
MATH 170C SPRING 2007 PRACTICE PROBLEMS WITH HINTS
TO SOLUTIONS

JUNE 8

1. Show that the boundary value problem for the differential equation

u′′ = f(x, u, u′), x ∈ [a, b],

with inhomogeneous boundary conditions u(a) = α and u(b) = β can be equiva-
lently transformed into a boundary value problem with homogeneous boundary
condition.

Solution. Let g ∈ C2[a, b] be a function such that g(a) = α and g(b) = β. For
example, we can choose the linear function g(x) = α+ β−α

b−a (x−a). If we put u = g+ v,
or in other words, if we define a function v by v = u − g, then it is obvious that
v(a) = u(a) − g(a) = 0 and v(b) = u(b) − g(b) = 0, i.e., v satisfies the homogeneous
boundary conditions. Now by substituting u = g + v into the original equation, we
have

u′′ = g′′ + v′′ = f(x, g + v, g′ + v′).

So v has to satisfy
v′′ = f(x, g + v, g′ + v′)− g′′

or
v′′ = F (x, v, v′)

with the right hand side

F (x, v, v′′) = f(x, g + v, g′ + v′)− g′′.

If we choose g to be the linear function as indicated above, we have g′′(x) = 0 and
g′(x) = β−α

b−a for x ∈ [a, b].
2. Find the solution of the boundary value problem

y′′(t) + y(t) = et, y(0) = y(1) = 0. (1)

Solution. We use the shooting method to solve the problem analytically. Suppose
that u(t) is the solution of the equation

u′′(t) + u(t) = et, (2)

which satisfies the initial conditions

u(0) = 0, u′(0) = 0, (3)

and v(t) be the solution of the homogeneous equation

v′′(t) + v(t) = 0, (4)
1
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which satisfies the initial condition

v(0) = 0, v′(0) = 1. (5)

Then the function
y(t) = u(t) + s · v(t)

satisfies y′′(t) + y(t) = et and the condition y(0) = 0 for any constant value of s. There
cannot exist additional functions having this property. Therefore, a solution of (1) is
found if s can be determined such that

u(1) + s · v(1) = 0.

Now, let us carry out this program. The general solution of the homogeneous differ-
ential equation (4) is

v(t) = A cos t+B sin t,
where A and B are constants. These constants should be such that the function v
satisfies the initial conditions (5). We find that A = 0 and B = 1. So the solution of
the initial value problem (4) with the initial conditions (5) is

v(t) = sin t.

The general solution of the inhomogeneous differential equation (2) is

u(t) = C cos t+D sin t+ u∗(t),

where C and D are constants, and u∗(t) is a particular solution of the differential
equation (2). We look for a particular solution in the form u∗(t) = Ket and find that
the constant should be K = 1

2 . The constants C and D are determined from the initial
conditions (3) as C = D = − e

2 . So the solution of the initial value problem (2) with
the initial conditions (3) is

u(t) =
1
2

(−e cos t− e sin t+ et).

The function

y(t) = u(t) + s · v(t) =
1
2

(−e cos t− e sin t+ et) + s · sin t

satisfies (1) and the boundary condition y(0) = 0. We need to determine s so that y
satisfies the other boundary condition y(1) = 0. This condition gives

y(1) =
1
2

(−e cos 1− e sin 1 + e) + s · sin 1 = 0,

or

s =
e(1− cos 1− sin 1)

2 sin 1
.

3. Consider the boundary value problem

y′′(x) = −100y(x), y(0) = y(2π + ε) = 1, (6)

for ε > 0, and solve it (analytically) by the shooting method, i.e., find an initial
slope s such that the solution of the initial value problem

Y ′′(x) = −100Y (x), Y (0) = 1, Y ′(0) = s, (7)
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is equal to the solution of (6). For small ε, show that s = 50ε+O(ε3). Explain
why the computational scheme corresponding to the shooting method would be
difficult to apply for small ε.

Solution. The solution to the initial value problem (7) is

Y (x) = cos(10x) +
s

10
sin(10x).

The value of the parameter s is found by requiring

Y (2π + ε) = cos(20π + 10ε) +
s

10
sin(20π + 10ε) = 1. (8)

By using the periodicity of the trigonometric functions, we can rewrite this condition
as

cos(10ε) +
s

10
sin(10ε) = 1.

Now using the Taylor’s formulae

cosx = 1− 1
2
x2 +O(x4)

and
sinx = x−O(x3),

for small values of x, we have

cos(10ε) +
s

10
sin(10ε) = 1− 1

2
(10ε)2 +O(ε4) +

s

10
[10ε−O(ε3)]

= 1− 50ε2 +O(ε4) + s[ε−O(ε3)].

Equating this with 1, we have the equation

s[ε−O(ε3)] = 50ε2 +O(ε4),

and solving this equation for s, we find

s = 50ε+O(ε3).

In a computational scheme, we would solve the initial value problem (7) numerically.
Similarly to the above, from (8) we calculate that for small ε,

Y (2π + ε) = 1− 50ε2 + sε+O(ε3),

which is very close to 1. So the boundary condition is almost satisfied no matter what
value s has, and we need to compute Y (2π + ε) with high accuracy in order to find s
with reasonable accuracy.

4. Consider the initial value problem y′ = y, y(0) = 1, and show that the approx-
imate solution from Euler’s method with step-size h is given by wk = (1 + h)k.

Solution. By applying Euler’s method to the problem, we have

wk+1 = wk + hwk = (1 + h)wk, k = 0, 1, . . . ,

with w0 = 1. Solving this recurrence gives

wk+1 = (1 + h)wk = (1 + h)2wk−1 = . . . = (1 + h)k+1w0 = (1 + h)k+1.

5. Show that the differential equation y′(t) = αt with α ∈ R is solved exactly by
the explicit trapezoid method.
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Solution. The exact solution of the equation is

y(t) = y(0) +
α

2
t2.

Upon applying the explicit trapezoid method to the original problem, we have

wk+1 = wk +
h

2
(αtk + αtk+1) = wk +

h

2
(αhk + αh(k + 1)) = wk + αh2k +

αh2

2
,

for k = 0, 1, . . ., with w0 = y(0).
Recalling that wk is the provided approximation to y(hk), we have to prove that

wk = y(hk) = y(0) +
α

2
h2k2, k = 0, 1, . . . .

We will do it by induction. For k = 0, we have w0 = y(0) by construction. Now,
assume that wk = y(hk) holds and prove this implies wk+1 = y(hk + h).

wk+1 = wk + αh2k +
αh2

2
= y(0) +

α

2
h2k2 + αh2k +

αh2

2

= y(0) +
αh2

2
(k2 + 2k + 1) = y(0) +

αh2

2
(k + 1)2.

6. Compute the weights for the polynomial interpolatory quadratures with equidis-
tant quadrature points

xk = a+ (k + 1)
b− a
n+ 2

, k = 0, 1, . . . , n,

for n = 0, 1, 2 and obtain representations of the quadrature errors.
Partial solution (n = 1). The quadrature nodes are x0 = a + 1

3(b − a) and
x1 = a + 2

3(b − a). We will find the corresponding weights w0 and w1 by requiring
that the quadrature rule is exact for the polynomials p0(x) = 1 and p1(x) = x. Let us
compute the integrals∫ b

a 1dx = b− a, and
∫ b
a xdx = 1

2(b− a)2.

So the exactness conditions for the quadrature read as

w0 · p0(x0) + w1 · p0(x1) = w0 · 1 + w1 · 1 = b− a,
and

w0 · p1(x0) + w1 · p1(x1) = w0[a+ 1
3(b− a)] + w1[a+ 2

3(b− a)] = 1
2(b− a)2.

The solution is w0 = w1 = b−a
2 .


