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Gravitational wave astronomy

Recently constructed gravitational wave detectors: LIGO, VIRGO, GEO600,
TAMAS00.

The two L-shaped LIGO observatories (in Washington and Louisiana), with legs
at 4km, have phenomenal sensitivity, on the order of 1071°m to 10~8m. effective
ranges (1.4Sol): 7-15MPc
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Initial value formulation of the Einstein equations

The Lorentzian manifold (M, g) satisfies
G(g) == Ric(g) — 2R(g)g =0.
Suppose M =R x L, each X; = {t} x L is spacelike. On each X, one has
R(g) — K2 + (trgK)* =0,
divgK — d(trgK) = 0.
Conversely, if (C) holds on some Riemannian manifold (£, g), then there are
® a Lorentzian manifold (M, g)

e and an embeddingf6: X - M

such that G(g) = 0 and that 6..g and 6, K are the first and second fundamental
forms of 6 C M [Choquet-Bruhat ’52].
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The conformal method

Let (£, §) be a Riemannian manifold, o be a symmetric tensor with divgo = 0,
trgo =0, and let T € C*(X). With ¢ a positive scalar, and w a vector field, put

g=0"G, K=0¢?(0+Lew)+ 31*g,
where Lyw = £,,§ — 2§ divaw. Then (C) is equivalent to
—8A5¢ + R(§)¢ + 21d°—|o + Low[; 07 =0,
—divgLgw + 3pPdT =0.
Let us rewrite the above as

Ad + R + 21¢° —a(w)dp " = A +f(w, dp) =0,
Bw + ¢°dT = 0.

Note that tryK = T and that if T = const the system decouples.
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Constant mean curvature solutions

[York, O’Murchadha, Isenberg, Marsden, Choquet-Bruhat, Moncrief, Maxwell, et al.]
Ad +f(w,¢) =0, Bw=0.
Sub- and super-solutions, or barriers:
Ap-+fw d-) <0, Ady+flw dy) >0

For any s > 0, the constraint equation is equivalent to

Ab+sd=sd—fw,d) < &= (A+s])sp—flw,d)).
If s > 0 is sufficiently large, the map

Tl b=, )i (A+sD) Hsd —f(w, b))

is monotone increasing. Also, T(¢_) > ¢_ and T(d ) < ¢,. The iteration
Pri1 =T(Pn),  Po=0d-,

converges to a fixed point of T.
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Super-solution

We want to find ¢ > 0 such that
Ad +f(w, ) = Ad + R + 21¢p® —a(w)p~7 > 0.

Recall a(w) =|o + L@w|2, and assume that w is fixed (w = 0 in CMC case).
Assume that T = const > 0, R = const, and let ¢ = const > 0.

Rp + 21¢p° —a(w)dp" > 21dp®+Rdp— ¢ "supa(w)
&7 (3191 + RP® —sup a(w))

Choosing ¢ > 0 sufficiently large one can ensure that the above is nonnegative.
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Near constant mean curvature solutions

[Isenberg, Moncrief, Choquet-Bruhat, York, Allen, Clausen, et al.]
Ad+f(w,¢) =0, Bw+¢d®dr=0.
With S : ¢ — —B~1(¢p®dT) this can be written as
AP +1(S(d), ¢) =0.
Sub- and super-solutions make sense, but in general
T:d = (A+sD) 7 sh—f(S(d), d))

is not monotone. Nevertheless, when dt is small T is almost monotone, and the
iteration ¢, 1 = T(b,,) converges.
Now one needs global sub- and super-solutions, e.g., ¢+ > 0 such that

Ad)+ +f(W, d)+) 2 O,

forallw € S([0, ¢,]).
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Global super-solution

We want to find ¢ > 0 such that
Ad +1f(w, d) =Ad + R + %Td)5 —aw)p7 > 0.

for all w € S([0, ¢]). Recall that a(w

E”Iptlc estimates give

a(w) <p+qlold, WithQ~\dTl2
Assume that T = const > 0, R = const, and let ¢ = const > 0, s0 ||p||co = ¢.
RO+ 10— awo 7 > J0° 4 RO~ T 4 70
=(37-a)¢° + RO —pd~".

If g < %T, choosing ¢ > 0 sufficiently large one can ensure that the above is
nonnegative.
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Fixed point approach

[Holst, Nagy, GT '07, '08]

Let 0 < ¢_ < ¢ < oo be global barriers, i.e.,
Ad_+f(w, d-) <0,  Ady +f(w, dy) >0,
forallw € S([b_, ¢]). Then for s > 0 large, and any w € S([p_, b, ])
Ty b= (A+sD) Hsh—f(w, )
is monotone increasingon U = [¢_, ¢ ], andfor p € U
T()) =Ts(g) () < Tsig)(d4) < by T(d) = -,

so T: U — U. Since T is compact, there is a fixed point in U.
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Global super-solution

[Holst, Nagy, GT '07, ’08]

We want to find ¢ > 0 such that
Ad +f(w, ) = Ad + R + 21dp® — a(w)p~7 > 0.
for all w € S([0, ¢]). Recall that
aw) <p+alo)3
Assume that R = const > 0, T = const, and let ¢ = const > 0.

R + 21¢° —a(w)dp 7 = 21d° + RO —pdp " — qdp " p*?
> ¢ (RGP —(q— 1) —p)

If p is small enough (depending on how large q is), choosing ¢ > 0 sufficiently
small one can ensure that the above is nonnegative.
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Extensions

e The framework is extended to allow for rough data, e.g., metrics in H* with
s> 2
2

e The global super-solution construction is extended to all metrics in the
positive Yamabe class (closed manifolds)
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Ongoing work / wish list

Asymptotically flat manifolds

Manifolds with boundary, black hole initial data

e Zero and negative Yamabe classes, large data

Full parameterization of the solution space
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Finite element methods

Model problem: —Au = f, or
a(u,v) = (Vu, Vv) = (f,v) forallveH
Let S C H be a linear subspace. Consider it € S such that
a(i,v) = (f,v) forallves$
This gives the Galerkin orthogonality
alu—1,v)=0 forallves

oru—1i L, S. {tis called the Galerkin approximation of u from S.
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Convergence of adaptive finite element methods

Typical finite element mesh

S is the space of continuous functions which are linear on each triangle.
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Linear vs. nonlinear approximation

Let So C S; C ... C H with corresponding meshes Ty, Ty, . . ., and Galerkin
approximations ug, uy, . . ..

Jlu — willa = dist(1, S:) < Chi s

where h; is the maximum diameter of the triangles in T;. If T4 is the uniform
refinement of Tj, then h; ~ 2~ and the number of vertices of T; is N; ~ 2™ in

n-dimension.
u— il = dist(w, $;) < C27 Y Juflus < CNG ™ Ju s

Is T; optimal among meshes with N; vertices?
Given a mesh, let S(T) be the corresponding FE space. Let

XN =U{S(T): T is a refinement of To and #T < N}

Then with % =141

dist(u, In) < CNTE/™ Jufyysp
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Adaptive finite element methods

In a typical AFEM, the sequence v, is generated as follows. Start with some
initial mesh Ty. Seti = 0, and repeat

e Solve for u;
e Estimate the distribution of u; — u over the triangles of T;
e Refine the triangles of T; with largest error, to get T; ;1
o i+ +
We say the method is optimal if

s —ufla < NNl
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Linear convergence

From the Galerkin orthogonality
alu—ui41,v) =0 for all v e S 1,
taking v = w11 — uy, we have
w—wilf = [lw = wiall3 + [l — w3

So if
[wivs —uifla = cflu—uila,

with constant ¢ € (0, 1), we have

u— w3 = lu—willa = uen —wills < (1 —c?)u—wlf}.
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Quasi-orthogonality for semilinear problems

Let us consider
a(uw,v) + (f(u),v) =0, Vv eH

We have

u—will2 = [lu—wipal2 + i —will +2a(u —wipr, i —us)

(f(w) — fluiga), wipr —wi)

alu — i, Wipr —uq)
ClIf(w) — flugp o) lwirs —uil

Cllw —wisal[futivr — wil|

IN NN

Chipafu—wipa [l [wiss — wilfre
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Ongoing work / Open problems

e Geometry

® Boundary conditions

e Coupled system

e Fast solution of the discretized system
e Higher order elements, flexible mesh

® Problems with genuinely critical exponent
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