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The problem

The Navier-Stokes-αβ equations:

∂t v−∆(1−β2∆)u+ (gradv)u+ (gradu)T v+∇p = 0,

v = (1−α2∆)u, ∇·u = 0,

with α>β> 0. Wall-eddy boundary conditions:

β2(1−n⊗n)
(
gradω+γ(gradω)T )

n = `ω, u = 0,

with |γ| ≤ 1 and `> 0. [Fried&Gurtin’08]

Study the spatial principal part:

∆2u+∇p = f , ∇·u = 0, & b.c.



Integration by parts

Let G = gradω+γ(gradω)T , with ω= curlu. Then∫
Ω

G : gradcurlφ=−
∫
Ω

divG ·curlφ+
∫
∂Ω

Gn ·curlφ

=−
∫
Ω

curldivG ·φ+
∫
∂Ω

Gn ·curlφ+ (n×divG) ·φ

Assume ∇u = 0 and φ|∂Ω = 0. Then we have curldivG =−∆2u and
g ·curlφ=−(n×g) ·∂nφ, hence∫

Ω
G : gradcurlφ=

∫
Ω
∆2u ·φ−

∫
∂Ω

(n×Gn) ·∂nφ.

The boundary condition is of the form −n×n×Gn = kω, which implies

kn×ω= n×Gn (k = `/β2).

If this is satisfied, and ∆2u = 0, then∫
Ω

G : gradcurlφ+k
∫
∂Ω

(n×ω) ·∂nφ= 0, ∀φ :φ|∂Ω = 0.



Variational formulation

Let V = {u ∈D(Ω) : ∇·u = 0}, V = closH1V , and V s = V ∩Hs(Ω). Define the
continuous bilinear form a : V 2 ×V 2 →R by

a(u,φ) =
∫
Ω

G : gradcurlφ+k
∫
∂Ω

(n×ω) ·∂nφ,

where k = `/β2 > 0. This bilinear form is symmetric, since

G : gradψ=ωi,jψi,j +γωj,iψi,j =ωi,jψi,j +γωi,jψj,i,

and (n×ω) ·∂nφ=−ω ·curlφ=−(n×∂nu) · (n×∂nφ), the latter inequality
true provided u|∂Ω = 0.

Let u ∈ V 4 satisfy a(u,φ) = (f ,φ)L2 for all φ ∈ V 2, where f ∈ L2 is a given
function. Then

∆2u+∇p = f in Ω,

u = n×n×Gn+kω= 0 on ∂Ω.



Coercivity: The volume term

We want to show that a(u,u) ≥ c‖u‖2
H2 −C‖u‖2

L2 for u ∈ V 2.
Case γ=−1:∫

Ω
(ωi,j −ωj,i)ωi,j = 1

2‖curlcurlu‖2
L2 = 1

2‖∆u‖2
L2 ≥ c‖u‖2

H2 .

Case γ= 1: Korn’s second inequality∫
Ω

(ωi,j +ωj,i)ωi,j ≥ c‖ω‖2
H1 .

Case |γ| < 1: ∫
Ω
ωi,jωi,j ≤

∫
Ω

(ωi,j +γωj,i)ωi,j +|γ|
∫
Ω
ωi,jωi,j

To conclude the latter two cases, note that

‖u‖H2 ≤ C‖∆u‖L2 = ‖curlω‖L2 ≤ ‖ω‖H1 .



Coercivity: The boundary term

We have established

a(u,u) ≥ c‖u‖2
H2 −k

∫
∂Ω

|n×∂nu|2 ≥ c‖u‖2
H2 −kC‖u‖2

H3/2 .

In order for this to be positive, we need

kC2
PC < c,

where CP is the constant of the Friedrichs inequality

‖u‖H3/2 ≤ CP‖u‖H2 ,

that has the behaviour C2
P ∼ diam(Ω). To conclude, we have

a(u,u) ≥ c‖u‖2
H2 −C‖u‖2

L2 for u ∈ V 2,

and moreover there exists a constant δ> 0 such that

`

β
< δβ

diam(Ω)
implies C = 0.



Hilbert-Schmidt + elliptic regularity

Define the operator A : V 2 → (V 2)′ by (Au)(φ) = a(u,φ), and restrict its
range to H = closeL2V , i.e., consider A as an unbounded operator in H
with the domain dom(A) = {u ∈ V 2 : Au ∈ H}.

Then A is self-adjoint and has countably many eigenvalues λ1 ≤λ2 ≤ . . .,
with λn →+∞ as n →∞. If `> 0 is sufficiently small, then λ1 > 0.

Moreover, the corresponding eigenfunctions form both an orthonormal
basis in H, and a basis in V 2, orthogonal with respect to a(·, ·)+µ〈·, ·〉 for
some sufficiently large µ.

Regularity results on the solutions of Au = f can be derived from the
Agmon-Douglis-Nirenberg theory for elliptic systems.

One also has a functional calculus, e.g.,

g(A)u =∑
n

g(λn)〈u,vn〉vn



Fixed-point formulation

In H, and with f ∈ L2H, consider the initial value problem

∂tΛu+β2Au = f , where Λ= 1−α2∆ : V 2 → H .

This is equivalent to

∂t v+β2Λ− 1
2 AΛ− 1

2︸ ︷︷ ︸
D

v =Λ− 1
2 f , with v =Λ 1

2 u,

implying that
u(t) =Λ− 1

2 e−tDΛ
1
2 u(0)+

∫ t

0
Λ− 1

2 e(τ−t)DΛ− 1
2 f (τ)dτ.

Restricting attention to the time interval [0,T ], let us write it as

u = u0 +Φf .

Let B(v,u) = P[(gradv)u+ (gradu)T v], and let P : L2 → H be the Leray
projector. Then Navier-Stokes-αβ equations are

∂tΛu+β2Au−∆u+B(Λu,u) = 0,
or equivalently

u = u0 +Φ∆u−ΦB(Λu,u).



Local existence and blow-up criterion

Recall the fixed-point formulation

u = u0 +Φ∆u−ΦB(Λu,u).

Noting that “B(Λu,u) = ∂(Λu ·u)”, we can bound

‖B(Λu,u)‖H1 . ‖u‖2
H4 ,

and show that u 7→ B(Λu,u) is locally Lipschitz as a mapping V 4 → V 1.

Hence we can design a Banach fixed point iteration in V 4, assuming that
T > 0 is suitably small. This also gives the following blow-up criterion:

If there is a finite time T∗ <∞ beyond which the solution cannot be
continued, then it is necessary that ‖u(t)‖H4 →∞ as t ↗ T∗.

So global existence is proved if we show that ‖u(t)‖H4 is bounded by a
finite constant depending on the time of assumed existence.



A priori estimates and global well-posedness

Pairing
∂tΛu+β2Au−∆u+B(Λu,u) = 0, (∗)

with u, we get
1

2

d

dt
〈Λu,u〉+β2〈Au,u〉+〈∇u,∇u〉 = 0,

which gives

d

dt
‖u‖2

H1 + c‖u‖2
H2 ≤ C‖u‖2

L2 , implying u ∈ L∞V ∩L2V 2.

If we act on (∗) by A before pairing with u, we get

d

dt
‖u‖2

H3 + c‖u‖2
H4 ≤ C‖u‖2

L2 +|〈AB(Λu,u),u〉|.

Taking into account the bound

|〈B(Λu,u),Au〉|. ‖Λu‖H1‖u‖H2‖Au‖L2 . ε‖u‖2
H4 +Cε‖u‖2

H2‖u‖2
H3 ,

we get u ∈ L∞V 3.



Similarly, if we act by A2 before pairing with u, we get

d

dt
‖u‖2

H5 + c‖u‖2
H6 ≤ C‖u‖2

L2 +|〈A2B(Λu,u),u〉|.

We have the bounds

|〈A 1
2 B(Λu,u),A

3
2 u〉|. ‖B(Λu,u)‖H2‖u‖H6 ,

and
‖B(Λu,u)‖H2 . ‖Λu‖H3‖u‖H3 . ‖u‖H5‖u‖H3 ,

giving rise to

d

dt
‖u‖2

H5 + c‖u‖2
H6 ≤ C‖u‖2

L2 +ε‖u‖2
H6 +Cε‖u‖2

H3‖u‖2
H5 .

Thus u ∈ L∞H5, and global existence follows.



Limit as α,β→ 0

Let αn and βn be sequences satisfying 0 <αn ≤ cβn → 0, and consider

∂tΛnun +β2
nAun −∆un +B(Λnun,un) = 0,

where Λn has αn in it, and k = `n/β2
n is fixed, so that A does not change.

Also, assume that the initial conditions are the same.

Then we can show that

un ∈ L∞H ∩L2V , αun ∈ L∞V , βun ∈ L2V 2,

with uniformly bounded norms.

Hence there exists u ∈ L∞H ∩L2V such that up to a subsequence

un → u weak* in L∞L2, and un → u weakly in L2H1.

Moreover, u is a weak solution of the Navier-Stokes equation. Note that
the second order boundary condition will be lost under the limit.


