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Boundary integral equations

Boundary integral equations are rooted in the works of Gauss, August
Beer, and Carl Neumann on reformulations of the Dirichlet problem as
integral equations involving the single- and double layer potentials.

There are many ways to convert (interior or exterior) boundary value
problems for Ω into an integral equation

Au = f on Γ= ∂Ω.

Typically, A has a singular kernel, A : H t (Γ) → H−t (Γ) is self-adjoint and
bounded, and satisfies

〈Au,u〉 ≥α‖u‖2
t ,

with α> 0 and t ∈ {0,± 1
2 }. In particular, A is invertible.



Adaptive boundary element methods

For a triangulation T of Γ, let S = S(T) be the space of piecewise constant
functions on Γ subordinate to T . Then the Galerkin approximation uT ∈ S
of u from the subspace S ⊂ H t (t < 1

2 ) is the solution of

〈AuT ,v〉 = 〈f ,v〉, ∀v ∈ S.

Local a posteriori error indicators, η(T ,τ), are supposed to measure how
much error the triangle τ contains, e.g., ‖u−uT‖t,τ. We need a
parameter 0 < θ < 1, and an initial triangulation T0. Then we repeat the
following for k = 0,1, . . ..

Compute uk = uTk , and the error indicators η(Tk,τ), τ ∈ Tk.
Choose a minimal subset R ⊂ Tk, such that∑

τ∈R
η(Tk,τ)2 ≥ θ ∑

τ∈Tk

η(Tk,τ)2.

Refine (at least) all triangles in R, to get Tk+1.



The questions

Important questions that should be addressed:
Quality of the error indicators:

∑
τ∈T

η(T ,τ)2 ∼ ‖uT −u‖2?

Efficient solution of the linear system, including the matrix assembly
Convergence to the true solution: uk → u?
Geometric error reduction: ‖uk −u‖ ≤ cρk with some ρ < 1?
Convergence rate: Largest s for which ‖uk −u‖ ≤ c (#Tk)−s

Optimality: Would s stay the same if Tk was replaced by the best
possible triangulation with the same #Tk?

Along these lines, a very satisfactory theory has been developed for
adaptive finite element methods.

Analysis of boundary element methods is more involved because of
nonlocality.



Some prior work on a posteriori error indicators

Residual is equivalent to error: ‖rT‖−t ≡ ‖f −AuT‖−t ∼ ‖u−uT‖t . There is
a localization issue for t fractional. Recall the Slobodeckij norm

|v|2s,ω =
∫
ω×ω

|v(x)−v(y)|2
|x−y|2+2s dx dy.

Faermann ’00-’02: for −1 < t ≤ 0, global equivalence

‖rT‖2
−t ∼

∑
z∈NT

|rT |2−t,ω(z).

Carstensen, Maischak, Stephan ’01: for −1 < t ≤ 0, global upper
bound

‖rT‖2
−t .

∑
τ∈T

h2(1−t)|rT |21,τ.

Carstensen, Maischak, Praetorius, Stephan ’04, Nochetto, von
Petersdorff, Zhang ’10: for t > 0, global upper bound

‖rT‖2
−t .

∑
τ∈T

h2t |rT |20,τ.



Results on a posteriori error indicators

Gantumur ’11: Lower bounds and local results. Similar results were
independently obtained for t =− 1

2 by Feischl, Karkulik, Melenk, and
Praetorius. Example of a local result for t = 0:

Lemma
Let T ′ be a refinement of T , and let γ= ⋃

τ∈T\T ′
τ. Then we have

α‖uT −uT ′‖ ≤ ‖rT‖γ ≤β‖uT −uT ′‖+2‖rT −v‖γ
for any function v ∈ ST ′ .

Proof of the first inequality.
Let v = uT ′ −uT , and let vT ∈ ST be the L2-orthogonal projection of v onto
ST . Then we have

〈Av,v〉 = 〈rT ,v〉 = 〈rT ,v−vT 〉 ≤ ‖rT‖γ‖v−vT‖γ ≤ ‖rT‖γ‖v‖γ
where we have used that v = vT outside γ.



Oscillation

The second inequality ‖rT‖γ ≤β‖uT −uT ′‖+2‖rT −v‖γ.
Let v ∈ ST ′ be supported in γ. Then we have

‖v‖2
γ = 〈v,v〉 = 〈v−rT ,v〉+〈A(uT ′−uT ),v〉 ≤ (‖v− rT‖γ+‖A(uT ′ −uT )‖γ

)‖v‖γ
implying that ‖rT‖γ ≤ ‖rT −v‖γ+‖v‖γ ≤ 2‖rT −v‖γ+‖A(uT ′ −uT )‖.
Suppose rT is piecewise Hr. Then

inf
v∈ST ′

‖rT −v‖2
γ ≤ C2

J

∑
τ∈T\T ′

h2r
τ |rT |2r,τ.

Define

osc(T ,ω) :=
( ∑
τ∈T ,τ⊂ω

h2r
τ |f −AuT |2r,τ

) 1
2

,

for ω⊆ Γ and v ∈ ST , so that we have

α‖uT −uT ′‖ ≤ ‖rT‖γ ≤β‖uT −uT ′‖+2CJ osc(T ,γ).



Some other works on convergence analysis

Symm’s integral equation (t =− 1
2 ).

Ferraz-Leite, Ortner, Praetorius ’10: With T̃ the uniform refinement
of T , use error estimators of the type

η(T ,τ) = h1/2
τ ‖uT −uT̃‖τ.

Assume saturation (1985-):

‖u−uT̃‖ ≤α‖u−uT‖, (α< 1).

Then ‖u−uk‖ ≤ Cρk with ρ < 1.
Aurada, Ferraz-Leite, Praetorius ’11: Estimator convergence∑
τη(Tk,τ) → 0 without saturation.

Feischl, Karkulik, Melenk, Praetorius ’11: Weighted residual
estimator from [CMS01], geometric error reduction and convergence
rate, without saturation.



Geometric error reduction

Assume ∑
τ∈T

h2r
τ |Av|2r,τ ≤ CA‖v‖2, v ∈ ST ,

for all admissible T . Let T ,T ′ be admissible partitions with T ′ being a
refinement of T , and let γ=⋃

τ∈T\T ′ τ. Suppose, for some θ ∈ (0,1] that

‖rT‖2
γ+osc(T ,γ)2 ≥ θ (‖rT‖2

Γ+osc(T ,Γ)2) .

Then there exist constants δ≥ 0 and ρ ∈ (0,1) such that

‖u−uT ′‖2 +δosc(T ′,Γ)2 ≤ ρ (‖u−uT‖2 +δosc(T ,Γ)2) .

Proof sketch:
‖u−uT‖. ‖r‖Γ. ‖r‖γ. ‖uT −uT ′‖.

‖u−uT‖2 = ‖uT −uT ′‖2 +‖u−uT ′‖2.



Convergence rates

We know ‖u−uk‖ ≤ Cρk with ρ < 1. How fast does #Tk grow?
Define approximation classes

As = {u ∈ L2 : inf
#T≤N

inf
v∈ST

‖u−v‖ ≤ CN−s}.

It is known that W 2s,p ⊂As with 1
p = s+ 1

2 , and that W 2s,p is much larger
than H2s, and friendlier to solutions of BVP and BIE.
Define Ar,s by replacing ‖u−v‖ with ‖u−v‖+osc. We expect Ar,s to be
close to As.
Assume ∑

τ∈T
h2r
τ |Av|2r,τ ≤ CA‖v‖2, v ∈ ST ,

for all admissible T . Let θ ∈ (0,θ∗). Let f be piecewise Hr in the initial
triangulation, and u ∈Ar,s for some s > 0. Then

‖u−uk‖ ≤ C|u|Ar,s (#Tk)−s.



Inverse-type inequalities

∑
τ∈T

h2r
τ |Av|2r,τ ≤ CA‖v‖2, v ∈ ST .

If A = I or multiplication by a smooth function, then it is the standard
inverse inequality. Validity of this inequality depends on how A shifts low
frequencies to high frequencies locally, and how it moves frequencies
around in space. We decompose L2 = ST ⊕HT and correspondingly,
Av = (Av)S + (Av)H . The low frequency component poses no problem:∑

τ∈T
h2r
τ |(Av)S|2r,τ. ‖(Av)S‖2 ≤ ‖Av‖2 . ‖v‖2.

For each triangle τ ∈ T , we decompose v as v = vτ+ (v−vτ), where vτ is
the part of v near τ. Then the high frequency component of Av locally
decomposes into near-field interactions and far-field interactions:

(Av)H |τ = (Avτ)H |τ+ (A(v−vτ))H |τ.

For boundary integral operators, the far-field part is harmless, and the
near-field part is ok if the underlying surface is regular (e.g., C1,1).



Further developments

The inverse-type inequalities for polyhedral surfaces and for the 4
standard BIOs have been proved by Aurada, Feischl, Führer, Karkulik,
Melenk, and Praetorius in 2012.

I speculate that wavelet techniques can be adapted to prove the same
result.

It should also be possible to characterize the approximation classes.



Open problems

to characterize the approximation classes associated to the proposed
adaptive BEMs
to extend the analysis to transmission problems, and adaptive
FEM-BEM coupling
complexity analysis, i.e., the problem of quadrature and linear
algebra solvers
convergence rate for adaptive BEMs based on non-residual type
error estimators


