K, if for each k, the restriction gk(t) = f(y1, . . . , yk−1, t, yk+1, . . . , yn)
is continuous at t = yk.

http://www-history.mcs.st-andrews.ac.uk/Biographies/Cauchy.html
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Example 5.2. (a) The function f(x) = x21 + sinx2 is separately continuous at (0, π2 ) ∈ R2,

because both g1(t) = t2 + 1 and g2(t) = sin t are continuous at t = 0 and at t = π
2 ,

respectively.
(b) At times, it is convenient to denote a vector in R2 by (x, y) with x and y being real

numbers, instead of using subscripts as in (x1, x2). Then the value of f : R2 → R at
(x, y) ∈ R2 is f(x, y). Consider

f(x, y) =

{
1 for x < y < 3x

0 otherwise.
(60)

This function is separately continuous at (0, 0) with f(x, y) = 0, because f(t, 0) = f(0, t) =
0 for all t ∈ R. However, there exist points (x, y) that are arbitrarily close to (0, 0) with
f(x, y) = 1, such as (x, 2x) for x > 0.

We see that separate continuity of f : R2 → R, say, at (0, 0), imposes conditions only on
the two axes, and hence it is not dependent on the behaviour of f at points such as (x, x) with
x > 0 arbitrarily small. The following is a stronger definition, which follows the distance-based
approach that we have discussed. We use the sequential criterion as the initial definition, and
will establish an ε-δ criterion later.

Definition 5.3. Let K ⊂ Rn be a set, and let f : K → R be a function. We say that f
is jointly continuous or simply continuous at y ∈ K, if f(x(i)) → f(y) as i → ∞ for every

sequence {x(i)} \ {y} ⊂ K converging to y.

Example 5.4. In Example 5.2(b), we have f( 1
m ,

2
m) = 1 for m ∈ N, but f( 1

m , 0) = 0 for
m ∈ N. This shows that f is not jointly continuous at the origin.

Exercise 5.5. Show that the function

f(x, y) =

{
1 for x2 < y < 3x2

0 otherwise
(61)

is not jointly continuous at the origin, but is continuous along any line, that is, the function
g(t) = f(α+ at, β + bt) is continuous in R for any constants α, β, a, b ∈ R.

Example 5.6. (a) Let c ∈ R, and let f : Rn → R be the function given by f(x) = c for

x ∈ Rn. Then f is continuous at every point y ∈ R, since for any sequence {x(i)} ⊂ Rn
converging to y, we have f(x(i)) = c→ c = f(y) as i→∞.

(b) Let k ∈ {1, . . . , n}, and let f : Rn → R be the function given by f(x) = xk for x ∈ Rn.

Then f is continuous at every point y ∈ Rn, because given any sequence {x(i)} ⊂ Rn

converging to y, we have f(x(i)) = x
(i)
k → yk = f(y) as i→∞.

Following the pattern of the single variable theory, our next step is to combine known
continuous functions to create new continuous functions.

Definition 5.7. Given two functions f, g : K → R, with K ⊂ Rn, we define their sum,
difference, product, and quotient by

(f ± g)(x) = f(x)± g(x), (fg)(x) = f(x)g(x), and
(f
g

)
(x) =

f(x)

g(x)
, (62)

for x ∈ K, where for the quotient definition we assume that g(x) 6= 0 for all x ∈ K.

Lemma 5.8. Let K ⊂ Rn, and let f, g : K → R be functions continuous at x ∈ K. Then the
sum and difference f ± g, and the product fg are all continuous at x. Moreover, the function
1
f is continuous at x, provided that f(x) 6= 0.
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Proof. The results are immediate from the definition of continuity. For instance, let us prove
that fg is continuous at x. Thus let {x(i)} ⊂ K be an arbitrary sequence converging to x.

Then f(x(i)) → f(x) and g(x(i)) → g(x) as i → ∞, and hence f(x(i))g(x(i)) → f(x)g(x) as
i→∞. Therefore fg is continuous at x. �

Exercise 5.9. Complete the proof of the preceding lemma.

Example 5.10. (a) Recall from Example 5.6 that the constant function f(x) = c (where
c ∈ R) and the projection map f(x) = xk are continuous in Rn. Then by Lemma 5.8,
any monomial f(x) = axα1

1 · · ·xαn
n with a constant a ∈ R, and indices α1, . . . , αn ∈ N0, is

continuous in Rn, since we can write axn = a ·x1 · · ·x1x2 · · ·xn. An n-variable polynomial
is a function p : Rn → R of the form

p(x) =
∑

α1,...,αn

aα1...αnx
α1
1 · · ·x

αn
n , (63)

where only finitely many of the coefficients aα1...αn ∈ R are nonzero. Applying Lemma 5.8
again, we conclude that all n-variable polynomials are continuous in Rn.

(b) Let p and q be polynomials, and let Z = {x ∈ Rn : q(x) = 0} be the set of zeroes of q. Then

by Lemma 5.8, the function r : Rn \ Z → R given by r(x) = p(x)
q(x) is continuous in Rn \ Z.

The functions of this form are called rational functions. For instance, f(x, y) = x2+1
(x−1)2+y2

is continuous at each (x, y) ∈ R2 \ {(1, 0)}.

Exercise 5.11. Let K ⊂ Rn, and let g : K → Rm be function whose components are all
continuous at x ∈ K. Suppose that U ⊂ Rm satisfies g(K) ⊂ U , the latter meaning that
y ∈ K implies g(y) ∈ U . Let F : U → R be a function continuous at g(x). Then prove that
the composition F ◦ g : K → R, defined by (F ◦ g)(y) = F (g(y)), is continuous at x.

Exercise 5.12. (a) Show that f(x, y) = cos(2x+ y)− sinx is continuous in R2.
(b) Let K ⊂ Rn and let f : K → R be continuous at y ∈ K. Show that the function |f |

defined by

|f |(z) = |f(z)| for x ∈ K, (64)

is continuous at y.

(c) Show that functions of the form r1(x)+r2(|x|∞)
r3(x)+r4(|x|∞) are continuous in an appropriate subset of

Rn, where r1, r2, r3, and r4 are all rational functions.

The following is the ε-δ criterion we mentioned earlier.

Lemma 5.13. Let K ⊂ Rn be a set, and let f : K → R be a function. Then f is continuous
at y ∈ K if and only if for any ε > 0 there exists δ > 0 such that x ∈ K and 0 < |x− y|∞ < δ
imply |f(x)− f(y)| < ε.

Proof. We first prove the “if” part of the lemma. Assume that the latter condition holds, and
let {x(i)} ⊂ K \ {y} be a sequence converging to y. We want to show that f(x(i)) → f(y)
as i → ∞. Let ε > 0 be arbitrary. Then by assumption, there exists δ > 0 such that
0 < |x − y|∞ < δ and x ∈ K imply |f(x) − f(y)| < ε. Since x(i) → y as i → ∞, there is

N such that |x(i) − y|∞ < δ whenever i > N . Hence we have |f(x(i)) − f(y)| < ε whenever

n > N . As ε > 0 is arbitrary, we conclude that f(x(i))→ f(y) as i→∞.
To prove the other direction, assume the opposite of the conclusion, i.e., that there is

some ε > 0, such that for any δ > 0, there exists some x ∈ K with 0 < |x − y|∞ < δ and

|f(x)− f(y)| ≥ ε. In particular, taking δ = 1
i , we infer the existence of a sequence {x(i)} ⊂ K

satisfying 0 < |x(i) − y|∞ < 1
n , with |f(x(i)) − f(y)| ≥ ε for all i. Thus we have a sequence

{x(i)} ⊂ K \ {y} converging to y, with f(x(i)) 6→ f(y) as i→∞. �
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We now consider vector functions of several variables. All that has been said extends to
this situation in a straightforward, “componentwise” way.

Definition 5.14. Let K ⊂ Rn be a set, and let f : K → Rm be a function. We say that f is
continuous at y ∈ K, if each component of f is continuous at y. If f : K → Rm is continuous
at each point of K, we say that f is continuous in K. The set of all continuous functions in K
is denoted by C (K,Rm), or simply by C (K) if the target space Rm is clear from the context.

Example 5.15. (a) The function f : R2 → R2 defined by f(x, y) = (x cos y, y sinx) is obvi-
ously continuous in R2. Hence we have f ∈ C (R2,R2).

(b) Let f(x) = (θ(x), x2), where θ is the Heaviside step function, and consider the restriction
g = f |(0,2]. Then notice that g(x) = (1, x2) for (0, 2], and g ∈ C ((0, 1],R2).

(c) Let A ∈ Rm×n be a matrix and define f : Rn → Rm by f(x) = Ax. Then f ∈ C (Rn,Rm),
because the k-th component of f is

fk(x) = ak1x1 + . . .+ aknxn, (65)

where aki are the entries of A.

Exercise 5.16. Show that if f, g ∈ C (K,Rm) and A ∈ C (K,Rq×m), then f ± g ∈ C (K,Rm)
and Af ∈ C (K,Rq).
Exercise 5.17. Prove the analogue of Lemma 5.13 for vector valued functions f : K → Rm.

Before closing this section, we extend the notion of the limit of a function to several variable
functions, and leave the task of establishing a continuity criterion based on limits of functions
as an exercise to the reader.

Definition 5.18. Let K ⊂ Rn be a set, and let f : K → Rm. We say that f(x) converges to
α ∈ Rm as x→ y ∈ Rn, and write

f(x)→ α as x→ y, or lim
x→y

f(x) = α, (66)

if for any ε > 0 there exists δ > 0 such that |f(x)− α|∞ < ε whenever 0 < |x− y|∞ < δ and
x ∈ K. One can write lim

x∈K,x→y
f(x), K 3 x→ y, etc., to explicitly indicate the domain K.

Exercise 5.19. Let K ⊂ Rn and let f : K → Rm. Prove the following.

(a) f(x) → α ∈ Rm as x → y ∈ Rn if and only if f(x(i)) → α as i → ∞ for every sequence

{x(i)} \ {y} ⊂ K converging to y.
(b) f is continuous at y ∈ K if and only if f(x)→ f(y) as x→ y.

In particular, from the preceding exercise, we see that continuity of f at y is equivalent to
f(x) = f(y) + e(x), with |e(x)|∞ → 0 as x→ y, that is, f(x) is approximated by the constant
vector f(y) with the error of o(1). To make it precise, we need to extend the little ‘o’ notation
to functions of several variables.

Definition 5.20 (Little ‘o’ notation). Let K ⊂ Rn be a set, let y ∈ Rn, and let f : K → Rn
and g : K → R. Then we write

f(x) = o(g(x)) as x→ y, (67)

to mean that
|f(x)|∞
|g(x)|

→ 0 as x→ y. (68)

Furthermore, for h : K → Rn, the notation

f(x) = h(x) + o(g(x)) as x→ y, (69)

is understood to be
f(x)− h(x) = o(g(x)) as x→ y. (70)
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Remark 5.21. Continuity of f at y is equivalent to f(x) = f(y) + o(1) as x→ y.

6. Differentiability

Separate continuity of a function f : R2 → R at y ∈ R2 is defined in terms of continuity
of the single variable functions g1(t) = f(y1 + t, y2) and g2(t) = f(y1, y2 + t), at t = 0.
Observe that these two functions can also be written as gk(t) = f(y + ekt), k = 1, 2, where
e1 = (1, 0) and e2 = (0, 1). In other words, gk is simply f restricted to the line γk(t) = y+ekt,
t ∈ R. Apart from continuity, we can talk about differentiability of g1 and g2, leading to the
notion of partial derivatives. More generally, given an arbitrary vector V ∈ R2, the restriction
g(t) = f(y + V t) to the line γ(t) = y + V t can be considered. This leads us to the notion
of directional derivatives. Similarly to the situation with continuity, partial and directional
derivatives turn out to be not the correct generalization of the derivative to higher dimensions,
but will be a very useful auxiliary tool to get a handle on the ultimate generalization.

Definition 6.1. Let K ⊂ Rn. We define the directional derivative of f : K → Rm at x ∈ K
along V ∈ Rn, to be DV f(x) = g′(0) if the latter exists, where

g(t) = f(x+ V t), (71)

is a function of t ∈ R with x+ V t ∈ K. The k-th partial derivative of f at x is simply

∂kf(x) =
∂f

∂xk
(x) = Dekf(x), (72)

provided that it exists, where ek ∈ Rn is defined by (ek)i = 0 for i 6= k and (ek)k = 1. The
matrix consisting of the partial derivatives

J(x) =


∂1f1(x) ∂2f1(x) . . . ∂nf1(x)
∂1f2(x) ∂2f2(x) . . . ∂nf2(x)
. . . . . . . . . . . .

∂1fm(x) ∂2fm(x) . . . ∂nfm(x)

 (73)

is called the Jacobian matrix of f at x.

Example 6.2. (a) Consider the function f : R2 → R defined by

f(x, y) =

{
1 for x2 < y < 3x2

0 otherwise.
(74)

Given any (a, b) ∈ R2, we have f(at, bt) = 0 for all t > 0 sufficiently small. Hence the
directional derivative DV f(0, 0) exists and is equal to 0 for all V ∈ R2. In particular, the
partial derivatives are

∂f

∂x
(0, 0) = D(1,0)f(0, 0) = 0,

∂f

∂y
(0, 0) = D(0,1)f(0, 0) = 0, (75)

and thus the Jacobian matrix of f at the origin is given by J = (0 0) ∈ R1×2. However,
f is not even continuous at the origin.

(b) Similarly, let

f(x, y) =

{
x2y
x4+y2

for |x|+ |y| > 0

0 for x = y = 0.
(76)

For (a, b) ∈ R2 \ {(0, 0)} and t 6= 0, we have

g(t) = f(at, bt) =
a2bt

a4t2 + b2
= f(0, 0) +

a2b

a4t2 + b2
· t, (77)

which implies that g′(0) exists, with g′(0) = a2/b for b 6= 0 and g′(0) = 0 for b = 0. Hence,
the directional derivativeD(a,b)f(0, 0) exists, with its value equal to a2/b for b 6= 0 and 0 for
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b = 0. Note that the value a2/b diverges as (a, b)→ (1, 0), even though D(1,0)f(0, 0) = 0,
meaning that the dependence of D(a,b)f(0, 0) on (a, b) is not continuous. The Jacobian

matrix of f at the origin is given by J = (0 0) ∈ R1×2.

(c) It is easy to see that the function f(x, y) =
√
|xy| is differentiable at (0, 0) along V if and

only if V = (a, 0) or V = (0, a) for some a ∈ R.

Remark 6.3. There is no obvious a priori structure on how DV f depends on V , except to
say that DV f(x) is homogeneous in V , that is, DαV f(x) = αDV f(x) for α ∈ R.

Exercise 6.4. Let Q = (a1, b1)× . . .×(an, bn) ⊂ Rn be an n-dimensional rectangular domain,
and let f : Q→ R. Pick y ∈ Q and V ∈ Rn. Prove the following.

(a) There exists ε > 0 such that the function g(t) = f(y + V t) is defined for all t ∈ (−ε, ε).
(b) If DV f(x) exists at each x ∈ Q, then g′(t) = DV f(y + V t) as long as t is such that g(t)

is well defined, where g(t) is as in the preceding item.

Example 6.5. Let f : Rn → Rk×` be a matrix-valued function. As an example, f(x) = xxT ,
that is, fab(x) = xaxb in components, would be f : Rn → Rn×n, and its partial derivatives are

∂fab
∂xc

(x) =
∂(xaxb)

∂xc
= δacxb + δbcxa, (78)

where δik is the Kronecker delta. The Jacobian matrix of such a function would be a matrix of
dimension m×n, with m = k`, because the space Rk×` of k×` matrices is naturally identified
with the vector space Rm with m = k`. Thus a typical element of the Jacobian matrix would
be Ji,j ∈ R, with i ∈ {1, . . . , k`} and j ∈ {1, . . . , n}. However, it might be more convenient
to index the elements of the Jacobian matrix as Ja,b;j ∈ R, with a ∈ {1, . . . , k}, b ∈ {1, . . . , `}
and j ∈ {1, . . . , n}, since it is a better reflection of the structure of the matrix space Rk×`.
If we follow this convention, then the rows of the Jacobian matrix would be indexed by two
indices, and hence in a certain sense, there would be a “rectangular” set of indices in the row
direction, instead of an “interval” of indices.

Exercise 6.6. Following the spirit of the preceding example, discuss what would be the
Jacobian matrix of a function of the form f : Rm×n → Rk×`. Compute the Jacobian matrix
of the function f : Rm×n → Rn×n given by f(A) = ATA.

Loosely speaking, the way we defined partial derivatives resembles that of separate con-
tinuity. Now we want to introduce a notion of derivative that mirrors joint continuity. To
motivate it, recall that f : R→ Rm is differentiable at y if and only if

f(x) = f(y) + λ(x− y) + o(x− y) as x→ y, (79)

for some (fixed) vector λ ∈ Rm. In a certain sense, differentiable functions are well approxi-
mated locally by linear functions. The following natural extension of this criterion to functions
of several variables was first studied by Karl Weierstrass (1861), Otto Stolz (1893), William
H. Young (1910), and Maurice Fréchet (1911).

Definition 6.7. Let K ⊂ Rn. A function f : K → Rm is called differentiable at y ∈ K if

f(x) = f(y) + Λ(x− y) + o(|x− y|∞), as x→ y, (80)

for some matrix Λ ∈ Rm×n. We call Df(y) = Λ if it exists, the derivative of f at y.

Remark 6.8. In (80), for a matrix Λ ∈ Rm×n and a vector h ∈ Rn, the product Λh ∈ Rm is
given by

(Λh)i = Λi1h1 + . . .+ Λinhn, i = 1, . . . ,m, (81)

where Λik ∈ R is the element in the i-th row and k-th column of Λ. Thus we are implicitly
identifying the elements of Rn and those of Rm with column vectors. However, in general,

http://www-history.mcs.st-andrews.ac.uk/Biographies/Weierstrass.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Stolz.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Young.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Young.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Frechet.html
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Df(y) = Λ should be considered as nothing more than a linear map Λ : Rn → Rm. The
action Λh can still be defined by (81), but the input h and the output w = Λh are simply
vectors in Rn and in Rm, respectively, rather than numbers arranged in a row or column.
This point of view is natural, for instance, when one wants to differentiate functions of the
form f : Rn → Rk×` or f : Rm×n → Rk×`.

Note in particular that if f is differentiable at y ∈ K then f is continuous at y. In contrast,
recall from Example 6.2 that directional differentiability does not imply continuity.

Remark 6.9. Suppose that f : K → Rm is differentiable at y ∈ K. Then for V ∈ Rn fixed
and t ∈ R with t→ 0, we have

g(t) := f(y + V t) = f(y) + tΛV + o(t), (82)

where Λ = Df(y), and we have taken into account o(|V t|∞) = o(t). This leads to

g(t)− g(0)

t
= ΛV + o(1)→ ΛV as t→ 0, (83)

i.e., the directional derivative DV f(y) exists, with DV f(y) = ΛV = Df(y)V . Thus dif-
ferentiability of f implies not only directional differentiability, but also a linear (and hence
continuous) dependence of the derivative DV f(y) on the direction V . In particular, by taking
V = ek, we see that the derivative Df(y) is in fact equal to the Jacobian matrix J(y) of f .

In view of the preceding remark, if we somehow know that f is differentiable, we can
compute the derivative as the Jacobian matrix. However, how do we ascertain differentiability
of f in the first place? The following result gives a practical way to handle this situation.

Theorem 6.10. Let Q = (a1, b1) × . . . × (an, bn) be an n-dimensional rectangular domain,
and let f : Q → Rm. Suppose that all partial derivatives of f exist at each x ∈ Q, and that
the partial derivatives are continuous in Q. Then f is differentiable in Q.

Proof. We will prove only the case n = 2 and m = 1, as this is the simplest case that can
illustrate all the essential ideas. For x, y ∈ Q, we have

f(x)− f(y) = f(x1, x2)− f(y1, x2) + f(y1, x2)− f(y1, y2). (84)

By applying the mean value theorem to g1(t) = f(t, x2) and to g2(t) = f(y1, t), we infer the
existence of ξ ∈ [y1, x1] ∪ [x1, y1] and η ∈ [y2, x2] ∪ [x2, y2], satisfying

f(x)− f(y) = ∂1f(ξ, x2)(x1 − y1) + ∂2f(y1, η)(x2 − y2). (85)

Since both ∂1f : Q → R and ∂2f : Q → R are continuous, we have ∂1f(ξ, x2) → ∂1f(y) and
∂2f(y1, η)→ ∂2f(y) as x→ y. In other words, we have

f(x)− f(y) = ∂1f(y)(x1 − y1) + ∂2f(y)(x2 − y2) + h1(x)(x1 − y1) + h2(x)(x2 − y2), (86)

with both h1(x)→ 0 and h2(x)→ 0 as x→ y. As

|h1(x)(x1 − y1) + h2(x)(x2 − y2)| ≤ (|h1(x)|+ |h2(x)|) |x− y|∞, (87)

we conclude that

f(x)− f(y) = ∂1f(y)(x1 − y1) + ∂2f(y)(x2 − y2) + o(|x− y|∞)

= Λ(x− y) + o(|x− y|∞) as x→ y,
(88)

where Λ = (∂1f(y), ∂2f(y)) ∈ R1×2, establishing that f is differentiable at y. �

Exercise 6.11. Write out a detailed proof of the preceding lemma in the general case.
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Example 6.12. (a) Let f : R2 → R2 be given by f(x, y) = (x cos y, y sinx). Its Jacobian
matrix can be computed as

J(x, y) =
(
∂xf ∂yf

)
=

(
cos y −x sin y
y cosx sinx

)
. (89)

Since J : R2 → R2×2 is continuous in R2, we conclude that f is differentiable in R2 with
Df(x) = J(x).

(b) Let A ∈ Rm×n be a matrix and define f : Rn → Rm by f(x) = Ax. In components, it is

fj(x) = aj1x1 + . . .+ ajnxn, (90)

where ajk are the entries of A, and thus ∂kfj(x) = ajk. This means that the Jacobian
matrix of f is the matrix J(x) = A, independent of x. Since constant functions are
continuous, f is differentiable in Rn with Df(x) = A.

Exercise 6.13. Prove the following.

(a) |x+ y|∞ ≤ |x|∞ + |y|∞ for x, y ∈ Rn.
(b) |Ax|∞ ≤ C|x|∞ for A ∈ Rm×n and x ∈ Rn, where the constant C may depend only on A.

Lemma 6.14 (Chain rule). Let K ⊂ Rn be a set, and let f : K → Rm be a function,
differentiable at y ∈ K. Suppose that U ⊂ Rm, such that f(K) ⊂ U , that is, f(x) ∈ U
for all x ∈ K. Assume that g : U → Rk is differentiable at f(y). Then the composition
g ◦ f : K → Rk, defined by (g ◦ f)(x) = g(f(x)) for x ∈ K, is differentiable at y, with

D(g ◦ f)(y) = Dg(f(y))Df(y). (91)

Proof. By definition, we have

f(x) = f(y) +A(x− y) + h(x) with h(x) = o(|x− y|∞) as x→ y, (92)

where A = Df(y) ∈ Rm×n, and

g(u) = g(f(y)) +B(u− f(y)) + e(u) with e(u) = o(|u− f(y)|∞) as u→ f(y), (93)

where B = Dg(f(y)) ∈ Rk×m. Putting u = f(x) in the latter formula, we get

g(f(x)) = g(f(y)) +B(f(x)− f(y)) + e(f(x))

= g(f(y)) +BA(x− y) +Bh(x) + e(f(x)).
(94)

The proof is complete upon showing that Bh(x) + e(f(x)) = o(|x − y|∞) as x → y. Indeed,
there is some constant C such that |Bh(x)|∞ ≤ C|h(x)|∞, which implies that

|Bh(x)|∞
|x− y|∞

≤ C |h(x)|∞
|x− y|∞

→ 0 as x→ y. (95)

For the other term, we have

|e(f(x))|∞
|x− y|∞

=
|e(f(x))|∞
|f(x)− f(y)|∞

|f(x)− f(y)|∞
|x− y|∞

→ 0 as x→ y, (96)

because
|f(x)− f(y)|∞
|x− y|∞

≤ |A(x− y)|∞ + |h(x)|∞
|x− y|∞

≤ C ′ + |h(x)|∞
|x− y|∞

. (97)

This completes the proof. �

Exercise 6.15. In the context of Definition 6.7, show that f is differentiable at y ∈ K if and
only if there exists a function G : K → Rm×n, continuous at y, such that

f(x) = f(y) +G(x)(x− y) for x ∈ K. (98)

This is of course an extension of Carathéodory’s criterion.
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7. Second order derivatives

Let f : Rn → R be differentiable everywhere in Rn. By the convention that the elements of
Rn are column vectors, it is natural to consider Df(x) as a row vector, that is, Df(x) ∈ R1×n

for x ∈ Rn. Hence, Df can be considered as a function Df : Rn → R1×n, and we can talk
about its differentiability. Then the derivative D2f(y) = DDf(y), if exists, should be a linear
map Λ : Rn → R1×n, satisfying

Df(x) = Df(y) + Λ(x− y) + o(|x− y|∞) as x→ y. (99)

Now, any such map can be written as

Λ(h) = hTA, h ∈ Rn, (100)

for some matrix A ∈ Rn×n. In view of this, we are going to identify D2f(x) with the matrix
A, and write

Df(x) = Df(y) + (x− y)TD2f(y) + o(|x− y|∞) as x→ y. (101)

Taking the transpose of this equation, we get the equivalent form

Df(x)T = Df(y)T +D2f(y)T (x− y) + o(|x− y|∞) as x→ y, (102)

which means that D2f(y)T corresponds to the Jacobian matrix of the function (Df)T at y.

Definition 7.1. Let K ⊂ Rn, and let f : K → R be differentiable everywhere in K. If
Df : K → R1×n is differentiable at y ∈ K in the sense (101), then we say that f is twice
differentiable at y, and call D2f ∈ Rn×n the second order derivative of f at y.

Remark 7.2. In light of (102), f is twice differentiable at y if and only if there is a matrix
H ∈ Rn×n such that

B(x) = B(y) +HT (x− y) + o(|x− y|∞) as x→ y, (103)

where B(x) = Df(x)T is simply the transpose of the Jacobian of f . Note that the Jacobian
of f is the row vector consisting of the partial derivatives of f , and so its transpose B(x) is a
column vector. Hence HT is given by the Jacobian matrix of the function B(x), that is,

HT =


∂1∂1f(y) ∂2∂1f(y) . . . ∂n∂1f(y)
∂1∂2f(y) ∂2∂2f(y) . . . ∂n∂2f(y)

. . . . . . . . . . . .
∂1∂nf(y) ∂n∂1f(y) . . . ∂n∂nf(y)

 , (104)

or

H =


∂1∂1f(y) ∂1∂2f(y) . . . ∂1∂nf(y)
∂2∂1f(y) ∂2∂2f(y) . . . ∂2∂nf(y)

. . . . . . . . . . . .
∂n∂1f(y) ∂n∂2f(y) . . . ∂n∂nf(y)

 . (105)

This matrix is called the Hessian of f at y. Note that if D2f(y) exists, then D2f(y) = H, but
without additional assumptions, the existence of H does not imply the existence of D2f(y).

Example 7.3. (a) Let f : R2 → R be defined by f(x, y) = ax2 +2bxy+cy2, where a, b, c ∈ R
are constants. We can compute the Jacobian matrix of f at (x, y) as

Jf (x, y) =
(
2ax+ 2by 2bx+ 2cy

)
∈ R1×2. (106)

Since this depends on (x, y) ∈ R2 continuously, we conclude that f is differentiable every-
where in R2, with Df(x, y) = Jf (x, y). Now, the Jacobian matrix of (Df)T is

J(x, y) =

(
2a 2b
2b 2c

)
, (107)
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and since it is continuous in R2, we conclude that f is twice differentiable in R2 with
D2f(x, y) = JT = J .

(b) More generally, let A ∈ Rn×n, and let f : Rn → R be defined by f(x) = xTAx, i.e.,

f(x) =

n∑
i,k=1

aikxixk, (108)

where aik ∈ R are the elements of A. Note that for i 6= k, the combination xixk appears
in the sum twice, so that we can in fact write

f(x) =
n∑
i=1

aiix
2
i +

n∑
i=1

i−1∑
k=1

(aik + aki)xixk. (109)

In any case, we have

∂jf(x) =

n∑
i,k=1

aik(δkjxi + δijxk) =

n∑
i=1

aijxi +

n∑
k=1

ajkxk, (110)

and hence

Df(x) = xTA+ xTAT = xT (A+AT ). (111)

For the transpose, we would have Df(x)T = (A + AT )x, and the Jacobian of (Df)T is
simply J = A+ AT . The Hessian of f is then the transpose of J , which is H = A+ AT .
We conclude that f is twice differentiable in Rn with D2f(x) = A + AT . Note that the
Hessian is always symmetric no matter what A is, but this would have been clear from
(109), which shows that replacing A by 1

2(A+AT ) does not change f .

The following is a practical criterion similar to Theorem 6.10 on twice differentiability.

Remark 7.4. Let Q = (a1, b1)× . . .× (an, bn) be an n-dimensional rectangular domain, and
let f : Q → R be a function. Assume that the Hessian H(x) exists at every x ∈ Q, and
H(x) depends on x continuously. The existence of the Hessian in particular guarantees the
existence of all first order partial derivatives of f in Q. Let B(x) ∈ Rn be the (column)
vector consisting of all first order partial derivatives of f at x. Then H(x)T is the Jacobian
of the mapping B : Q → Rn at x, and by Theorem 6.10, continuity of H implies that B is
differentiable in Q, with DB = HT . In particular, B is continuous in Q. Now, since B(x)T is
the Jacobian of f at x, this implies that f is differentiable in Q, with Df = BT . As we have
already established that B is differentiable in Q, we conclude that Df is differentiable in Q,
and that D2f = H.

Differentiable functions are well approximated locally by linear functions. Intuitively speak-
ing, twice differentiable functions should be close to quadratic functions. To make it precise,
we first recall the corresponding one dimensional result. For completeness, we include a proof.

Theorem 7.5. a) If f : (a, b)→ R is twice differentiable at c ∈ (a, b), then there is a function
ψ : (a, b)→ R that is continuous at c with ψ(c) = 0, such that

f(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2
(x− c)2 + ψ(x)(x− c)2, x ∈ (a, b). (112)

b) If f : (a, b) → R is twice differentiable in (a, b), and y, c ∈ (a, b), then there exists ξ ∈
(y, c) ∪ (c, y), such that

f(x) = f(c) + f ′(c)(x− c) +
f ′′(ξ)

2
(x− c)2. (113)



DIFFERENTIATION 21

Proof. a) Assume that f is twice differentiable at c. By definition, this means that f is
differentiable in (c− ε, c+ ε) for some ε > 0, and that there is a function g : (a, b)→ R that
is continuous at c with g(c) = f ′′(c), such that

f ′(x) = f ′(c) + g(x)(x− c), x ∈ (c− ε, c+ ε). (114)

In other words, for any sequence {xn} ⊂ (c− ε, c) ∪ (c, c+ ε), we have

f ′(xn)− f ′(c)
xn − c

→ f ′′(c) as n→∞. (115)

Since [f(x)− f(c)− f ′(c)(x− c)]′ = f ′(x)− f ′(c) and [12(x− c)2]′ = x− c, by L’Hôpital’s rule,
for any sequence {xn} ⊂ (c− ε, c) ∪ (c, c+ ε), this implies that

f(xn)− f(c)− f ′(c)(xn − c)
1
2(xn − c)2

→ f ′′(c) as n→∞. (116)

Note that the function

F (x) =
f(x)− f(c)− f ′(c)(x− c)

1
2(x− c)2

, (117)

is well defined in (a, c)∪(c, b). Then upon setting F (c) = f ′′(c), by (116) we have F continuous
at c. In other words, there is a function ψ : (a, b)→ R that is continuous at c with ψ(c) = 0,
such that

f(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2
(x− c)2 + ψ(x)(x− c)2, x ∈ (a, b). (118)

Thus in a certain sense, the existence of the second derivative guarantees that the function
can be approximated by a quadratic polynomial well.

b) In the standard proof of the mean value theorem, we construct a function of the form
F (x) = f(x) + A(x − c) with F (c) = F (y) = f(c). Here we look for a function F (x) =
f(x) + A(x − c) + B(x − c)2 with F (c) = F (y) = f(c) and F ′(c) = 0, and easily find such a
function as

F (x) = f(x)− f ′(c)(x− c)−
[
f(y)− f(c)− f ′(c)(y − c)

](x− c)2
(y − c)2

. (119)

Then F is twice differentiable in (c, y), with

F ′(x) = f ′(x)− f ′(c)−
[
f(y)− f(c)− f ′(c)(y − c)

]2(x− c)
(y − c)2

, (120)

and

F ′′(x) = f ′′(x)− 2[f(y)− f(c)− f ′(c)(y − c)]
(y − c)2

. (121)

Moreover, F ′(c) exists and F ′ ∈ C ([c, y)). Since F (c) = F (y), by Rolle’s theorem, there is
ξ ∈ (c, y) such that F ′(ξ) = 0. Now recalling that F ′(c) = 0 and F ′ ∈ C ([c, y)), another
application of Rolle’s theorem gives the existence of η ∈ (c, ξ) such that F ′′(η) = 0. In other
words, we have

f(y) = f(c) + f ′(c)(y − c) +
1

2
f ′′(η)(y − c)2, (122)

for some η ∈ (c, y). �

Exercise 7.6. Prove the following.

(a) If f : (a, b)→ R is n times differentiable at c ∈ (a, b), then there is a function ψ : (a, b)→ R
that is continuous at c with ψ(c) = 0, such that

f(x) = f(c) + f ′(c)(x− c) + . . .+
f (n)(c)

n!
(x− c)n + ψ(x)(x− c)n, x ∈ (a, b). (123)
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(b) If f : (a, b) → R is n times differentiable in (a, b), and if x, c ∈ (a, b), then there exists
ξ ∈ (x, c) ∪ (c, x), such that

f(x) = f(c) + f ′(c)(x− c) + . . .+
f (n−1)(c)

(n− 1)!
(x− c)n−1 +

f (n)(ξ)

n!
(x− c)n. (124)

Remark 7.7. Let f : K → R with K ⊂ Rn, and for V ∈ Rn fixed, suppose that DV f(x)
exists at each x ∈ K. Then the dependence of DV f(x) on x can naturally be considered
as a function DV f : K → R. Hence one can talk about its directional differentiability, that
is, about whether DWDV f(x) exists for x ∈ K and W ∈ Rn. Now suppose that f is twice
differentiable at y, i.e.,

Df(x) = Df(y) + (x− y)TD2f(y) + o(|x− y|∞) as x→ y. (125)

If we multiply this from the right by V ∈ Rn, we get

DV f(x) = DV f(y) + (x− y)TD2f(y)V + o(|x− y|∞) as x→ y, (126)

where we have taken into account that DV f(x) = Df(x)V . Next, we put x = y + tW with
W ∈ Rn and t ∈ R small, and infer

DV f(y + tW ) = DV f(y) + tW TD2f(y)V + o(t) as x→ y. (127)

This implies that

DWDV f(y) = W TD2f(y)V. (128)

Remark 7.8. Let Q ⊂ Rn be an n-dimensional rectangular domain, and let f : Q → R be
twice differentiable everywhere in Q. Fix some y ∈ K and V ∈ Rn, and consider the function
g(t) = f(y + tV ). We know that

g′(t) = DV f(y + tV ) = Df(y + tV )V,

g′′(t) = D2
V f(y + tV ) = V TD2f(y + tV )V,

(129)

provided that D2f(y + tV ) exists. Invoking Theorem 7.5a), we get

f(y + tV ) = f(y) + tDf(y)V +
t2

2
V TD2f(y)V + o(t2) as h→ 0. (130)

So not surprisingly, the existence of D2f(y) guarantees that f(y + tV ) can be well approx-
imated by a quadratic polynomial in t. Supposing that y + V ∈ Q, we can also apply
Theorem 7.5b), which yields

f(y + V ) = f(y) +Df(y)V +
1

2
V TD2f(y + sV )V, (131)

for some s ∈ (0, 1). This gives a quantitative information on the size of the error of the linear
approximation f(y + V ) ≈ f(y) +Df(y)V .

Exercise 7.9. Introduce the notion of third derivative D3f , and give a quantitative informa-
tion on the error of the quadratic approximation

f(y + V ) ≈ f(y) +Df(y)V +
1

2
V TD2f(y)V, (132)

in the spirit of (131).

The following is a famous theorem which says that under some assumptions on f , directional
differentiations commute with each other. The latter would in particular imply that the
Hessian matrix is symmetric. An intuitive explanation of this phenomenon is that twice
differentiable functions can be well approximated by quadratic functions, and a quadratic
function has a symmetric Hessian, cf. Example 7.3.
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Theorem 7.10. Let Q ⊂ Rn be an n-dimensional rectangular domain, and let f : Q → R.
Suppose that for V,W ∈ Rn, DVDW f and DWDV f exist and are continuous in Q. Then
DVDW f = DWDV f in Q.

Proof. Fix x ∈ Q, and V,W ∈ Rn. For t, s ∈ R, let

g(s) = f(x+ tV + sW )− f(x+ sW ),

h(t) = f(x+ tV + sW )− f(x+ tV ).
(133)

Notice that

g(s)− g(0) = f(x+ tV + sW )− f(x+ sW )− f(x+ tV ) + f(x) = h(t)− h(0). (134)

Now taking into account that

g′(s) = DW f(x+ tV + sW )−DW f(x+ sW ),

h′(t) = DV f(x+ tV + sW )−DV f(x+ tV ),
(135)

by the mean value theorem, there exist s1 ∈ (s, 0) ∪ (0, s) and t1 ∈ (t, 0) ∪ (0, t) such that
g(s)− g(0) = g′(s1) and h(t)− h(0) = h′(t1). That is, we have

DW f(x+ tV + s1W )−DW f(x+ s1W ) = DV f(x+ t1V + sW )−DV f(x+ t1V ) (136)

Thinking of the left hand side as a function of t, and the right hand side as a function of s,
and applying the mean value theorem once again, we infer

DVDW f(x+ t2V + s1W ) = DWDV f(x+ t1V + s2W ), (137)

for some s2 ∈ (s, 0) ∪ (0, s) and t2 ∈ (t, 0) ∪ (0, t). As both DVDW f and DWDV f are
continuous, by sending s→ 0 and t→ 0, we conclude that DVDW f(x) = DWDV f(x). �

Exercise 7.11. Consider the function f : R2 → R defined by

f(x, y) =

{
xy for − |x| < y < |x|,
0 otherwise.

(138)

Check if the partial derivatives ∂2f
∂x∂y and ∂2f

∂y∂x exist at the origin, and if ∂2f
∂x∂y = ∂2f

∂y∂x there.

8. Inverse functions: Single variable case

Let f : Rn → Rn and α ∈ Rn, and consider the equation f(x) = α for the unknown
x ∈ Rn. If this equation has a unique solution for all α ∈ U , where U ⊂ Rn is some set, the
correspondence α 7→ x defines the inverse function f−1 : U → Rn of f on U .

Definition 8.1. Let K ⊂ Rn and U ⊂ Rn, and let f : K → U be bijective, i.e., for each
α ∈ U there is a unique x ∈ K such that f(x) = α. Then the function g : U → K defined
by g(f(x)) = x for x ∈ K is called the inverse function of f , and denoted by f−1 = g. More
generally, f : K → Rn is said to be invertible in a subset A ⊂ K if the restriction f |A : A→ V ,
defined by f |A(x) = f(x) for x ∈ A, is invertible, where V = f(A) ≡ {f(x) : x ∈ A}.

The inverse function theorem is the answer to the invertibility question from a differentiable
point of view. To motivate it, suppose that f : K → Rn is differentiable at x∗ ∈ K, that is,
there is Λ ∈ Rn×n such that

f(x) = f(x∗) + Λ(x− x∗) + o(|x− x∗|∞) as x→ x∗. (139)

If we define g : Rn → Rn by g(x) = f(x∗) + Λ(x−x∗), then f(x) ≈ g(x) when x is close to x∗.
Moreover, g is invertible if and only if Λ is an invertible matrix. Now, the question is given
that g is invertible, can we conclude that f is invertible in some region A 3 x∗?

Before studying this question in full generality, it will be very instructive to consider the
case n = 1. Suppose that f : (a, b) → R is differentiable at x∗ with f ′(x∗) 6= 0 for some
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x∗ ∈ (a, b). Is it true that f is invertible in (x∗ − r, x∗ + r) for some r > 0? However, the
following exercise shows that the answer is negative even if f is differentiable everywhere.

Exercise 8.2. Consider the function f : R→ R defined by

f(x) =

{
1
2x+ x2 sin 1

x for x 6= 0,

0 for x = 0.
(140)

Show that f is differentiable everywhere, and f ′(0) 6= 0, but f is not invertible in (−r, r) for
any r > 0. Is f ′ continuous at 0?

Thus, we need a stronger assumption, and our updated assumption is that f : (a, b) → R
is continuously differentiable in (a, b), and that f ′(x∗) 6= 0 for some x∗ ∈ (a, b). Under this
assumption, we will be able to prove that f is invertible in (x∗ − r, x∗ + r) for some r > 0.
Roughly speaking, we want to show that for every y ∈ R near y∗ = f(x∗), there is a unique x
near x∗ such that f(x) = y. Since y ≈ y∗, a good initial guess for x is x0 = x∗. Then we can
improve this guess by approximating f(x) by the linear function g0(x) = f(x0)+f ′(x∗)(x−x0).
In other words, we find x1 such that g0(x1) = y, that is,

x1 = x0 +
y − f(x0)

f ′(x∗)
. (141)

We can repeat this procedure, and define the sequence {xk}, where x0 = x∗ and

xk+1 = xk +
y − f(xk)

f ′(x∗)
, k = 0, 1, . . . . (142)

Note that we can write xk+1 = φ(xk) with

φ(t) = t+
y − f(t)

f ′(x∗)
. (143)

Our hope is that {xk} converges to some x, and that the limit solves the equation f(x) = y.
To guarantee convergence, we will use Cauchy’s criterion, which says that if

|xm − xn| → 0 as min{m,n} → ∞, (144)

then there exists x ∈ R such that xk → x as k → ∞. As part of this program, we start by
studying the function φ.

Lemma 8.3. Given any α > 0, there exists δ = δ(α) > 0 such that

|φ(s)− φ(t)| ≤ α|s− t| for all s, t ∈ [x∗ − δ, x∗ + δ]. (145)

Moreover, given any 0 < α < 1 and any 0 < r ≤ δ(α), there exists ε = ε(r, α) > 0 such that
|y − y∗| < ε implies

|φ(t)− x∗| ≤ r for all t ∈ [x∗ − r, x∗ + r]. (146)

Proof. Let δ > 0, whose value will be adjusted later. For s, t ∈ [x∗ − δ, x∗ + δ], we have

φ(t)− φ(s) = t− s+
f(s)− f(t)

f ′(x∗)
=
f(s)− f(t) + f ′(x∗)(t− s)

f ′(x∗)
. (147)

By the mean value theorem, there exists η between s and t, in particular η ∈ [x∗ − δ, x∗ + δ],
such that f(s)− f(t) = f ′(η)(s− t), and hence

φ(t)− φ(s) =
f ′(x∗)− f ′(η)

f ′(x∗)
(t− s). (148)

Now, by continuity of f ′, we can choose δ = δ(α) > 0 such that

|f ′(x∗)− f ′(η)| ≤ α|f ′(x∗)| for any η ∈ [x∗ − δ, x∗ + δ]. (149)
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This establishes the first part of the lemma.
As for the second part, we start with

φ(t)− x∗ = t− x∗ +
y − f(t)

f ′(x∗)
= t− x∗ +

f(x∗)− f(t)

f ′(x∗)
+
y − y∗

f ′(x∗)
. (150)

Let 0 < α < 1 and let 0 < r ≤ δ(α), where δ(α) > 0 is from the first part of this lemma. By
the mean value theorem, there is η ∈ [x∗ − r, x∗ + r] such that f(x∗) − f(t) = f ′(η)(x∗ − t),
and hence

φ(t)− x∗ =
f ′(x∗)− f ′(η)

f ′(x∗)
(t− x∗) +

y − y∗

f ′(x∗)
. (151)

Since r ≤ δ(α), the estimate (149) yields

|φ(t)− x∗| ≤ α|t− x∗|+ |y − y
∗|

|f ′(x∗)|
. (152)

Then letting ε = (1− α)r|f ′(x∗)|, we infer

|φ(t)− x∗| ≤ α|t− x∗|+ |y − y
∗|

|f ′(x∗)|
≤ r, (153)

whenever |t− x∗| ≤ r and |y − y∗| ≤ ε, which completes the proof. �

Now, fix 0 < α < 1, and 0 < r ≤ δ(α), and let ε = ε(r, α) be as in the lemma. Assume
that y ∈ [y∗ − ε, y∗ + ε]. Then for our iteration xk+1 = φ(xk), k = 0, 1 . . ., with x0 = x∗, we
obviously have xk ∈ [x∗ − r, x∗ + r] for all k = 0, 1, . . .. Furthermore, we infer

|xn+1 − xn| = |φ(xn)− φ(xn−1)| ≤ α|xn − xn−1| ≤ . . . ≤ αn|x1 − x0|, (154)

and hence

|xn+k − xn| ≤ |xn+k − xn+k−1|+ . . .+ |xn+1 − xn| ≤ (αn+k−1 + . . .+ αn)|x1 − x0|

≤ αn(1 + α+ α2 + . . .)|x1 − x0| =
αn

1− α
|x1 − x0|,

(155)

showing that {xk} is a Cauchy sequence. Thus there exists x ∈ R such that xk → x as k →∞.
Let us check if x ∈ [x∗ − r, x∗ + r]. Suppose that x 6∈ [x∗ − r, x∗ + r]. Obviously, the point

in [x∗ − r, x∗ + r] that is closest to x would be one of the endpoints, i.e., either c = x∗ − r or
d = x∗+ r. This means that z ∈ [c, d] implies |x− z| ≥ e = min{|x− c|, |x−d|}, where clearly
e > 0. In other words, there is a positive distance between the point x and the interval [c, d].
Now, since xk → x, there exists an index n such that |x − xn| < e. But we have xn ∈ [c, d],
which contradicts with the assertion that |x− z| ≥ e for any z ∈ [c, d]. Therefore, our initial
assumption x 6∈ [c, d] is wrong, and we conclude that x ∈ [c, d].

The next question is if x solves f(x) = y. First, observe that if x = φ(x), i.e., if

x = x+
y − f(x)

f ′(x∗)
, (156)

then y = f(x). So we will try to show x = φ(x). For any n, we have

|x− φ(x)| = |x− xn+1 + φ(xn)− φ(x)| ≤ |x− xn+1|+ |φ(xn)− φ(x)|
≤ |x− xn+1|+ α|xn − x|,

(157)

and the right hand side tends to 0 as n→∞. That is, we have |x− φ(x)| ≤ e for any e > 0,
which means that |x− φ(x)| = 0, and hence x = φ(x).

Finally, we need to show that x is the only solution of f(x) = y in [x∗− r, x∗+ r]. Suppose
that x′ ∈ [x∗ − r, x∗ + r] satisfies f(x′) = y. Then we have x′ = φ(x′), and

|x− x′| = |φ(x)− φ(x′)| ≤ α|x− x′|. (158)

As α < 1, this implies that x′ = x.
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To conclude, so far, we have the following. Pick 0 < α < 1, and let 0 < r ≤ δ(α) and
ε = ε(r, α), where δ(α) and ε(r, α) are as in Lemma 8.3. Then for any y ∈ [y∗ − ε, y∗ + ε],
there exists a unique x ∈ [x∗ − r, x∗ + r] such that f(x) = y. Notice that this does not
mean that each x ∈ [x∗ − r, x∗ + r] is mapped to y = f(x) in [y∗ − ε, y∗ + ε], that is, we
do not immediately get invertibility of f in [x∗ − r, x∗ + r]. This problem can be dealt with
by choosing r > 0 sufficiently small, and by using continuity to guarantee that the interval
[x∗ − r, x∗ + r] is mapped into a region [y∗ − ε∗, y∗ + ε∗] such that f(x) = y can be solved for
all y ∈ [y∗ − ε∗, y∗ + ε∗]. It is implemented in the proof of the following theorem.

Theorem 8.4 (Inverse function theorem, single variable version). Let f : (a, b) → R be
continuously differentiable in (a, b), and let f ′(x∗) 6= 0 for some x∗ ∈ (a, b). Then there exists
r > 0 such that f is invertible in I = (x∗ − r, x∗ + r), and for x ∈ I, the inverse function is
differentiable at f(x) whenever f ′(x) 6= 0, with

(f−1)′(f(x)) =
1

f ′(x)
. (159)

In particular, f−1 and (f−1)′ are continuous at f(x) with x ∈ I whenever f ′(x) 6= 0.

Proof. Let 0 < α < 1, and let ε∗ = ε(r∗, α) with r∗ = δ(α). Then we know that for any
y ∈ [y∗ − ε∗, y∗ + ε∗], there exists a unique x ∈ [x∗ − r∗, x∗ + r∗] such that f(x) = y. Now, by
continuity, there exists 0 < r ≤ r∗ such that |x− x∗| ≤ r implies |f(x)− y∗| ≤ ε∗. So for any
x ∈ [x∗ − r, x∗ + r], there exists a unique z ∈ [x∗ − r∗, x∗ + r∗] satisfying f(z) = f(x), and by
uniqueness, we have z = x. This means that f is invertible in the interval [x∗ − r, x∗ + r].

Let I = (x∗ − r, x∗ + r), and let x̄ ∈ I be such that f ′(x̄) 6= 0. The differentiability of f at
x̄ means that there exists ϕ : (x∗ − r, x∗ + r)→ R, continuous at x̄, such that

f(x) = f(x̄) + ϕ(x)(x− x̄), x ∈ I. (160)

Since ϕ(x̄) = f ′(x̄) 6= 0, by continuity, there is ρ > 0 such that |ϕ(x)| ≥ 1
2 |f
′(x̄)| whenever

|x− x̄| < ρ. Thus for x ∈ (x̄− ρ, x̄+ ρ), we have

x− x̄ =
f(x)− f(x̄)

ϕ(x)
, and |x− x̄| ≤ 2|f(x)− f(x̄)|

|f ′(x̄)|
. (161)

With y = f(x) and ȳ = f(x̄), the latter can be written as

|f−1(y)− f−1(ȳ)| ≤ 2|y − ȳ|
|f ′(x̄)|

, (162)

which shows that f−1 is continuous at ȳ. The first equation in (161) becomes

f−1(y)− f−1(ȳ) = ψ(y)(y − ȳ), where ψ(y) =
1

ϕ(f−1(y))
. (163)

As f−1 is continuous at ȳ and ϕ is continuous at x̄ = f−1(ȳ), the function ψ is continuous at
ȳ, and hence f−1 is differentiable at ȳ, with

(f−1)′(ȳ) = ψ(ȳ) =
1

ϕ(f−1(ȳ))
=

1

f ′(f−1(ȳ))
=

1

f ′(x̄)
. (164)

We conclude that (159) holds whenever x ∈ I satisfies f ′(x) 6= 0. Then (f−1)′ = 1
f ′◦f−1 is

continuous at y = f(x) whenever x ∈ I and f ′(x) 6= 0, because both f ′ and f−1 would be
continuous at x and f(x), respectively. �

Exercise 8.5. The function f(x) = x3 has the inverse f−1(y) = 3
√
y for all y ∈ R, but

f ′(0) = 0. How is this compatible with the inverse function theorem?

Exercise 8.6. Let f : (a, b)→ (c, d) be a continuously differentiable function, whose inverse
f−1 : (c, d)→ (a, b) is also continuously differentiable. Show that f ′(x) 6= 0 for all x ∈ (a, b).
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9. The inverse function theorem

The purpose of this section is to extend the inverse function theorem to n-dimensions.
Let Q = (a1, b1) × . . . × (an, bn) ⊂ Rn be a rectangular domain, and let f : Q → Rn be
differentiable in Q. Then the derivative Df can be considered as a function sending Q to
Rn×n, and we will assume that this function is continuous. In other words, we assume that
f : Q→ Rn is continuously differentiable in Q. Furthermore, we consider some point x∗ ∈ Q,
and suppose that the matrix Df(x∗) ∈ Rn×n is invertible. Recall that a matrix is invertible
(or nonsingular) if and only if its determinant is nonzero. In light of the preceding section,

given any y ∈ Rn that is close to y∗ = f(x∗), the plan is to design a sequence x(i) ∈ Rn,

i = 0, 1, . . ., whose limit would solve the equation f(x) = y. Thus, let x(0) = x∗, and suppose

that x(i) ∈ Rn has been constructed. Then we can approximate f(x) for x ≈ xk by

f(x) ≈ f(x(i)) +Df(x(i))(x− x(i)), (165)

and by continuity of Df , we have Df(x(i)) ≈ Df(x∗) if x(i) ≈ x∗, which yields

f(x) ≈ f(x(i)) +Df(x∗)(x− x(i)). (166)

We expect that if we solve the equation

y = f(x(i)) +Df(x∗)(x(i+1) − x(i)), (167)

for the unknown x(i+1) ∈ Rn, then x(i+1) will be closer than x(i) to the hypothetical solution
x of f(x) = y. Since Df(x∗) is an invertible matrix, we can solve the latter equation as

x(i+1) = x(i) + [Df(x∗)]−1(y − f(x(i))), (168)

and starting with x(0) = x∗, we use it for i = 0, 1, . . . to construct the sequence x(0), x(1), . . ..
This is of course an extension of (142) to n-dimensions. To prove that the sequence {x(i)}
converges, we begin by studying the map defined by the right hand side of (168).

We will be using the notation

Q̄r(y) = {x ∈ Rn : |x− y|∞ ≤ r} ≡ [y1 − r, y1 + r]× . . .× [yn − r, yn + r], (169)

for the n-dimensional cube centred at y ∈ Rn, with the side length 2r.

Lemma 9.1. Let Q ⊂ Rn be a rectangular domain, and let f : Q → Rn be continuously
differentiable in Q. Suppose that Df(x∗) is invertible for some x∗ ∈ Q. Let y ∈ Rn, and
consider the map φ : Q→ Rn defined by

φ(x) = x+ [Df(x∗)]−1(y − f(x)), (170)

a) We have φ(x) = x if and only if f(x) = y.
b) For any α > 0, there exists δ = δ(α) > 0 such that

|φ(x)− φ(x′)|∞ ≤ α|x− x′|∞, x, x′ ∈ Q̄δ(x∗). (171)

c) Let 0 < α < 1, and let δ = δ(α) be as in b). Then for any 0 < r ≤ δ, there exists
ε = ε(α, r) > 0 such that

φ(x) ∈ Q̄r(x∗) whenever x ∈ Q̄r(x∗) and y ∈ Q̄ε(y∗), (172)

where y∗ = f(x∗).

Proof. a) We have φ(x)− x = [Df(x∗)]−1(y − f(x)) or Df(x∗)(φ(x)− x) = y − f(x), so it is
clear that φ(x)− x = 0 and y − f(x) = 0 are equivalent.

b) If x, x′ ∈ Q are close to x∗, then we have

φ(x)− φ(x′) = x− x′ + [Df(x∗)]−1(f(x′)− f(x))

= [Df(x∗)]−1
(
f(x′)− f(x)−Df(x∗)(x′ − x)

)
.

(173)
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Hence there is some C > 0 such that

|φ(x)− φ(x′)|∞ ≤ C
∣∣f(x′)− f(x)−Df(x∗)(x′ − x)

∣∣
∞ . (174)

At this point, we invoke Lemma 9.2, proved below, to imply that the existence of δ = δ(α) > 0
such that

|f(x′)− f(x)−Df(x∗)(x′ − x)|∞ ≤
α

C
|x′ − x|∞, (175)

for all x, x′ ∈ Q̄δ(x∗). Substituting this into the right hand side of (174), we get (171).
c) Now for x ∈ Q, we have

φ(x)− x∗ = [Df(x∗)]−1(y − f(x) +Df(x∗)(x− x∗))
= [Df(x∗)]−1(f(x∗)− f(x) +Df(x)(x− x∗)) + [Df(x∗)]−1(y − y∗).

(176)

Let 0 < α < 1, and let δ = δ(α) > 0 as in the previous paragraph. Then with 0 < r ≤ δ, for
x ∈ Q̄r(x∗), we have

|φ(x)− x∗|∞ ≤ α|x− x∗|∞ + |[Df(x∗)]−1(y − y∗)|∞
≤ αr + C|y − y∗|∞.

(177)

This means that if |y − y∗| ≤ (1− α)r/C, then φ(x) ∈ Q̄r(x∗) whenever x ∈ Q̄r(x∗). �

The following result has been used in the preceding proof.

Lemma 9.2. Let Q ⊂ Rn be a rectangular domain, and let f : Q → Rn be continuously
differentiable in Q. Suppose that Df(x∗) is invertible for some x∗ ∈ Q. Then given any
β > 0, there exists δ = δ(β) > 0 such that

|f(x′)− f(x)−Df(x∗)(x′ − x)|∞ ≤ β|x′ − x|∞, x, x′ ∈ Q̄δ(x∗). (178)

Proof. Let x, x′ ∈ Q, and let g(t) = f(x+ tV ), where V = x′ − x. Then we have

f(x′)− f(x) = g(1)− g(0), (179)

and

g(t) = DV f(x+ tV ) = Df(x+ tV )V. (180)

By the mean value theorem, for each k, there exists 0 < tk < 1 such that gk(1)−gk(0) = g′k(tk),
that is,

fk(x)− fk(x′) = DV fk(x+ tkV ) = Dfk(x+ tkV )V = Dfk(x+ tkV )(x′ − x) (181)

This implies that

fk(x
′)− fk(x)−Dfk(x∗)(x′ − x) = (Dfk(x+ tkV )−Dfk(x∗))(x′ − x), (182)

and so

|fk(x′)− fk(x)−Dfk(x∗)(x′ − x)| ≤
n∑
i=1

|∂ifk(x+ tkV )− ∂ifk(x∗)||x′i − xi|. (183)

Note that ∂ifk is simply an entry in the Jacobian matrix (or the derivative) Df , and by
continuity of Df , the quantity ∂ifk(x + tkV ) − ∂ifk(x∗) would be arbitrarily small if x and
x′ are close to x∗. More specifically, for any β > 0, there exists δ = δ(β) > 0 such that
|∂ifk(z) − ∂ifk(x

∗)| < β/n whenever z ∈ Q̄δ(x
∗). Then we have x + tkV ∈ Q̄δ(x

∗) for
x, x′ ∈ Q̄δ(x∗), and thus

|fk(x′)− fk(x)−Dfk(x∗)(x′ − x)| ≤ nβ
n

max
i
|x′i − xi| ≤ β|x′ − x|∞, (184)

for x, x′ ∈ Q̄δ(x∗). �
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Next, we show that under certain conditions, the sequence {x(i)} converges, and the limit
is the unique solution of the equation f(x) = y.

Lemma 9.3. Let Q ⊂ Rn be a rectangular domain, and let f : Q → Rn be continuously
differentiable in Q. Suppose that Df(x∗) is invertible for some x∗ ∈ Q. Then there exists
δ > 0 with the following property. For any 0 < r ≤ δ, there exists ε = ε(r) > 0, such that the
equation f(x) = y has a unique solution x in Q̄r(x

∗) whenever y ∈ Q̄ε(y∗), where y∗ = f(x∗).

Proof. Let 0 < α < 1, and let δ = δ(α) > 0 be as in Lemma 9.1b). Furthermore, given an
arbitrary 0 < r ≤ δ, let ε = ε(α, r) be as in Lemma 9.1c). Next, we let y ∈ Q̄ε(y∗), and define

the sequence {x(i)} ⊂ Q̄r(x∗) by x(0) = x∗, and x(i+1) = φ(x(i)) for i = 0, 1, . . .. Then we have

|x(i+1) − x(i)|∞ = |φ(x(i))− φ(x(i−1))|∞ ≤ α|x(i) − x(i−1)|∞ ≤ . . . ≤ αi|x(1) − x(0)|∞, (185)

and hence

|x(i+m) − x(i)|∞ ≤ |x(i+m) − x(i+m−1)|∞ + . . .+ |x(i+1) − x(i)|∞
≤ (αi+m−1 + . . .+ αi)|x(1) − x(0)|∞

≤ αi(1 + α+ α2 + . . .)|x(1) − x(0)|∞ =
αi

1− α
|x(1) − x(0)|∞,

(186)

showing that |x(m) − x(i)|∞ → 0 as min{i,m} → ∞. This implies that |x(m)
k − x(i)k |∞ → 0 as

min{i,m} → ∞ for each k ∈ {1, . . . , n}, where x
(i)
k denotes the k-th component of x(i) ∈ Rn.

In other words, for each k ∈ {1, . . . , n}, the scalar sequence x
(0)
k , x

(1)
k , . . . is Cauchy, and hence

there exists xk ∈ [x∗k − r, x∗k + r] such that x
(i)
k → xk as i→∞. If we collect the components

xk into one vector x = (x1, . . . , xn), then we have x ∈ Q̄r(x∗) and x(i) → x as i→∞.
Now we want to show that f(x) = y, or equivalently, that x = φ(x). For any i, we have

|x− φ(x)|∞ = |x− x(i+1) + φ(x(i))− φ(x)|∞ ≤ |x− x(i+1)|+ |φ(x(i))− φ(x)|∞
≤ |x− x(i+1)|∞ + α|x(i) − x|∞,

(187)

and the right hand side tends to 0 as i→∞. That is, we have |x−φ(x)|∞ ≤ e for any e > 0,
which means that |x− φ(x)|∞ = 0, and hence x = φ(x).

Finally, we need to show that x is the only solution of f(x) = y in Q̄r(x
∗). Suppose that

x′ ∈ Q̄r(x∗) satisfies f(x′) = y. Then we have x′ = φ(x′), and so

|x− x′|∞ = |φ(x)− φ(x′)|∞ ≤ α|x− x′|∞. (188)

As α < 1, this implies that x′ = x. �

Before stating the final theorem, let us prove one more preliminary lemma.

Lemma 9.4. Let K ⊂ Rn be a set, and let G : K → Rm×m be a matrix-valued function.
Assume that G is continuous at y ∈ K, and that G(y) is an invertible matrix. Then there
exists r > 0 such that G(x) is invertible whenever x ∈ Q̄r(y). Moreover, [G(x)]−1 is continuous
at y as a matrix-valued function of x.

Proof. Recall that a matrix is invertible if and only if its determinant is nonzero, and the
determinant of a matrix is a polynomial of the matrix entries. In particular, the determinant is
continuous in Rm×m as a function det : Rm×m → R. This means that the function g : K → R,
defined by g(x) = detG(x) for x ∈ K, is continuous in K. Since G(y) is invertible, we
have g(y) 6= 0, and by continuity of g, there exists r > 0 such that x ∈ Q̄r(y) implies
|g(x) − g(y)| < 1

2 |g(y)|, and hence |g(x)| > 1
2 |g(y)| > 0. This means that G(x) is invertible

for all x ∈ Q̄r(y).
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Introducing the notations A = [G(y)]−1, Y = [G(x)]−1 − A, and X = G(x)−G(y), where
x ∈ Q̄r(y), the identity [G(x)]−1G(x) = I is written as

I = (A+ Y )(G(y) +X) = AG(y) + Y G(y) +AX + Y X. (189)

Taking into account that AG(y) = I, we get

Y G(y) = −AX − Y X, (190)

and multiplying both sides by A gives

Y = −AXA− Y XA. (191)

For B,C ∈ Rn×n, and E = BC, we have

|Eik| ≤
n∑
j=1

|BijCjk| ≤ n|B|∞|C|∞, (192)

which yields |E|∞ ≤ n|B|∞|C|∞. We apply this estimate to (191), and infer

|Y |∞ ≤ n2|A|2∞|X|∞ + n2|A|∞|X|∞|Y |∞. (193)

Recall that X = G(x)−G(y), and we choose ρ > 0 so small that n2|A|∞|G(x)−G(y)|∞ ≤ 1
2

for all x ∈ Q̄ρ(y). Then for x ∈ Q̄ρ(y), we have

|Y |∞ ≤ n2|A|2∞|X|∞ + 1
2 |Y |∞. (194)

Subtracting 1
2 |Y |∞ from both sides, and multiplying both sides by 2, we get

|Y |∞ ≤ 2n2|A|2∞|X|∞ for x ∈ Q̄ρ(y). (195)

Since A = [G(y)]−1 is a fixed matrix, and |X|∞ can be made arbitrarily small by choosing
|x− y|∞ small, we conclude that [G(x)]−1 is continuous at y as a function of x. �

We are now ready to state and prove the main result of this section. Introduce the notation

Qr(y) = {x ∈ Rn : |x− y|∞ < r} ≡ (y1 − r, y1 + r)× . . .× (yn − r, yn + r), (196)

for the n-dimensional cube centred at y ∈ Rn, with the side length 2r. This is called an open
cube, as opposed the the closed cube Q̄r(y). Note that we always have Qr(y) ⊂ Q̄r(y).

Theorem 9.5 (Inverse function theorem). Let Q ⊂ Rn be a rectangular domain, and let
f : Q → Rn be continuously differentiable in Q. Suppose that Df(x∗) is invertible for some
x∗ ∈ Q. Then there exists r > 0 such that f is invertible in Qr(x

∗), and the inverse function
is differentiable in f(Qr(x

∗)), with

Df−1(f(x)) = (Df(x))−1, x ∈ Qr(x∗). (197)

In particular, f−1 and Df−1 are continuous in f(Qr(x
∗)), and moreover, there is ε > 0 such

that Qε(y
∗) ⊂ f(Qr(x

∗)).

Proof. Let δ > 0 be as in Lemma 9.3, and let ε∗ = ε(δ). Then Lemma 9.3 guarantees that for
any y ∈ Q̄ε∗(y∗), there exists a unique x ∈ Q̄δ(x∗) such that f(x) = y. By continuity of f ,
there exists 0 < r ≤ δ such that x ∈ Q̄r(x∗) implies f(x) ∈ Q̄ε∗(y∗). So for any x ∈ Q̄r(x∗),
there exists a unique z ∈ Q̄δ(x∗) satisfying f(z) = f(x), and by uniqueness, we have z = x.
This means that f is invertible in Q̄r(x

∗).
Since Df(x∗) is invertible and Df is continuous, by Lemma 9.4, choosing r > 0 smaller if

necessary, we can assume that Df(x) is invertible for all x ∈ Q̄r(x∗).
Let x̄ ∈ Qr(x∗). Then by differentiability of f , there exists G : Qr(x

∗)→ Rn×n, continuous
at x̄, such that

f(x) = f(x̄) +G(x)(x− x̄), x ∈ Qr(x∗). (198)
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Since G(x̄) = Df(x̄) is invertible, by Lemma 9.4, there is ρ > 0 such that A(x) = [G(x)]−1

exists whenever x ∈ Qρ(x̄), and x 7→ A(x) is continuous at x̄. Thus for x ∈ Qρ(x̄), we have

x− x̄ = A(x) (f(x)− f(x̄)) , and so |x− x̄|∞ ≤ n|A(x)|∞|f(x)− f(x̄)|∞. (199)

The norm |A(x)|∞ is a continuous function of x at x̄, and hence there is some constant C > 0
such that n|A(x)|∞ ≤ C for all x ∈ Qρ(x̄), with ρ > 0 possibly smaller than its original value.

In any case, with y = f(x) and ȳ = f(x̄), and for some constant C, we have

|f−1(y)− f−1(ȳ)|∞ ≤ C|y − ȳ|∞, (200)

which shows that f−1 is continuous at ȳ. The first equation in (199) becomes

f−1(y)− f−1(ȳ) = Ψ(y)(y − ȳ), where Ψ(y) = A(f−1(y)). (201)

As f−1 is continuous at ȳ and A is continuous at x̄ = f−1(ȳ), the function Ψ is continuous at
ȳ, and hence f−1 is differentiable at ȳ, with

Df−1(ȳ) = Ψ(ȳ) = A(f−1(ȳ)) = [Df(f−1(ȳ))]−1 = [Df(x̄)]−1. (202)

This establishes (197). Then Df−1 = [Df ◦ f−1]−1 is continuous because both f ′ and f−1

are continuous. �

Example 9.6. Consider the map Ψ : R2 → R2, defined by Ψ(r, φ) = (r cosφ, r sinφ). With
x = x(r, φ) = r cosφ and y = y(r, φ) = r sinφ denoting the components of Ψ, the Jacobian of
Ψ and its determinant are given by

J =

(
∂rx ∂φx
∂ry ∂φy

)
=

(
cosφ −r sinφ
sinφ r cosφ

)
, and detJ = r. (203)

Since J is a continuous function of (r, φ) ∈ R2, the map Ψ is differentiable in R2, with DΨ = J .
Moreover, DΨ(r, φ) is invertible whenever r 6= 0, and

(DΨ)−1 =
1

r

(
r cosφ r sinφ
− sinφ cosφ

)
. (204)

By the inverse function theorem, for any (r∗, φ∗) ∈ R2 with r∗ 6= 0, there exists δ > 0 such
that Ψ is invertible in (r∗ − δ, r∗ + δ)× (φ∗ − δ, φ∗ + δ), with

DΨ−1(x, y) =

(
∂xr ∂yr
∂xφ ∂yφ

)
=

1

r

(
r cosφ r sinφ
− sinφ cosφ

)
, (205)

where r = r(x, y) and φ = φ(x, y) are now understood to be the components of Ψ−1. Note that
Ψ−1 is guaranteed to satisfy Ψ−1(Ψ(r, φ)) = (r, φ) for all (r, φ) ∈ (r∗−δ, r∗+δ)×(φ∗−δ, φ∗+δ),
and nothing more, so that we would have a potentially different inverse function Ψ−1 to Ψ if
we change the centre (r∗, φ∗) ∈ R2 and apply the inverse function theorem again. In practice,
it does not cause much trouble because we usually work in one such region at a time.

Let u : R2 → R be a twice continuously differentiable function, and let v = u ◦Ψ. We will
think of u as a function of (x, y) ∈ R2, and v as a function of (r, φ) ∈ R2. The chain rule gives

Dv(r, φ) = Du(Ψ(r, φ))DΨ(r, φ), (206)

where Dv and Du should be considered as row vectors. In components, this is

∂rv = ∂xu ∂rx+ ∂yu ∂ry = cosφ∂xu+ sinφ∂yu,

∂φv = ∂xu ∂φx+ ∂yu ∂φy = −r sinφ∂xu+ r cosφ∂yu.
(207)

Since u is twice continuously differentiable, the functions in the right hand side are contin-
uously differentiable, and hence we can apply the chain rule again to infer that v is twice
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continuously differentiable. For instance, we can compute

∂2rv = cosφ∂x(cosφ∂xu+ sinφ∂yu) + sinφ∂y(cosφ∂xu+ sinφ∂yu)

= − cosφ sinφ∂xφ∂xu+ cos2φ∂2xu+ cos2φ∂xφ∂yu+ sinφ cosφ∂x∂yu

− sin2φ∂yφ∂xu+ sinφ cosφ∂y∂xu+ sinφ cosφ∂yφ∂yu+ sin2φ∂2yu

=
cosφ sin2φ

r
∂xu+ cos2φ∂2xu−

cos2φ sinφ

r
∂yu+ sinφ cosφ∂x∂yu

− sin2φ cosφ

r
∂xu+ sinφ cosφ∂y∂xu+

sinφ cos2φ

r
∂yu+ sin2φ∂2yu

= cos2φ∂2xu+ 2 sinφ cosφ∂x∂yu+ sin2φ∂2yu,

(208)

where we have used the expressions for ∂xφ and ∂yφ from (205).
Now we consider the inverse Ψ−1 of Ψ in some region given by the inverse function theorem.

In what follows, all points (x, y) will be assumed to be in the region where Ψ is invertible,
and all (r, φ) will be assumed to be in the region where Ψ−1(r, φ) makes sense. So, by the
chain rule, we have

Du(x, y) = Dv(Ψ−1(x, y))DΨ−1(x, y), (209)

which is written in components as

∂xu = ∂rv ∂xr + ∂φv ∂xφ = cosφ∂rv −
sinφ

r
∂φv,

∂yu = ∂rv ∂yr + ∂φv ∂yφ = sinφ∂rv +
cosφ

r
∂φv.

(210)

Note that in the right hand side we have functions of (r, φ), and they should be evaluated at
(r, φ) = Ψ−1(x, y). For instance, we have ∂xu = w ◦Ψ−1, where

w(r, φ) = cosφ∂rv(r, φ)− sinφ

r
∂φv(r, φ). (211)

We see that what w is to ∂xu is exactly what v is to u. Hence we can apply the first equality
of (210) to the pair w and ∂xu, and infer

∂2xu = ∂x(∂xu) = cosφ∂rw −
sinφ

r
∂φw

= cosφ

(
cosφ∂2rv +

sinφ

r2
∂φv −

sinφ

r
∂r∂φv

)
− sinφ

r

(
− sinφ∂rv + cosφ∂φ∂rv −

cosφ

r
∂φv −

sinφ

r
∂2φv

)
= cos2φ∂2rv −

2 sinφ cosφ

r
∂φ∂rv +

sin2φ

r2
∂2φv +

sin2φ

r
∂rv +

2 sinφ cosφ

r2
∂φv.

(212)

A similar computation gives

∂2yu = sin2φ∂2rv +
2 sinφ cosφ

r
∂φ∂rv +

cos2φ

r2
∂2φv +

cos2φ

r
∂rv −

2 sinφ cosφ

r2
∂φv, (213)

and summing the last two expressions, we get

∂2xu+ ∂2yu = ∂2rv +
1

r2
∂2φv +

1

r
∂rv. (214)

This is the well known expression for the Laplacian ∆u = ∂2xu+ ∂2yu in polar coordinates.

Exercise 9.7. In the context of the preceding example, compute ∂2φv, ∂φ∂rv, and ∂x∂yu.
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