
Constraint equations in general relativity Convergence of adaptive finite element methods

CRM/McGill Applied Mathematics Seminar

On analysis and numerical treatment
of Einstein’s constraint equations

Gantumur Tsogtgerel

University of California, San Diego

Part 1: Joint with M. Holst and G. Nagy
Part 2: Joint with M. Holst

March 13, 2009



Constraint equations in general relativity Convergence of adaptive finite element methods

Gravitational wave astronomy

Recently constructed gravitational wave detectors: LIGO, VIRGO, GEO600,
TAMA300.

The two L-shaped LIGO observatories (in Washington and Louisiana), with legs
at 4km, have phenomenal sensitivity, on the order of 10−15m to 10−18m. effective
ranges (1.4Sol): 7-15MPc



Constraint equations in general relativity Convergence of adaptive finite element methods

Initial value formulation of the Einstein equations

The Lorentzian manifold (M, g) satisfies

G(g) := Ric(g) − 1
2
R(g)g = 0.

Suppose M = R× Σ, each Σt = {t}× Σ is spacelike. On each Σt, one has

R(g) − |K|2g + (trgK)2 = 0,

divgK − d(trgK) = 0.
(C)

Conversely, if (C) holds on some Riemannian manifold (Σ,g), then there are

• a Lorentzian manifold (M, g)

• and an embedding θ : Σ → M

such that G(g) = 0 and that θ∗g and θ∗K are the first and second fundamental
forms of θΣ ⊂ M [Choquet-Bruhat ’52].
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The conformal method

Let (Σ, ĝ) be a Riemannian manifold, σ be a symmetric tensor with divĝσ = 0,
trĝσ = 0, and let τ ∈ C∞(Σ). With φ a positive scalar, and w a vector field, put

g = φ4ĝ, K = φ−2(σ + Lĝw) + 1
3
τφ4ĝ,

where Lĝw = £wĝ − 2
3
ĝ divĝw. Then (C) is equivalent to

−8∆ĝφ + R(ĝ)φ + 2
3
τφ5−

∣∣σ + Lĝw
∣∣2
ĝ
φ−7 = 0,

−divĝLĝw + 3
2
φ6dτ = 0.

Let us rewrite the above as

Aφ + Rφ + 2
3
τφ5 − a(w)φ−7 =: Aφ + f(w,φ) = 0,

Bw + φ6dτ = 0.

Note that trgK = τ and that if τ = const the system decouples.
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Constant mean curvature solutions

[York, O’Murchadha, Isenberg, Marsden, Choquet-Bruhat, Moncrief, Maxwell, et al.]

Aφ + f(w,φ) = 0, Bw = 0.

Sub- and super-solutions, or barriers:

Aφ− + f(w,φ−) 6 0, Aφ+ + f(w,φ+) > 0.

For any s > 0, the constraint equation is equivalent to

Aφ + sφ = sφ − f(w,φ) ⇔ φ = (A + sI)−1(sφ − f(w,φ)).

If s > 0 is sufficiently large, the map

T : [φ−,φ+] → [φ−,φ+] : φ 7→ (A + sI)−1(sφ − f(w,φ))

is monotone increasing. Also, T(φ−) > φ− and T(φ+) 6 φ+. The iteration

φn+1 = T(φn), φ0 = φ−,

converges to a fixed point of T .
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Super-solution

We want to find φ > 0 such that

Aφ + f(w,φ) = Aφ + Rφ + 2
3
τφ5 − a(w)φ−7 > 0.

Recall a(w) =
∣∣σ + Lĝw

∣∣2
ĝ
, and assume that w is fixed (w = 0 in CMC case).

Assume that τ = const > 0, R = const, and let φ = const > 0.

Rφ + 2
3
τφ5 − a(w)φ−7 > 2

3
τφ5 + Rφ − φ−7 supa(w)

= φ−7
(

2
3
τφ12 + Rφ8 − supa(w)

)
Choosing φ > 0 sufficiently large one can ensure that the above is nonnegative.
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Near constant mean curvature solutions

[Isenberg, Moncrief, Choquet-Bruhat, York, Allen, Clausen, et al.]

Aφ + f(w,φ) = 0, Bw + φ6dτ = 0.

With S : φ 7→ −B−1(φ6dτ) this can be written as

Aφ + f(S(φ),φ) = 0.

Sub- and super-solutions make sense, but in general

T : φ 7→ (A + sI)−1(sφ − f(S(φ),φ))

is not monotone. Nevertheless, when dτ is small T is almost monotone, and the
iteration φn+1 = T(φn) converges.
Now one needs global sub- and super-solutions, e.g., φ+ > 0 such that

Aφ+ + f(w,φ+) > 0,

for all w ∈ S([0,φ+]).
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Global super-solution

We want to find φ > 0 such that

Aφ + f(w,φ) = Aφ + Rφ + 2
3
τφ5 − a(w)φ−7 > 0.

for all w ∈ S([0,φ]). Recall that a(w) =
∣∣σ + Lĝw

∣∣2
ĝ
. Elliptic estimates give

a(w) 6 p + q‖φ‖12
C0 , with q ∼ |dτ|2

Assume that τ = const > 0, R = const, and let φ = const > 0, so ‖φ‖C0 = φ.

Rφ + 2
3
τφ5 − a(w)φ−7 > 2

3
τφ5 + Rφ − pφ−7 − qφ−7φ12

= ( 2
3
τ − q)φ5 + Rφ − pφ−7.

If q < 2
3
τ, choosing φ > 0 sufficiently large one can ensure that the above is

nonnegative.
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Fixed point approach

[Holst, Nagy, GT ’07, ’08]

Let 0 < φ− 6 φ+ < ∞ be global barriers, i.e.,

Aφ− + f(w,φ−) 6 0, Aφ+ + f(w,φ+) > 0,

for all w ∈ S([φ−,φ+]). Then for s > 0 large, and any w ∈ S([φ−,φ+])

Tw : φ 7→ (A + sI)−1(sφ − f(w,φ))

is monotone increasing on U = [φ−,φ+], and for φ ∈ U

T(φ) ≡ TS(φ)(φ) 6 TS(φ)(φ+) 6 φ+, T(φ) > φ−,

so T : U → U. Since T is compact, there is a fixed point in U.
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Global super-solution
[Holst, Nagy, GT ’07, ’08]

We want to find φ > 0 such that

Aφ + f(w,φ) = Aφ + Rφ + 2
3
τφ5 − a(w)φ−7 > 0.

for all w ∈ S([0,φ]). Recall that

a(w) 6 p + q‖φ‖12
C0

Assume that R = const > 0, τ = const, and let φ = const > 0.

Rφ + 2
3
τφ5 − a(w)φ−7 > 2

3
τφ5 + Rφ − pφ−7 − qφ−7φ12

> φ−7
(
Rφ8 − (q − 2

3
τ)φ12 − p

)
If p is small enough (depending on how large q is), choosing φ > 0 sufficiently
small one can ensure that the above is nonnegative.
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Extensions

• The framework is extended to allow for rough data, e.g., metrics in Hs with
s > 5

2

• The global super-solution construction is extended to all metrics in the
positive Yamabe class (closed manifolds)
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Ongoing work / wish list

• Asymptotically flat manifolds

• Manifolds with boundary, black hole initial data

• Zero and negative Yamabe classes, large data

• Full parameterization of the solution space
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Finite element methods

Model problem: −∆u = f, or

a(u, v) := (∇u,∇v) = (f, v) for all v ∈ H

Let S ⊂ H be a linear subspace. Consider ũ ∈ S such that

a(ũ, v) = (f, v) for all v ∈ S

This gives the Galerkin orthogonality

a(u − ũ, v) = 0 for all v ∈ S

or u − ũ ⊥a S. ũ is called the Galerkin approximation of u from S.
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Typical finite element mesh
S is the space of continuous functions which are linear on each triangle.
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Linear vs. nonlinear approximation

Let S0 ⊂ S1 ⊂ . . . ⊂ H with corresponding meshes T0, T1, . . ., and Galerkin
approximations u0,u1, . . ..

‖u − ui‖a = dist(u, Si) 6 Chs−1
i ‖u‖Hs

where hi is the maximum diameter of the triangles in Ti. If Tj+1 is the uniform
refinement of Tj, then hi ∼ 2−i and the number of vertices of Ti is Ni ∼ 2in in
n-dimension.

‖u − ui‖a = dist(u, Si) 6 C2−i(s−1)‖u‖Hs 6 CN
−(s−1)/n
i ‖u‖Hs

Is Ti optimal among meshes with Ni vertices?
Given a mesh, let S(T) be the corresponding FE space. Let

ΣN = ∪{S(T) : T is a refinement of T0 and #T 6 N}

Then with 1
p

= 1
2

+ s−1
n

dist(u,ΣN) 6 CN−(s−1)/n‖u‖Ws,p
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Adaptive finite element methods

In a typical AFEM, the sequence ui is generated as follows. Start with some
initial mesh T0. Set i = 0, and repeat

• Solve for ui

• Estimate the distribution of ui − u over the triangles of Ti

• Refine the triangles of Ti with largest error, to get Ti+1

• i + +

We say the method is optimal if

‖ui − u‖a 6 CN−(s−1)/n‖u‖Ws,p
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Linear convergence

From the Galerkin orthogonality

a(u − ui+1, v) = 0 for all v ∈ Si+1,

taking v = ui+1 − ui, we have

‖u − ui‖2
a = ‖u − ui+1‖2

a + ‖ui+1 − ui‖2
a.

So if
‖ui+1 − ui‖a > c‖u − ui‖a,

with constant c ∈ (0, 1), we have

‖u − ui+1‖2
a = ‖u − ui‖2

a − ‖ui+1 − ui‖2
a 6 (1 − c2)‖u − ui‖2

a.
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Quasi-orthogonality for semilinear problems

Let us consider
a(u, v) + (f(u), v) = 0, ∀v ∈ H

We have

‖u − ui‖2
a = ‖u − ui+1‖2

a + ‖ui+1 − ui‖2
a + 2a(u − ui+1,ui+1 − ui)

a(u − ui+1,ui+1 − ui) = (f(u) − f(ui+1),ui+1 − ui)

6 C‖f(u) − f(ui+1)‖‖ui+1 − ui‖
6 C‖u − ui+1‖‖ui+1 − ui‖
6 Chi+1‖u − ui+1‖H1‖ui+1 − ui‖H1
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Ongoing work / Open problems

• Geometry

• Boundary conditions

• Coupled system

• Fast solution of the discretized system

• Higher order elements, flexible mesh

• Problems with genuinely critical exponent
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