MATH 170C SPRING 2007 PRACTICE PROBLEMS WITH HINTS
TO SOLUTIONS

JUNE 8

1. Show that the boundary value problem for the differential equation
u" = f(x,u,u’), x € [a,b],

with inhomogeneous boundary conditions u(a) = « and u(b) = (3 can be equiva-
lently transformed into a boundary value problem with homogeneous boundary
condition.

SOLUTION. Let g € C?[a,b] be a function such that g(a) = a and g(b) = 3. For
example, we can choose the linear function g(x) = a+ g:g‘ (x—a). If we put u=g+wv,
or in other words, if we define a function v by v = u — g, then it is obvious that
v(a) = u(a) — g(a) = 0 and v(b) = u(b) — g(b) = 0, i.e., v satisfies the homogeneous
boundary conditions. Now by substituting « = g + v into the original equation, we
have

u// _ g// +'U// — f(x,g+v,g/ +U/).
So v has to satisfy
/U//:f(x7g+v,g/+v/) _g//
or
V" = F(x,v,0")
with the right hand side

F(z,v,0") = f(z,g+v,g +v) — g".
If we choose g to be the linear function as indicated above, we have ¢”(z) = 0 and
g (z) = g:a for x € [a, b].

a

2. Find the solution of the boundary value problem

y'(t) +yt) =¢,  y(0)=y(1)=0. (1)

SoLUTION. We use the shooting method to solve the problem analytically. Suppose
that u(t) is the solution of the equation

u”(t) + ul(t) = €, (2)
which satisfies the initial conditions
u(0) =0, u'(0) =0, (3)

and v(t) be the solution of the homogeneous equation

V"(t) +v(t) =0, (4)
1
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which satisfies the initial condition
v(0) =0, v (0) = 1. (5)
Then the function
y(t) = u(t) + s - v(t)
satisfies 3’ (t) +y(t) = e’ and the condition y(0) = 0 for any constant value of s. There

cannot exist additional functions having this property. Therefore, a solution of (1) is
found if s can be determined such that

u(l) +s-v(1) =0.

Now, let us carry out this program. The general solution of the homogeneous differ-
ential equation (4) is
v(t) = Acost + Bsint,

where A and B are constants. These constants should be such that the function v
satisfies the initial conditions (5). We find that A = 0 and B = 1. So the solution of
the initial value problem (4) with the initial conditions (5) is

v(t) = sint.
The general solution of the inhomogeneous differential equation (2) is
u(t) = Ccost + Dsint + u*(t),

where C' and D are constants, and u*(t) is a particular solution of the differential
equation (2). We look for a particular solution in the form u*(t) = Ke' and find that
the constant should be K = % The constants C' and D are determined from the initial
conditions (3) as C = D = —§. So the solution of the initial value problem (2) with
the initial conditions (3) is

1
u(t) = 5(—ecost —esint + €').
The function
1
y(t) = u(t) +s-v(t) = 5(—ecost —esint +e') + s-sint

satisfies (1) and the boundary condition y(0) = 0. We need to determine s so that y
satisfies the other boundary condition y(1) = 0. This condition gives

1 . )
y(1) = 5(—60081—€SIH1+6)+5-51H1 =0,

or
~e(l—cosl—sinl)
o 2sin 1
3. Consider the boundary value problem
y"(xz) = —100y(z), y(0) =y(2m+¢€) =1, (6)

for € > 0, and solve it (analytically) by the shooting method, i.e., find an initial
slope s such that the solution of the initial value problem

Y"(z) = —100Y (x), Y(0)=1,Y'(0) = s, (7)
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is equal to the solution of (6). For small ¢, show that s = 50e + O(€?). Explain
why the computational scheme corresponding to the shooting method would be
difficult to apply for small e.

SOLUTION. The solution to the initial value problem (7) is
Y (z) = cos(10z) + % sin(10z).
The value of the parameter s is found by requiring
Y (27 + €) = cos(20m + 10¢) + 1% sin(207 + 10¢) = 1. (8)

By using the periodicity of the trigonometric functions, we can rewrite this condition
as

cos(10¢) + 1—80 sin(10¢€) = 1.
Now using the Taylor’s formulae
1
cosx =1— 51'2 + O(z)
and
sinz = x — O(z%),
for small values of x, we have

SR — 11— 11002 4 0(eM + S 1106 — O(
cos(10¢e) + 10 sin(10€) = 1 2(106) + O(e*) + 10[106 O(e”)]

=1—50e% + O(e*) + s[e — O(e3)].
Equating this with 1, we have the equation
s[e — O(e®)] = 50€? + O(e*),
and solving this equation for s, we find
5 = 50e + O(e3).

In a computational scheme, we would solve the initial value problem (7) numerically.
Similarly to the above, from (8) we calculate that for small e,

Y (27 +€) =1 — 506 + se + O(€%),

which is very close to 1. So the boundary condition is almost satisfied no matter what
value s has, and we need to compute Y (27 + €) with high accuracy in order to find s
with reasonable accuracy.

4. Consider the initial value problem 3’ =y, y(0) = 1, and show that the approx-
imate solution from Euler’s method with step-size h is given by wy, = (1 + h)F.

SOLUTION. By applying Euler’s method to the problem, we have
W11 = wg + hwg, = (1 4+ h)wg, k=0,1,...,
with wp = 1. Solving this recurrence gives
wpr1 = (1 +h)wp = (1 +h)2wp_y = ... = (1 + h)lwy = (1 + h)FL

5. Show that the differential equation y'(¢t) = at with a € R is solved exactly by
the explicit trapezoid method.
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SOLUTION. The exact solution of the equation is

y(t) = y(0) + S

Upon applying the explicit trapezoid method to the original problem, we have
h h 9 ah?
Wit1 = Wi + §(atk + atp1) = wi + §(ahk + ah(k +1)) = w, + ah®k + 5
for k=0,1,..., with wy = y(0).
Recalling that wy, is the provided approximation to y(hk), we have to prove that

wkzy(hk)=y(0)+%h2k2, k=0,1,....

We will do it by induction. For k = 0, we have wy = y(0) by construction. Now,
assume that wy, = y(hk) holds and prove this implies w1 = y(hk + h).

h? h?
Wit1 = wi, + ah’k + QT =y(0) + %thQ + ah’k + aT

ah? ah?
= y(0) + 7(14:2 + 2k +1) = y(0) + —-(k + 1)2
6. Compute the weights for the polynomial interpolatory quadratures with equidis-
tant quadrature points
b—a
= k+1)—— k=0,1,...
Tk CL+( + )7’L+27 5 Ly , 1,
for n = 0,1, 2 and obtain representations of the quadrature errors.

PARTIAL SOLUTION (n = 1). The quadrature nodes are zp = a + 5(b — a) and
T = a+ %(b — a). We will find the corresponding weights wy and w; by requiring
that the quadrature rule is exact for the polynomials po(xz) = 1 and p;(z) = x. Let us
compute the integrals

f; ldz =b— a, and f; zdz = 3(b—a)?.
So the exactness conditions for the quadrature read as

wo - po(xo) + w1 -po(z1) =wo-1+wy-1=0>b—a,
and

wo - p1(zo) + wi - pr(z1) = wola+ 3(b— a)] + wila + 2(b— a)] = 3(b— a)?.

The solution is wg = wy = b_?“.



