MATH 170C SPRING 2007 PRACTICE PROBLEMS

APRIL 29

1. A Riemann sum associated with an integral $\int_a^b f(x) dx$ is an approximation of the form

$$S_n = \sum_{k=0}^n f(t_k)(s_{k+1} - s_k),$$

where

$$a = s_0 \le t_0 \le s_1 \le t_1 \le s_2 \le \ldots \le s_n \le t_n \le s_{n+1} = b.$$

Any sequence of such sums in which the subdivision of [a, b] is refined in such a way that $\max_k(s_{k+1} - s_k) \to 0$ tends to the Riemann integral I if it exists.

Show that the approximations afforded by the composite midpoint rule, the trapezoidal rule, and Simpson's rule are Riemann sums. Display the values of s_1, s_2, \ldots, s_n in each case.

2. Given the following rounded values of the function

$$f(x) = \sqrt{\frac{2}{\pi}}e^{-x^2/2}$$

calculate approximate values of the integral

$$P(1) = \sqrt{\frac{2}{\pi}} \int_0^1 e^{-t^2/2} dt \approx 0.682689$$

by use of the composite trapezoid rule with $h = 1, \frac{1}{2}$, and $\frac{1}{4}$, and compare the results with the rounded true value. In each case, obtain an upper bound on the error analytically and verify that it is conservative.

x	f(x)
0.00	0.797885
0.25	0.773336
0.50	0.704131
0.75	0.602275
1.00	0.483941

- 3. At what interval in x and to how many decimal places must $f(x) = \cos x$ be tabulated in order to evaluate $\int_0^5 f(x) dx$ correctly to six decimal places by using
 - (a) composite trapezoid rule,
 - (b) composite Simpson's rule?

Additional note: Let Q be a real number, and let \hat{Q} be its approximation. We say that \hat{Q} is correct to n decimal places when \hat{Q} has exactly n digits after the decimal point and its last digit has uncertainty ± 1 or less, i.e., when $|\hat{Q} - Q| \leq 10^{-n}$. For example, 3.15 is an approximation of π , correct to 2 decimal places.

4. Find the degree of precision of the following quadrature rule

$$\int_{-1}^{1} f(x)dx \approx \frac{2}{3} [2f(-\frac{1}{2}) - f(0) + 2f(\frac{1}{2})].$$

5. Consider the initial value problem

$$\begin{cases} y'(t) = f(t, y(t)) & t \in [a, b], \\ y(a) = y_a, \end{cases}$$

$$(1)$$

and assume that f(t, y) satisfies the Lipschitz condition in the variable y on $[a, b] \times (-\infty, \infty)$, so that the above initial value problem has a unique solution on [a, b].

Let w_i , i = 0, 1, ..., n, be the result of Euler's method applied to (1) with stepsize h = (b - a)/n, and let u_i , i = 0, 1, ..., 2n, be the result of the same method applied to (1) with stepsize h/2. Devise a formula to extrapolate w_i and u_{2i} to get a better approximation to y(a + hi), and estimate the convergence of the resulting extrapolation. *Hint*: This is analogous to both the (Richardson) extrapolation for numerical differentiation formulas and the Romberg integration algorithm.