
MATH 170C SPRING 2007 MIDTERM EXAM

SOLUTIONS

Problem 1: Solving an initial value problem

Use any numerical step-by-step method for the calculation of approximate val-
ues of the solution of the following problem for t = 1, 5

4 , 3
2 , 7

4 , 2.

y′(t) = t+ sin y(t), y(1) = π/2.

Discuss the accuracy of the method you used.

Solution. A direct calculation using Euler’s method with step-size 1
4 gives

y(1) = π
2 ≈ 1.5708,

y(5
4) ≈ 1.5708 + 1

4 [1 + sin(1.5708)] ≈ 2.0708,

y(3
2) ≈ 2.0708 + 1

4 [54 + sin(2.0708)] ≈ 2.6027,

y(7
4) ≈ 2.6027 + 1

4 [32 + sin(2.6027)] ≈ 3.1060,

y(2) ≈ 3.1060 + 1
4 [74 + sin(3.1060)] ≈ 3.5524,

where we performed the computations up to 4 decimal digits.
Euler’s method is of order 1, which means the global truncation error is bounded by

a constant multiple of the step-size.

Problem 2: Degree of precision

a). Find the degree of precision of the following quadrature rule:∫ 1

−1
f(x)dx ≈ 1

12
[11f(−3

5
) + f(−1

5
) + f(

1
5

) + 11f(
3
5

)].

b). Use the above result to find the degree of precision of the following quadrature
rule:∫ b

a
g(x)dx ≈ 5d

24
[11g(a+ d) + g(a+ 2d) + g(a+ 3d) + 11g(a+ 4d)],

where d = b−a
5 . Hint: Change of variables.

Solution. (a) Let us check the quadrature rule for the monomials f(x) = xn, n =
0, 1, . . .. When n is odd, the quadrature rule gives 0, because f(−x) = −f(x) for any
x ∈ R. In this case, the exact value of the integral is also 0, since the integration
interval is symmetric with respect to 0, and the function under integration is an odd
function (A function f is said to be odd if f(−x) = −f(x)). So the quadrature rule is

1
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exact for all monomials of odd degree. We will check the even-degree monomials case
by case. For n = 0,∫ 1

−1
1dx = 2, and

1
12

(11 · 1 + 1 + 1 + 11 · 1) = 2.

For n = 2, ∫ 1

−1
x2dx =

2
3
, and

1
12

(11 · 9
25

+
1
25

+
1
25

+ 11 · 9
25

) =
2
3
.

For n = 4,∫ 1

−1
x4dx =

2
5
, and

1
12

(11 · 81
54

+
1
54

+
1
54

+ 11 · 81
54

) =
446

3 · 54
≈ 0.24.

We find that the quadrature rule is not exact for x4, so its degree of precision is less
than 4. We found also that the quadrature is exact for the monomials {1, x, x2, x3}.
Since the quadrature and the integration operations are both linear, and the monomials
{1, x, x2, x3} form a basis for polynomials of degree less than or equal to 3, we conclude
that the degree of precision of the considered quadrature rule is 3.

For n = 2k (i.e., even n), we could use the following formulas for the above calcula-
tions: ∫ 1

−1
x2kdx =

x2k+1

2k + 1

∣∣∣∣1
−1

=
2

2k + 1
=

2
n+ 1

.

and
1
12

(
11(−3

5
)2k + (−1

5
)2k + (

1
5

)2k + 11(
3
5

)2k
)

=
11 · 32k + 1

6 · 52k
=

11 · 3n + 1
6 · 5n

.

Solution. (b) Let us make a change of variables x = ky + e and demand that
a = k · (−1) + e and b = k · 1 + e. Solving these two equations yields k = b−a

2 and
e = a+b

2 . Under this change of variables, the integral becomes∫ b

a
g(x)dx =

∫ 1

−1
g(ky + e)kdy.

If we use the quadrature rule from (a) to this integral, we get∫ b

a
g(x)dx =

∫ 1

−1
g(ky + e)kdy

≈ 1
12

[11kg(−3
5
k + e) + kg(−1

5
k + e) + kg(

1
5
k + e) + 11kg(

3
5
k + e)]

=
b− a

24
[11g(

4
5
a+

1
5
b) + g(

3
5
a+

2
5
b) + g(

2
5
a+

3
5
b) + 11g(

1
5
a+

4
5
b)]

=
5d
24

[11g(a+ d) + g(a+ 2d) + g(a+ 3d) + 11g(a+ 4d)].

We see that the quadrature rule (b) applied to g(x) is equal to the quadrature rule (a)
applied to k · g(kx + e). Since the change of variables is linear and k 6= 0, polynomial
degree will be preserved under this change of variables, i.e., if g(x) is a polynomial of
degree p, then k · g(kx + e) will be a polynomial of degree p. So, the quadrature rule
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(b) applied to a polynomial g(x) of degree p is equal to the quadrature rule (b ) applied
to the polynomial k · g(kx+ e) of degree p. If p ≤ 3, we know from (a) that this rule is
equal to the integral of k · g(kx+ e) over [−1, 1], which in turn is equal to the integral
of g(x) over [a, b]. This proves that the quadrature rule (b) has degree of precision 3.

Problem 3: Numerical integration

Compute the integral

(1)
∫ 1

0

cosx√
x
dx,

correctly to 2 decimal places. Hint: Make the change of variables x = t2.

Solution. Performing the change of variables, we have∫ 1

0

cosx√
x
dx =

∫ 1

0

cos t2

t
d(t2) =

∫ 1

0

cos t2

t
2tdt =

∫ 1

0
2 cos t2dt.

We have derived in a practice problem solution that if one wants to compute a real
number with n correct decimal digits, it is sufficient to compute it with an accuracy
≤ 1

2 · 10−n and round the computed value to a nearest number with n decimal digits
after the decimal point. We have also derived that the total error of the composite
trapezoid rule applied to

∫ b
a f(x)dx can be bounded by

(2) |ÊT (h)| ≤ (b− a)ε+
(b− a)h2

12
max
ξ∈[a,b]

|f ′′(ξ)|,

and the total error of composite Simpson’s rule applied to the same integral satisfies

(3) |ÊS(h)| ≤ (b− a)ε+
(b− a)h4

2880
max
ξ∈[a,b]

|f (iv)(ξ)|,

where in both formulas, ε is the accuracy with which f(x) is calculated in the quadrature
formula.

Let us find the first four derivatives of cos t2:

(cos t2)′ = (− sin t2) · 2t = −2t sin t2,

(cos t2)′′ = (−2t)′ sin t2 − 2t(sin t2)′ = −2 sin t2 − 4t2 cos t2

(cos t2)′′′ = 8t3 sin t2 − 12t cos t2

(cos t2)(iv) = 16t4 cos t2 + 48t2 sin t2 − 12 cos t2.

We can bound the second and the fourth derivatives for the interval t ∈ [0, 1] as

|(cos t2)′′| ≤ 6

|(cos t2)(iv)| ≤ |16t4 − 12|+ 48 ≤ 60.

By using (2), we can bound the total error of the composite trapezoid rule applied
to (1) by

ÊT (h) ≤ ε+
h2

12
· 2 · 6 = ε+ h2.
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We will choose h (and ε) so that the right hand side is bounded by 1
210−2 to ensure

that ÊT (h) ≤ 1
210−2. Neglecting ε as ε � 10−2, we get h ≤ 1

10
√

2
, or in other words,

we need at least d10
√

2e = 15 panels. Choosing 15 panels gives an upper bound
1
210−2 − ( 1

15)2 = 1
1800 ≈ 0.0005 for ε, which is clearly larger than the accuracy of a

typical calculator.
By using (3), let us bound the error of composite Simpson’s rule applied to (1):

ÊS(h) ≤ ε+
h4

2880
· 2 · 60 = ε+

h4

24
.

We will choose h (and ε) so that the right hand side is bounded by 1
210−2 to ensure

that ÊS(h) ≤ 1
210−2. Neglecting ε as ε � 10−2, we get h ≤ 4

√
0.12 ≈ 0.58, or in

other words, we need at least 2 panels. Choosing 2 panels gives an upper bound
1
210−2 − 1

24(1
2)2 = 23

9600 ≈ 0.002 for ε.
The conclusion is that using composite Simpson’s rule saves time as it needs only 2

panels (so 5 evaluations of the function cos) while the composite trapezoid rule needs
15 panels (16 evaluations).

The composite trapezoid rule with 15 panels gives∫ 1

0
2 cos t2dt ≈ 1.8078,

and the composite Simpson rule with 2 panels gives∫ 1

0
2 cos t2dt ≈ 1.8090.

Both of the above computations give 1.81 after rounding up to 2 decimal digits.


