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Elliptic boundary value problem

• H := H1
0(Ω)

• A : H → H′ linear, self-adjoint, H-elliptic
(〈Av, v〉 ≥ c‖v‖2

H v ∈ H)

Find u ∈ H s.t. Au = f (f ∈ H′)

• Example: Reaction-diffusion equation H = H1
0(Ω)

〈Au, v〉 =

∫
Ω
∇u · ∇v + κ2uv



Equivalent discrete problem

[Cohen, Dahmen, DeVore ’01, ’02]

• Wavelet basis Ψ = {ψλ : λ ∈ ∇} of H
• Stiffness A = 〈Aψλ, ψµ〉λ,µ and load f = 〈f , ψλ〉λ

Linear equation in `2(∇)

Au = f, A : `2(∇) → `2(∇) SPD and f ∈ `2(∇)

• u =
∑

λ uλψλ is the solution of Au = f
• ‖u− v‖`2 h ‖u− v‖H with v =

∑
λ vλψλ



Galerkin solutions

• ||| · ||| := 〈A·, ·〉
1
2 is a norm on `2

• Λ ⊂ ∇
• IΛ : `2(Λ) → `2(∇) incl., PΛ := I∗Λ
• AΛ := PΛAIΛ : `2(Λ) → `2(Λ) SPD
• fΛ := PΛf ∈ `2(Λ)

Lemma

A unique solution uΛ ∈ `2(Λ) to AΛuΛ = fΛ exists, and

|||u− uΛ||| = inf
v∈`2(Λ)

|||u− v|||



Galerkin orthogonality

• supp w ⊂ Λ, AΛuΛ = fΛ
• 〈f− AuΛ, vΛ〉 = 0 for vΛ ∈ `2(Λ)

|||u− w|||2 = |||u− uΛ|||2 + |||uΛ − w|||2

•



Error reduction

|||u− uΛ|||2 = |||u− w|||2 − |||uΛ − w|||2

Lemma [CDD01]

Let µ ∈ (0, 1), and Λ be s.t.

‖PΛ(f− Aw)‖ ≥ µ‖f− Aw‖

Then we have

|||u− uΛ||| ≤
√

1− κ(A)−1µ2 |||u− w|||



Ideal algorithm

SOLVE[ε] → uk

k := 0; Λ0 := ∅
do

Solve AΛk uk = fΛk

rk := f− Auk

determine a set Λk+1 ⊃ Λk, with minimal
cardinality, such that ‖PΛk+1rk‖ ≥ µ‖rk‖
k := k + 1

while ‖rk‖ > ε



Approximate Iterations

Approximate right-hand side

RHS[ε] → fε with ‖f− fε‖`2 ≤ ε

Approximate application of the matrix

APPLYA[v, ε] → wε with ‖Av− wε‖`2 ≤ ε

Approximate residual

RES[v, ε] := RHS[ε/2]− APPLYA[v, ε/2]



Best N-term approximation

Given u ∈ H, approximate u using N wavelets

ΣN :=

{∑
λ∈Λ

aλψλ : #Λ ≤ N, aλ ∈ R

}

• ΣN is a nonlinear manifold



Nonlinear vs. linear approximation in Ht(Ω)

Using wavelets of order d

Nonlinear approximation
If u ∈ Bt+ns

p (Lp) with 1
p = 1

2 + s for some s ∈ (0, d−t
n )

εN = dist(u,ΣN) . N−s

Linear approximation
If u ∈ Ht+ns for some s ∈ (0, d−t

n ], uniform refinement

εj = ‖uj − u‖ . N−s
j

• [Dahlke, DeVore]: u ∈ Bt+ns
p (Lp)\Ht+ns "often"



Approximation spaces

• Approximation space As := {v ∈ H : dist(v,ΣN) . N−s}
• Quasi-norm |v|As := ‖v‖H + supN∈N Nsdist(v,ΣN)

• Bt+ns
p (Lp) ⊂ As with 1

p = 1
2 + s for s ∈ (0, d−t

n )



Complexity of the problem

• U : f 7→ ũ algorithm for solving Au = f
• cost(U,F) := supf∈F cost(U, f )
• e(U,F) := supf∈F ‖U(f )− u‖H
• comp(ε,F) := inf{cost(U,F) : over all U s.t. e(U,F) ≤ ε}
• Bs

r := {v ∈ As : |v|As ≤ r}
• U(f ) lin. comb. of N wavs. ⇒ cost(U, f ) & N

Since v ∈ As ⇔ dist(v,ΣN) . N−s|v|As , we have

comp(ε,A(Bs
r)) & r1/sε−1/s



Requirements on the subroutines

Assume: u ∈ As for some s ∈ (0, d−t
n )

Complexity of RHS
RHS[ε] → fε terminates with ‖f− fε‖`2 ≤ ε

• #supp fε . ε−1/s|u|1/s
As

• cost . ε−1/s|u|1/s
As + 1

Complexity of APPLYA

For #supp v <∞
APPLYA[v, ε] → wε terminates with ‖Av− wε‖`2 ≤ ε

• #supp wε . ε−1/s|vTΨ|1/s
As

• cost . ε−1/s|vTΨ|1/s
As + #supp v + 1



The subroutine APPLYA

• Ψ is piecewise polynomial wavelets that are sufficiently
smooth and have sufficiently many vanishing moments

• A is either differential or singular integral operator

Then we can construct APPLYA satisfying the requirements.
Ref: [CDD01], [Stevenson ’04], [Gantumur, Stevenson ’05,’06], [Dahmen, Harbrecht,

Schneider ’05]



Optimal expansion

Lemma [Gantumur, Harbrecht, Stevenson ’05]

Let u ∈ Bs
r and µ ∈ (0, κ(A)−

1
2 ). Then the smallest set

Λ ⊃ supp w with

‖PΛ(f− Aw)‖ ≥ µ‖f− Aw‖

satisfies
#Λ−#supp w . r1/s‖f− Aw‖−1/s



Optimal complexity

Theorem [GHS05]

SOLVE[ε] → w terminates with ‖f− Aw‖`2 ≤ ε. Whenever
u ∈ Bs

r with s ∈ (0, d−t
n ), we have

• #supp w . r1/sε−1/s

• cost . r1/sε−1/s

Further result
• Can be extended to mildly nonsymmetric and indefinite

problems [Gantumur ’06]



Sketch of a proof

#ΛK+1 =
K∑

k=0

#Λk+1 −#Λk

. r1/s
K∑

k=0

‖f− Auk‖−1/s

. r1/s‖f− AuK‖−1/s

< r1/sε−1/s



Algorithm with truncated residuals

[Harbrecht, Schneider ’02], [Berrone, Kozubek ’04]

SOLVE[ε] → uk

k := 0; Λ0 := ∅
do

Solve AΛk uk = fΛk

r?
k := PΛ?

k
(f− Auk)

determine a set Λk+1 ⊃ Λk, with minimal
cardinality, such that ‖PΛk+1r?

k‖ ≥ µ‖r?
k‖

k := k + 1
while ‖r?

k‖ > ε



Error reduction

• r?
k = PΛ?

k
(f− Auk) truncated residual

• rk = f− Auk full residual

Suppose Λ?
k = V(Λk) is such that

‖PΛ?
k
(f− Auk)‖ ≥ η‖f− Auk‖

then we have

‖PΛk+1rk‖ = ‖PΛk+1r?
k‖ ≥ µ‖r?

k‖ ≥ µη‖rk‖

→ error reduction



Cardinality of expansion

Λ̃ = V(Λ, Λ̄), Λ ⊂ Λ̄ trees
• |||uΛ̃ − uΛ||| ≥ η|||uΛ̄ − uΛ|||
• Λ ⊂ Λ̃ ⊆ V(Λ,∇)

• #V(Λ,∇) . #Λ

• #(Λ̃ \ Λ) . #(Λ̄ \ Λ)

Lemma
Let u ∈ Bs

r and µ ∈ (0, ηκ(A)−
1
2 ). Then with Λ? = V(Λ,∇), the

smallest tree Λ̆ ⊃ Λ with

‖PΛ̆r?‖ ≥ µ‖r?‖

satisfies
#(Λ̆ \ Λ) . r1/s‖u− uΛ‖−1/s



Optimal convergence rate

Theorem
SOLVE[ε] → w terminates with ‖u− w‖`2 . ε. Whenever u ∈ Bs

r
with s ∈ (0, d−t

n ), we have

• #supp w . r1/sε−1/s

• cost . r1/sε−1/s



Activable sets

Λ? = V(Λ,∇):

• #Λ? . #Λ

• ‖PΛ?(f− AuΛ)‖ ≥ η‖f− AuΛ‖

[Berrone, Kozubek ’04]:

• For λ ∈ Λ, add µ to Λ? if ψµ intersects with a contracted
support of ψλ and |µ| = |λ|+ 1



FEM error estimators

[Verfürth], [Stevenson ’04], [Dahmen, Schneider, Xu ’00], [Bittner, Urban ’05]

• f ∈ L2(Ω)

• S := span{ψλ : λ ∈ Λ}
• T mesh corresponding to S

ET (w) & ‖f − Aw‖H−1(Ω) for w ∈ S

if
• Λ is a graded tree
• Duals Ψ̃ are compactly supported



Saturation

[Verfürth], [Morin, Nochetto, Siebert ’00], [Stevenson ’04], [Mekchay, Nochetto ’04]

With S? = span{ψλ : λ ∈ Λ? ⊃ Λ}

ET (w) . ‖uS? − w‖H1(Ω) for w ∈ S

if
• f is a piecewise polynomial w.r.t. T
• “Bubble functions” are in S?, i.e., duals Ψ̃ are compactly

supported

‖PΛ?(f− AuΛ)‖ & ‖uS? − uS‖H1(Ω) & ET (uS)

& ‖f − AuS‖H−1(Ω)

& ‖f− AuΛ‖



Activable sets

Λ? = V(Λ,∇):

• For ∆ ∈ T , add µ to Λ? if ψ̃µ intersects with ∆ and
|µ| ≤ |λ|+ N
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