
Solutions to selected problems from the midterm exam
Math 222 Winter 2015

1. Derive the Maclaurin series for the following functions. (cf. Practice Problem 4)

(a) L(x) =
∫ x

0

log(1 + t)

t
dt.

Solution: We have the Maclaurin series

log(1 + t) = t− t2

2
+
t3

3
− t4

4
+ . . . , (1)

and so
log(1 + t)

t
= 1− t

2
+
t2

3
− t3

4
+ . . . . (2)

Then a termwise integration yields

L(x) =

∫ x

0

log(1 + t)

t
dt = x− x2

2 · 2
+

x3

3 · 3
− x4

4 · 4
+ . . . . (3)

(b) C(x) =
∫ x

0

1− cos t

t2
dt.

Solution: We have the Maclaurin series

cos t = 1− t2

2!
+
t4

4!
− t6

6!
+ . . . , (4)

and so
1− cos t

t2
=

1

2!
− t2

4!
+
t4

6!
− t6

8!
+ . . . . (5)

Then a termwise integration yields

C(x) =

∫ x

0

1− cos t

t2
dt =

x

2!
− x3

3 · 4!
+

t5

5 · 6!
− t7

7 · 8!
+ . . . . (6)

(c) S(x) =
∫ x

0

et − e−t

t
dt.

Solution: We have the two Maclaurin series

et = 1 + t+
t2

2!
+
t3

3!
+
t4

4!
+
t5

5!
+ . . . , (7)

and

e−t = 1− t+ t2

2!
− t3

3!
+
t4

4!
− t5

5!
+ . . . , (8)

which imply that
et − e−t

t
= 2 +

2t2

3!
+

2t4

5!
+

2t6

7!
+ . . . . (9)

Then a termwise integration yields

S(x) =

∫ x

0

et − e−t

t
dt = 2x+

2x3

3 · 3!
+

2x5

5 · 5!
+

2x7

7 · 7!
+ . . . . (10)

http://www.math.mcgill.ca/gantumur/math222w15/practicehints.pdf


2. Decide if the following series converge. (To be compared with Practice Problem 5)

(a)
∞∑
n=1

an =
∞∑
n=1

log
e

1
n + e−

1
n

2
.

Solution: For n large, we have

e
1
n ≈ 1 +

1

n
+

1

2n2
, and e−

1
n ≈ 1− 1

n
+

1

2n2
, (11)

which imply that

log
e

1
n + e−

1
n

2
≈ log(1 +

1

2n2
) ≈ 1

2n2
, (12)

where in the last step we have used the first term of the Maclaurin series log(1 + x) =

x − x2

2 + . . .. This suggests that the original series
∑
an converges, and that it should be

comparable to the series
∑
n−2. Then the limit comparison test gives us the limit

lim
n→∞

an
n−2

= lim
n→∞

n2 log
e

1
n + e−

1
n

2
. (13)

In order to compute this limit, we replace it by

lim
x→0

log ex+e−x

2

x2
= lim

x→0

log(ex + e−x)− log 2

x2
, (14)

and manipulate it as

lim
x→0

log(ex + e−x)− log 2

x2
= lim

x→0

ex−e−x

ex+e−x

2x

=

(
lim
x→0

1

ex + e−x

)
· lim
x→0

ex − e−x

2x

=
1

2
· lim
x→0

ex − e−x

2x
=

1

2
· lim
x→0

ex + e−x

2
=

1

2
,

(15)

where we have applied L’Hôpital’s rule twice, once in the first step, and once in the penul-
timate step. The conclusion is that

lim
n→∞

an
n−2

=
1

2
, (16)

and hence the series
∑
an converges.

(b)
∞∑
n=1

an =
∞∑
n=1

log
(
n arctan

1

n

)
.

Solution: For n large, we have

arctan
1

n
≈ 1

n
− 1

3n3
, and so log

(
n arctan

1

n

)
≈ log

(
1− 1

3n2
)
≈ − 1

3n2
. (17)

This suggests that the original series
∑
an converges, and that it should be comparable to
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the series
∑
n−2. Then the limit comparison test gives us the limit

lim
n→∞

an
n−2

= lim
n→∞

n2 log
(
n arctan

1

n

)
. (18)

In order to compute this limit, we replace it by

lim
x→0

log arctanx
x

x2
= lim

x→0

log f(x)

x2
, with f(x) =

arctanx

x
, (19)

and apply L’Hôpital’s rule twice, as

lim
x→0

log f(x)

x2
= lim

x→0

f ′(x)
f(x)

2x
= lim

x→0

f ′′(x)f(x)−[f ′(x)]2
[f(x)]2

2
= lim

x→0

f ′′(x)f(x)− [f ′(x)]2

2[f(x)]2
. (20)

Now, from the Maclaurin series

f(x) =
arctanx

x
=
x− x3

3 + . . .

x
= 1− x2

3
+ . . . , (21)

we have f(0) = 1, f ′(0) = 0, and f ′′(0) = −2
3 , which yields

lim
x→0

log f(x)

x2
= lim

x→0

f ′′(x)f(x)− [f ′(x)]2

2[f(x)]2
=
f ′′(0)f(0)− [f ′(0)]2

2[f(0)]2

=
−2

3 · 1− 0

2 · 1
= −1

3
.

(22)

In other words, we have

lim
n→∞

an
n−2

= lim
n→∞

n2 log
(
n arctan

1

n

)
= −1

3
, or lim

n→∞

|an|
n−2

=
1

3
, (23)

and so the series
∑
an converges.

3. Determine the convergence radius of the power series
∞∑
n=0

(
√
n+ an)xn, where a ≥ 0.

Solution: This should be compared with Practice Problem 7. With the n-th term of the given
series denoted by bn = (

√
n+ an)xn, an application of the ratio test leads to

L = lim
n→∞

|bn+1|

|bn|
= lim

n→∞

(
√
n+ 1 + an+1)|x|n+1

(
√
n+ an)|x|n

= |x| · lim
n→∞

√
n+ 1 + an+1

√
n+ an

. (24)

In order to compute the limit, we need to have some idea on how fast the individual terms in√
n+ an grows with as n→∞. In particular, note that an grows faster than

√
n if a > 1, and

that an does not grow at all if a ≤ 1. Therefore we split the problem into two cases. First,
assume that a > 1. Then we have

lim
n→∞

√
n+ 1 + an+1

√
n+ an

= lim
n→∞

√
n+1
an + an+1

an√
n

an + an

an

=
0 + a

0 + 1
= a. (25)
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Now assume that 0 ≤ a ≤ 1. In this case, we have

lim
n→∞

√
n+ 1 + an+1

√
n+ an

= lim
n→∞

√
n+1√
n

+ an+1
√
n

√
n√
n
+ an√

n

=
1 + 0

1 + 0
= 1. (26)

Based on these computations, we conclude that

L = lim
n→∞

|bn+1|

|bn|
=

{
a|x| if a > 1,

|x| if 0 ≤ a ≤ 1.
(27)

In the first case, we have convergence for a|x| < 1 and divergence for a|x| > 1, hence the
convergence radius is R = 1

a . In the second case, we have convergence for |x| < 1 and divergence
for |x| > 1, hence the convergence radius is R = 1. We can also write it in a single formula, as

R = min
{
1,

1

a

}
. (28)

4. Compute the unit tangent T (t), the principal unit normal N(t), and the curvature κ(t), for each
of the following plane curves.

(a) X(t) = (t− sin t, 1− cos t), 0 < t < 2π.
Solution: By a direct computation, we have

X ′(t) = (1− cos t, sin t) (29)

and
|X ′(t)|2 = (1− cos t)2 + sin2 t = 1 + cos2 t− 2 cos t+ sin2 t = 2− 2 cos t, (30)

which yield

T (t) =
X ′(t)

|X ′(t)|
=
( 1− cos t√

2− 2 cos t
,

sin t√
2− 2 cos t

)
=
(√1− cos t√

2
,

sin t√
2− 2 cos t

)
. (31)

Going further, we compute
X ′′(t) = (sin t, cos t), (32)

and

X ′(t)×X ′′(t) =
∣∣∣∣1− cos t sin t

sin t cos t

∣∣∣∣ = (1− cos t) cos t− sin2 t = cos t− 1, (33)

leading to

κ(t) =
|X ′(t)×X ′′(t)|
|X ′(t)|3

=
1− cos t

(2− 2 cos t)
3
2

=
1

2
√
2− 2 cos t

, (34)

where we have taken into account the fact that cos t < 1 for 0 < t < 2π, and thus
| cos t − 1| = 1 − cos t. The latter fact also implies that X ′(t) ×X ′′(t) = cos t − 1 < 0, so
that the curve is “bending to the right”, as the minimal turn from X ′ to X ′′ is clockwise.
Hence the principal normal N(t) is equal to T (t), rotated 90 degree clockwise:

N(t) =
( sin t√

2− 2 cos t
,−
√
1− cos t√

2

)
(35)
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Note: By using the double-angle formula cos t = cos2( t2)− sin2( t2), we get

1− cos t = 1− cos2( t2) + sin2( t2) = sin2( t2) + cos2( t2)− cos2( t2) + sin2( t2) = 2 sin2( t2). (36)

This gives simplifications to many of the formulas above. For example, we have

T (t) =
X ′(t)

|X ′(t)|
=
(
sin( t2), cos(

t
2)
)
, (37)

where we have also used sin t = 2 sin( t2) cos(
t
2), and

κ(t) =
1

4 sin( t2)
. (38)

0 2π

2
T

N

Figure 1: Cycloid, given by X(t) = (t − sin t, 1 − cos t). The
blue part corresponds to the parameter values 0 < t < 2π.

(b) X(t) = (cos3 t, sin3 t), 0 < t < π
2 .

Solution: A direct computation yields

X ′(t) = (−3 cos2 t sin t, 3 sin2 t cos t), (39)

and

|X ′(t)|2 = 9 cos4 t sin2 t+ 9 sin4 t cos2 t = 9 sin2 t cos2 t(cos2 t+ sin2 t) = 9 sin2 t cos2 t. (40)

Since both sin t and cos t are positive for 0 < t < π
2 , we have

|X ′(t)| = 3| sin t cos t| = 3 sin t cos t, (41)

and therefore

T (t) =
X ′(t)

|X ′(t)|
=
(
− 3 cos2 t sin t

3 sin t cos t
,
3 sin2 t cos t

3 sin t cos t

)
= (− cos t, sin t). (42)

Furthermore, we have

X ′′(t) = (6 cos t sin2 t− 3 cos3 t, 6 sin t cos2 t− 3 sin3 t), (43)
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and

X ′(t)×X ′′(t) =
∣∣∣∣ −3 cos2 t sin t 3 sin2 t cos t
6 cos t sin2 t− 3 cos3 t 6 sin t cos2 t− 3 sin3 t

∣∣∣∣
= −18 cos4 t sin2 t+ 9 cos2 t sin4 t− 18 sin4 t cos2 t+ 9 sin2 t cos4 t

= −9 sin4 t cos2 t− 9 sin2 t cos4 t = −9 sin2 t cos2 t.

(44)

Because X ′(t) ×X ′′(t) < 0, we see that the curve is “bending to the right,” which means
that the principal normal N(t) is equal to T (t), rotated 90 degree clockwise:

N(t) = (sin t, cos t). (45)

Finally, let us compute the curvature, as

κ(t) =
|X ′(t)×X ′′(t)|
|X ′(t)|3

=
9 sin2 t cos2 t

27 sin3 t cos3 t
=

1

3 sin t cos t
. (46)

0 1

T

N

(a) Astroid, given by X(t) = (cos3 t, sin3 t).
The blue part corresponds to the parameter
values 0 < t < π

2 .

T

N

(b) Hyperbolic spiral, given by
X(t) =

(
cos t
t , sin tt

)
, t > 0.

Figure 2: Curves from Question 4(b) and Question 4(c).

(c) X(t) =
(cos t

t
,
sin t

t

)
, t > 0.

Solution: Let us start with

X ′(t) =
(−t sin t− cos t

t2
,
t cos t− sin t

t2
)

(47)

and
(−t sin t− cos t)2 + (t cos t− sin t)2

= t2 sin2 t+ cos2 t+ 2t sin t cos t+ t2 cos2 t+ sin2 t− 2t sin t cos t

= t2 + 1,

(48)

Page 6



which imply that

|X ′(t)| =
√
t2 + 1

t2
, (49)

and
T (t) =

X ′(t)

|X ′(t)|
=

1√
t2 + 1

(−t sin t− cos t, t cos t− sin t). (50)

Furthermore, we have

X ′′(t) =
( t2(−t cos t)− 2t(−t sin t− cos t)

t4
,
t2(−t sin t)− 2t(t cos t− sin t)

t4

)
=
(−t3 cos t+ 2t2 sin t+ 2t cos t

t4
,
−t3 sin t− 2t2 cos t+ 2t sin t

t4

)
.

(51)

From the preliminary computation∣∣∣∣ −t sin t− cos t t cos t− sin t
−t3 cos t+ 2t2 sin t+ 2t cos t −t3 sin t− 2t2 cos t+ 2t sin t

∣∣∣∣
= (−t sin t−cos t)(−t3 sin t−2t2 cos t+2t sin t)−(t cos t−sin t)(−t3 cos t+2t2 sin t+2t cos t)

= t4 − 2t2 + 2t2 = t4, (52)

we infer that

X ′(t)×X ′′(t) = t4

t2 · t4
=

1

t2
, (53)

which in its turn gives

κ(t) =
|X ′(t)×X ′′(t)|
|X ′(t)|3

=
1

t2
· t6

(t2 + 1)
3
2

=
t4

(t2 + 1)
3
2

. (54)

Finally, since X ′(t) × X ′′(t) > 0, the curve is “bending to the left”, as the minimal turn
from X ′ to X ′′ is counter-clockwise, and hence the principal normal N(t) is equal to T (t),
rotated 90 degree counter-clockwise:

N(t) =
1√
t2 + 1

(−t cos t+ sin t,−t sin t− cos t). (55)
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