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1 Convexity in scalar variational problems

1.1 Calculus of variations

This section corresponds to Chapter 2, §A of Evans. We are given a smooth function
F : Rn → R, and the goal is to find conditions under which we can guarantee existence
of a minimizer to the variational problem

I[w] :=

ˆ
U

F (Dw)dx (1)

where U is an open, bounded, smooth domain, and the minimizing problem (1) is taken
over some family of admissable functions

A = {w ∈W 1,q(U) : w = g on ∂U} (2)

Here, W k,q(Ω) is the Sobolev space whose weak derivatives Dαw are in Lq for all multi-
indices |α| ≤ k, and g is some fixed function, with boundary values in A assumed in the
trace sense. As mentioned, the problem is to find conditions on F under which we can
guarantee existence of a minimizer; i.e., some u ∈ A such that I[u] = infw∈A I[w]. To
this end, let (uk)∞k=1 be a sequence of functions in A converging to the minimizer, i.e.,

lim
k→∞

I[uk] = inf
w∈A

I[w] := m (3)

We suppose that the infimum is finite, and a coercivity condition on F :

F (p) ≥ α|p|q − β (∀ p ∈ Rn) (4)

where α > 0, β ≥ 0 are some fixed constants. We want to deduce that the sequence (uk)
is bounded in W 1,q. To see this, recall the Poincaré inequality: if Ω ⊂ Rn is a bounded
and open domain, and 1 ≤ p ≤ ∞, then there is some constant γ = γ(Ω, p) > 0 such that

‖u‖W 1,p(Ω) ≤ γ ‖Du‖Lp(Ω) (∀ u ∈W 1,2
0 (Ω)) (5)

Let k be large enough so that we have m + 1 ≥ I[uk]. For such k, we have from the
coercivity condition

m+ 1 ≥ I[uk] =

ˆ
U

F (Duk)dx ≥ α
ˆ
U

|Duk|q − β
ˆ
U

dx

= α ‖Duk‖qLq(U) − βλ(U) (∗)

where λ is the n-dimensional Lebesgue measure. Now, the Poincaré inequality does not
directly apply to the functions uk since they are equal to g on the boundary, which is
not necessarily the zero function. We can, however, apply the inequality to the functions
uk − g, to give some constants γ1 = γ1(U, q) such that

‖Duk‖Lq(U) ≥ ‖Dg‖Lq(U) + γ1 ‖uk‖W 1,q − γ1 ‖g‖W 1,2

= γ1 ‖uk‖W 1,q + c
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where c is some fixed constant (since the given function g is fixed) depending only on U ,
q, and g. This means there is some constant γ2 depending on U, q, g such that

‖Duk‖qLq ≥ γ2 ‖uk‖qW 1,q

We can now put the above inequality into (*) to get that

m+ 1 ≥ γ3 ‖uk‖qW 1,q − βλ(U)

So for k large enough, this means that ‖uk‖W 1,q ≤ γ <∞, thus (uk) is bounded in W 1,q.
Therefore, using Banach-Alaoglu theorem, we know that there is a weakly convergent
subsequence: that is, a subsequence (ukj )

∞
j=1 ⊂ (uk)∞k=1 and u ∈ W 1,q(U) such that

ukj ⇀ u in W 1,q(U) (we use the notation ⇀ to denote weak convergence). In fact,
we must have that u ∈ A–that is, u satisfies the boundary condition of g on ∂U . If it
were otherwise, then tails of the subsequence (ukj ) would also not satisfy the boundary
condition for j large enough. Therefore we have that

ukj ⇀ u in W 1,q(U) (6)

In particular, we have that ukj ⇀ u in Lq(U) and that Dukj ⇀ Du in Lq(U ;Rn). We
recall that a sequence of Lq(U) functions (fk)∞k=1 , 1 ≤ q <∞, converges weakly to some

f ∈ Lq(U) if for every g ∈ Lq′(U), we have that
ˆ
U

gfkdλ→
ˆ
U

gfdλ

where q is the conjugate exponent to q; i.e., the number q′ such that 1
q + 1

q′ = 1. Now,

since u ∈ A, we have a candidate for our minimizer to the variational problem (1). Since
(uk) was the sequence of functions converging to the minimizer, if we can show that (6)
implies

I[u] ≤ lim inf
j→∞

I[ukj ] (7)

then we will have shown that u is indeed the desired minimizer. We note that if I[·]
satisfies (7) for weakly convergent sequences in a space S, then we say that I is lower
semicontinuous with respect to weak convergence in S.

So let us examine what type of structural conditions on F will allow us to deduce
lower semicontinuity of I[·]. Say that the u from above is a smooth minimizer. Then let
us set, for v a Lipschitz function with compact support in U ,

i(t) := I[u+ tv] =

ˆ
U

F (Du+ tDv)dx (t ∈ R) (8)

Now, since u is the minimizer to the variational problem, we know that i has a minimum
at t = 0, and hence we have that i′′(t) ≥ 0 by the second derivative test. Since F is
smooth, we can differentiate through the integral. For the first derivative of F , we have

∂

∂t
F (Du+ tDv)

∣∣∣
t=0

=
∂F (Du)

∂p1
D1v + · · ·+ F (Du)

∂pn
Dnv

=
n∑
i=1

∂F (Du)

∂pi
vxi
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where again p = (p1, . . . , pn), and we use the notation vxi := ∂v
∂xi

. Evidently this gives
that the second derivative of F is then

∂2

∂t2
F (Du+ tDv)

∣∣∣
t=0

=

n∑
i,j=1

∂2F (Du)

∂pi∂pj
vxivxj

Differentiating through the integral, we then have that

0 ≤ i′′(0) =

ˆ
U

n∑
i,j=1

∂2F (Du)

∂pi∂pj
vxivxj (9)

Relation (9) holds for all Lipschitz v with support in U . So, for ε > 0 and ξ ∈ Rn, let us
consider

v(x) := εζ(x)ρ

(
x · ξ
ε

)
(10)

Here, ζ(x) ∈ C∞c (U), and ρ(x) is the sawtooth periodic function (with period length of
2) that is equal to x on [0, 1] and 2− x on [1, 2]. Note that ρ′(z)2 = 1 for all x; this will
be used in a moment. To find the derivatives vxj , let z = x·ξ

ε . We then have that

∂

∂xi
ρ(z) =

∂ρ

∂z

∂z

∂xi
= ρ′

ξi
ε

And so we have
∂

∂xi
v(x) = εζxiρ

(
x · ξ
ε

)
+ ξiζ(x)ρ′

And therefore,

vxivxj = ε2ζxiζxjρ
2 + εζxiρ(z)ξjζρ

′ + εζxjρξiζρ
′ + ξiξjζ(x)2ρ′(z)2

Now, as ε ↓ 0, we have that vxivxj → ξiξjζ(x)2. Substituting this into (9), we have that

ˆ
U

n∑
i,j=1

∂2F (Du)

∂pi∂pj
ξiξjζ(x)2dx ≥ 0 for all ζ ∈ C∞c (U)

Since the above holds for all test functions on U , we must have that∑
i,j

∂2F (Du)

∂pi∂pj
ξiξj ≥ 0 (x ∈ U ; ξ ∈ Rn) (11)

The above necessary inequality suggests that it is natural to assume that F is convex:

ξTD2F (p)ξ ≥ 0 (p, ξ ∈ Rn) (12)

1.2 Weak lower semicontinuity

This section corresponds to Evans, Chapter 2, §B. The analysis in the previous section
suggests the following theorem, that convexity is indeed the proper structural hypothesis
for our nonlinearity.
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Theorem 1. The functional I[·] is lower semicontinuous with respect to weak convergence
in W 1,q(U) if and only if F is convex.

Proof. (⇒) Let p ∈ Rn be fixed, and we suppose for simplicity that U = Q where Q is
the open unit cube in Rn. Fix any v ∈ C∞c (Q). For each k ∈ N, subdivide Q into 2kn

disjoint subcubes {Qi}2
kn

i=1, each with side length 1
2k

. Then define functions uk by

uk(x) :=
1

2k
v
(
2k(x− xl)

)
+ p · x (x ∈ Ql)

where xl is the center of the cube Ql: uk is defined on all of Q, but its value at a given x
is determined by which subcube x lies in. Now define u(x) := p · x for x ∈ Q. Then we
claim that uk ⇀ u in W 1,q(U). It suffices to show that

yk(x) :=
1

2k
v
(
2k(x− xl)

)
⇀ 0.

To this end, we need to show that yk ⇀ 0 in Lq(U) and that Dyk ⇀ 0 in Lq(U ;Rn).
Since the functions yk are bounded in Lq, it suffices to show that for every bounded,
measurable E ⊂ Q we have that

´
E
yk → 0 strongly. This follows trivially since yk have

compact support contained in Q:
ˆ
E

ykdx =

ˆ
E

1

2k
v
(
2k(x− xl)

)
≤ sup v

2k
λ(E)→ 0 as k →∞

Now, by assumption, I[u] ≤ lim infk→∞ I[uk], so we have that

I[u] =

ˆ
Q

F (D(p · x))dx =

ˆ
Q

F (p) = λ(Q)F (p)

≤ lim inf
k→∞

I[uk] = lim inf
k→∞

ˆ
Q

F (p+
1

2k
D(v(2k(x− xl)))dx

=

ˆ
Q

F (p+Dv)dx

But then this means that u = p · x is a minimizer of I[·] subject to its own boundary
condition. Therefore inequality (11) gives that F is convex.

(⇐) Suppose that uk ⇀ u in W 1,q(U), and let us suppose first that F is a maximum
of finitely many affine functions:

F (p) = max
1≤j≤m

(
bj · p+ cj

)
(p ∈ Rn) (13)

Let us define the sets Ej as

Ej := {x ∈ U : F (Du(x)) = bj ·Du(x) + cj}

Then we have that U = ∪mj=1Ej . We can assume that the Ej are disjoint, as otherwise
we could define the sets Fn as F1 = E1; Fn = En \ (F1 ∪ . . . ∪ Fn−1), then the sets Fn
would be disjoint and we would have that ∪m1 Ej = ∪m1 Fj = U , so we could proceed with
the analysis using the sets Fj . (See the first chapter of Folland’s Real Analysis for more
details on this.) Now, since weak convergence is convergence of averages, uk ⇀ u in W 1,q
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implies that for every bounded measurable E ⊂ U we have that
´
E
uk →

´
E
u strongly.

We thus have that

I[u] =

ˆ
U

F (Du)dx =

ˆ
∪mj=1Ej

F (Du)dx

=

m∑
j=1

ˆ
Ej

F (Du)dx

=

m∑
j=1

ˆ
Ej

bj ·Du(x) + cjdx

= lim
k→∞

m∑
j=1

ˆ
Ej

bj ·Duk(x) + cjdx (weak convergence is convergence of averages)

= lim inf
k→∞

m∑
j=1

ˆ
Ej

bj ·Duk(x) + cjdx (limit exists means lim = lim inf)

≤ lim inf
k→∞

m∑
j=1

ˆ
Ej

F (Duk)dx = lim inf
k→∞

I[uk] (by supposition)

Thus we are done if F is a maximum of finitely many affine functions. In the general
case, a convex function F is the supremum of affine functions. So let us write

F (m)(p) := max
1≤j≤m

(
bj · p+ cj

)
Then we have that F (m) is an increasing sequence of functions; F (1) ≤ · · · ≤ F (m) ≤ · · · ,
and further that F (m) converges pointwise to F :

F (p) = lim
m→∞

F (m)(p)

Thus, by the monotone convergence theorem, we know that
ˆ
F (Du) = lim

m→∞

ˆ
F (m)(Du)

And since we know that the inequality holds for each m on the integral for the right, we
are finished with the proof.

The proof of sufficiency clearly illustrates why convex nonlinearities are partially com-
patible with weak convergence: an affine function is weakly continuous and a convex
function is the supremum of affine functions.

Now, recall i(t) from (8): since i has a minimum at t = 0, we have that

0 = i′(0) =

ˆ
U

n∑
j=1

∂F (Du)

∂pj
vxjdx

= −
ˆ
U

n∑
j=1

∂

∂pj

(
∂F (Du)

∂pj

)
vdx,
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when F satisfies certain growth conditions; for instance, if ∇F (Du) ≤ |Du|q. From this
we see that the minimizer u is a weak solution of the Euler-Lagrange equation:{

−div(DF (Du)) = 0 in U

u = g on ∂U

So we see that we can solve a nonlinear PDE using weak convergence methods, as per
the title of Evans’ text!

We will prove the theorem that informally means convergence of energies improves
weak to strong convergence when q = 2, provided F is uniformly strictly convex, and F
satisfies appropriate growth conditions. Evans’ comments that the uniform convexity of
F somehow damps out wild oscillations in {Duk}∞k=1. For q = 2, if F satisfies the growth
condition

|F (p)| ≤ C
(
1 + |p|2

)
(p ∈ Rn), (14)

and F is uniformly strictly convex,

ξTD2F (p)ξ ≥ γ|ξ|2 (γ > 0; p, ξ ∈ Rn) (15)

then the minimizing sequence converges strongly to u in W 1,2(U); and in fact, the fol-
lowing holds:

Theorem 2. Assume that F satisfies conditions (14) and (15), and that uk ⇀ u in
W 1,2(U). If we also have convergence of energies

ˆ
U

F (Duk)dx = I[uk]→ I[u] =

ˆ
U

F (Du)dx (16)

Then we have that
uk → u strongly in W 1,2(U)

Proof. Using the strict convexity (15) and a Taylor expansion, we see that for any p, q ∈
Rn,

F (q) ≥ F (p) +DF (p) · (q − p) +
γ

2
|q − p|2

Then for p = Du and q = Duk, we integrate over U to deduce that

I[uk]− I[u]︸ ︷︷ ︸
(∗)

≥ +

ˆ
U

DF (du) · (Duk −Du)dx︸ ︷︷ ︸
(∗∗)

+
γ

2

ˆ
U

|Duk −Du|2dx︸ ︷︷ ︸
(∗∗∗)

(17)

Now, the convergence of energies (16) then implies that the term (∗) tends to zero. For
the second term, (14) and (15) imply that |DF (p)| ≤ c(1 + |p|). Since U is a bounded
domain, this means that DF (Du) ∈ L2(U ;Rn). Now, since uk ⇀ u in W 1,2(U), we have
that Duk ⇀ Du in L2(U ;Rn); thus DF (Du) ∈ L2(U ;Rn) implies that the term (∗∗)
tends to zero. Together, these mean that the term (∗∗∗) tends to zero, which is precisely
strong convergence of Duk → Du in L2(U ;Rn). This completes the proof.
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2 Convexity in vector variational problems

The preceding section was concerned with one dimensional variational problems. The
next topic of interest is vector-valued problems in the calculus of variations.

2.1 Quasiconvexity

Here we follow Evans, Chapter 3, §A. We now consider the analysis of the functional

I[w] =

ˆ
U

F (Dw)dx , (18)

where the functional is now take over the class of functions

A := {w ∈W 1,q(U ;Rm) : w = g on ∂U}

for 1 < q < ∞, and for some fixed function g : ∂U → Rm. We write w = (w1, . . . , wm),
and the gradient is thus the m× n matrix

Dw =

w
1
x1
· · · w1

xn
. . .

wmx1
· · · wmxn

 .

We assume that F : Mm×n → R is a given smooth function.
We want to use the same type of analysis we used in the scalar case to give a necessary

condition on F to deduce the existence of minimizers. So first, we assume the coercivity
condition

F (P ) ≥ α|P |q − β (P ∈Mm×n)

for some constants α > 0 and β ≥ 0. The same analysis as the previous section shows
that the existence of a minimizer in A turns once more to the weak lower semicontinuity
of I[·]. So what type of nonlinearity is compatible with weak lower semicontinuity? Just
as before, if u is a smooth minimizer and v = (v1, . . . , vm) is a Lipschitz function with
compact support contained in U , then the second variation of the functional i,

i(t) := I[u+ tv] =

ˆ
U

F (Du+ tDv)dx

at t = 0 is

0 ≤ i′′(0) =

ˆ
U

∑
i,j,k,l

∂2F (Du)

∂pki ∂p
l
j

vkxiv
l
xjdx (19)

For fixed ξ ∈ Rn and η ∈ Rm, let ζ ∈ D(U) and let ρ be the sawtooth function defined
previously in Section 1.1. Again, we define, for ε > 0,

v(x) := εζ(x)ρ

(
x · ξ
ε

)
]η

and substitute v(x) into the functional in (19), and send ε > 0 to get the requirement∑
i,j,k,l

∂2F (Du(x))

∂pki ∂p
l
j

(Du(x))ηkηlξiξj ≥ 0 (20)
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for every x ∈ U , η ∈ Rm, and ξ ∈ Rn. This necessary inequality suggests that we should
assume that F is rank-one convex, i.e., that F satisfies the Hadamard-Legendre
inequality:

(η ⊗ ξ)TD2F (P )(η ⊗ ξ) ≥ 0 (P ∈Mm×n, η ∈ Rm, ξ ∈ Rn) (21)

In particular, this means that for each fixed P , n, ξ as above, the scalar function f defined
by

f(t) := F (P + tη ⊗ ξ) (t ∈ R)

It is important to note that rank-one convexity of f does not imply that F is itself convex.
Although the previous analysis may suggest that rank-one convexity is the proper

structural hypothesis of nonlinearity for F , this is in fact not the case. We would like to
demonstrate a necessary inequality on F assuming weak lower semicontinuity.

To do so, let us fix P ∈Mm×n and, as in the previous section, suppose for simplicity
that U = Q. Take any v ∈ D(Q;Rm), and as before, for each k ∈ N we subdivide Q into

subcubes {Ql}2
kn

l=1. Define functions uk(x) and u by

uk(x) =
1

2k
v
(
2k(x− xl)

)
+ Px (x ∈ Ql)

u(x) = Px

Then, just as before, uk ⇀ u in W 1,q(U ;Rm). And supposing that I[·] is weakly lower
semicontinuous, I[u] ≤ lim infk→∞ I[uk], then we have that

λ(Q)F (P ) ≤
ˆ
Q

F (P +Dv)dx

From this necessary inequality, we introduce the following definition.

Definition 1. A function F : Mm×n → R is called quasiconvex if for every P ∈Mm×n

and v ∈ D(U ;Rm), we have that

ˆ
U

F (P )dx ≤
ˆ
U

F (P +Dv)dx (22)

Note that the above inequality (22) means that the plane u(x) = Px is a minimizer
on U subject to its own boundary values. Therefore (20) tells us that all quasiconvex
functions are rank-one convex. The converse to this statement was demonstrated
to be false by a famous example by Sverak. (This example will be explored in later
sections of this document.) By Jensen’s inequality, we get that every convex function
is quasiconvex.

2.2 Vector-valued weak lower semicontinuity

Here we follow Evans, Chapter 3, §B. Let us now suppose that F satisfies the following
growth condition.

0 ≤ F (P ) ≤ C(1 + |P |q) (P ∈Mm×n) (23)
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This growth condition will allow us to deduce a semicontinuity property of the functional
I[·] in this section. However, in many applications of the calculus of variations in this
context, such as nonlinear elasticity, the growth condition (23) is incompatible with phys-
ical requirements on F . This problem will be discussed in later sections when we analyze
polyconvex functions F . More on this later, however; for now, it suffices to prove a lemma
concerning the growth condition that follows for the gradient DF (P ).

Lemma 1. Let F be rank-one convex and assume the growth condition (23). Then we
have for some constant C,

|DF (P )| ≤ C(1 + |P |q−1) (P ∈Mm×n) (24)

Proof. Let P ∈Mm×n, and fix 1 ≤ k ≤ m, 1 ≤ i ≤ n. Choose ηk = 1, ηl = 0 (l 6= k) and
ξi = 1, ξj = 0 (j 6= i). If f is defined as in (??), then f is convex, and we hence have the
estimate

|f ′(0)| ≤ C

r
max
B(0,r)

|f | (r > 0)

But then (23) implies that

max
B(0,r)

|f | ≤ C(1 + |P |q + rq).

Setting r = |P |+ 1, we get that

max
B(0,r)

|f | ≤ C ′(1 + |P |q) ,

and taking the derivative we remove one power for |P | to get the desired result.

We will now prove that quasiconvexity is the proper assumption on F that allows for
the existence of minimizers when there are appropriate growth conditions on F . Addi-
tionally, we will prove that under the assumption of strict uniform quasiconvexity of F ,
then the convergence of energies I[uk]→ I[u] improves weak convergence to strong con-
vergence in W 1,q(U ;Rm). Both of these results will be packaged in the following theorem.
The reference for this theorem is [2].

Theorem 3. (a) Suppose that F satisfies the growth condition (23). Then the functional
I[·] is lower semicontinuous with respect to weak convergence in W 1,q(U ;Rm) if and
only if F is quasiconvex.

(b) Suppose additionally that F is strictly uniformly quasiconvex; that is, there exists
some γ > 0 such thatˆ

U

F (P ) + γ|Dv|qdx ≤
ˆ
U

F (P +Dv)dx (∀P ∈Mm×n, v ∈ D(U ;Rm)) (25)

Suppose that uk ⇀ u in W 1,q(U ;Rm) for a sequence (uk) ∈ W 1,q. If additionally we
have the convergence of energies,

lim
k→∞

I[uk] = I[u] ,

then the weak convergence is improved to strong convergence uk → u in W 1,q
loc (U ;Rm).
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Proof. We begin with the proof, noting that the set-ups of the proof of part (a) and (b)
are nearly identical for the first page.

The “only if” claim for (a) has already been demonstrated. As for sufficiency, suppose
that uk ⇀ u in W 1,q(U ;Rm). Then we know that the norms ‖uk‖W 1,q(U ;Rm) are uniformly

bounded, and by Rellich’s theorem we know that uk → u strongly in Lq(U ;Rm). Pass to
a subsequence, still denoted uk, such that

lim
k→∞

I[uk] = lim inf
k→∞

I[uk].

These are finite since the norms are bounded. Then let us define measures µk := 1 +
|Du|q + |Duk|q. (See Evans, Chapter 1.) By the Banach-Alouglu theorem (or one of its
variants), passing to a subsequence of measures, there is a measure µ such that µk ⇀ µ
weakly. i.e.,

ˆ
gdµk →

ˆ
gdµ (∀g ∈ C0(U))

These measures form a Banach space under the total-variation norm. (Recall that the
total variation |µ|(E) for a measurable (Borel) set E is defined as sup

∑∞
j=1 |µ(Ej)|, where

the supremum is taken over all partitions E = ∪∞j=1Ej , with the Ej pairwise disjoint). As
a general property on Banach spaces, norms are weakly lower semicontinuous. We thus
have that µ is a finite measure, since

|µ|(U) ≤ lim inf
k→∞

|µk|(U) <∞

Now, there are countably many P such that µ(P ∩ U) > 0, where P is a translate of a
coordinate hyperplane. The idea is that each hyperplane P is a dyadic translate of the
coordinate plane. Now, split U into cubes of side length 1

2i . Call Si the collection of
cubes with side length 1

2i .
Now fix ε > 0. We want to show that lim infk→∞ I[uk] ≥ I[u] − ε for all such ε.

Choose V ⊂⊂ U (the closure of V is compact and contained in U) such that

ˆ
U\V

F (Du)dx < ε

One can choose such a V by the growth condition on F ; since the integral is finite, take
V large enough so that this holds. Now denote by (Du)i the piecewise constant function
such that for x ∈ Qi, where Qi ∈ Si is one of the cubes of side length 1

2i ; i.e.,

(Du)i(x) =
1

|Qi|

ˆ
Qi

Dudx

Then we have that (Du)i → Du strongly in Lq(U ;Mm×n). Now, by an alternative
version of the dominated convergence theorem presented in Lieb and Loss’ Analysis, that
0 ≤ F ((Du)i) ≤ 1 + |(Du)i|q gives that 1 + |(Du)i|q → 1 + |Du|q in L1(U ;Rm), and
further that ˆ

U

F ((Du)i)dx→
ˆ
U

F (Du)dx

11



and thus
´
|F ((Du)i)− F (Du)| → 0. So now take i so large that

1
2i < dist(V, ∂U)

‖Du− (Du)i‖Lq(U ;Mm×n) < ε

‖F (Du)− F ((Du)i)‖L1(U) < ε

Let {Ql}ml=1 be cubes intersecting V , so that V ⊂ ∪ml=1Ql. Let 0 < σ < 1 and let Q̂l be

the concentric and parallel cube to Ql, except with side length σ 1
2i . (Get Q̂l by shrinking

Ql by a factor of σ.) Choose smooth cutoff functions {fl} for each Q̂l so that
0 ≤ fl ≤ 1 ,

fl ≡ 1 on Q̂l ,

fl ≡ 0 on (U \Ql) ∪ ∂Ql .

Also scale the fl so that |Dfl| ≤ C2i

1−σ . And let vkl := fl(uk − u). We know that uk ⇀ u

and that uk → u strongly in L1. Let Al be the value that (Du)i takes on Ql; namely,

Al :=
1

|Ql|

ˆ
Ql

Dudx .

We then have that

I[uk] =

ˆ
U

F (Duk)dx

≥
m∑
l=1

ˆ
Ql

F (Duk)dx (F is positive; ∪Ql ⊂ U)

=

m∑
l=1

ˆ
Ql

F (Du+D(uk − u)) dx

=

m∑
l=1

ˆ
Ql

F (Al +Dvkl )︸ ︷︷ ︸
(∗∗)

dx+ E1 + E2 .

Here E1 and E2 are defined as{
E1 =

∑m
l=1

´
Ql\Q̂l F (Du+D(uk − u))− F (Du+Dvkl )dx

E2 =
∑m
l=1

´
Ql
F (Du+Dvkl )− F (Al +Dvkl )dx

Until now, the proofs are identical for part (a) and (b) of the theorem. For part (b), we
will need to bound two more terms (E′3 and E′4, to be described.) Continuing with the
proof of (a), we have that

I[uk] ≥
m∑
l=1

ˆ
Ql

F (Al)dx+ E1 + E2 (quasiconvexity applied to (**))

≥
ˆ
V

F ((Du)i)dx+ E1 + E2

:= E1 + E2 + E3 + I[u]

≥ I(u)− |E1| − |E2| − |E3|

12



Here we define E3 :=
´
V
F ((Du)i) −

´
U
F (Du)dx. We now go about bounding each of

the Ei.
To bound E1, we use the growth estimate and the product rule to deduce that

|E1| ≤ C
m∑
l=1

ˆ
Ql\Q̂l

1 + |Du|q + |Duk|q︸ ︷︷ ︸
µk

+|Dfl|q|uk − u|q


≤ Cµk

(
∪ml=1Ql \ Q̂l

)
+ C(1− γ)−q ‖uk − u‖Lq · 2

i

This implies that lim supk→∞ |E1| ≤ Cµ(∪ml=1Ql \ Q̂l). Then, as σ → 1 in a countable
manner, we get from continuity below the measure of the boundary of Ql. Since the
measure of the boundary of Ql is zero, this bounds the term E1.

As for E2, we have that

|E2| =

∣∣∣∣∣∣∣
m∑
l=1

ˆ
Ql

F (Du+Dvkl )− F (Al +Dvkl )︸ ︷︷ ︸
(∗)

dx

∣∣∣∣∣∣∣
≤ C

m∑
l=1

ˆ
Ql

(
1 + |Du|q−1 + |Duk|q−1 + |Dvkl |q−1

)
|Du− (Du)i|︸ ︷︷ ︸

(∗∗)

dx

Using the multivariable fundamental theorem of calculus, we can write (*) as

|F (Du+Dvkl )− F (Al +Dvkl )| =
∣∣∣∣ˆ 1

0

(−Du−Al) ·DF (Al +Dvkl + t(−Du−Al))dt
∣∣∣∣

≤ c
ˆ 1

0

|Du−Al|
(
1 + |Du|q−1 + |Dvkl |q−1 + |Du−Al|q−1

)
dt

= c|Du−Al|
(
1 + |Du|q−1 + |Dvkl |q−1 + |Du−Al|q−1

)
dt .

In the last line, we applied the triangle inequality with the power q and using the DF
estimate. Now, we apply Hölder’s inequality to the term (**) to get the bound

|E2| ≤ ‖Du− (Du)i‖Lq (1 + ‖Du‖Lq + ‖Du‖Lq ) < (KC)ε

Now all that remains is a bound on E3. We will use the L1 estimate and account for the
area of integration. Since

´
U\V F (Du)dx < ε, we have that

|E3| ≤
ˆ
V

|F (Du)i − F (Du)|dx+

∣∣∣∣∣
ˆ
U\V

F (Du)dx

∣∣∣∣∣ ≤ 2ε

Since we have appropriately bounded each of E1, E2, E3, this completes the proof for part
(a) of the theorem.
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We can now finish off the proof for part (b) of the theorem. We have that I[uk]→ I[u]
and that ‖uk − u‖W 1,q → 0. From before, we have that

I[uk] ≥
m∑
l=1

ˆ
Ql

F (Al +Dvkl )dx+ E1 + E2

≥
m∑
l=1

ˆ
Ql

F (Al) + γ|Dvlk|dx+ E1 + E2 (strict uniform convexity)

≥
m∑
l=1

ˆ
Ql

F ((Du)i)dx+ γ

m∑
l=1

ˆ
Q̂l

|Duk −Du|qdx+ E1 + E2

So we have

I(uk) ≥ I(u) + γ

ˆ
V

|Duk −Du|q + E1 + E2 + E3 + E4

Taking lim sup, we get that Ei, i = 1, 2, 3, are less than ε, whereas we are left with

E4 = γ

m∑
l=1

ˆ
Ql\Q̂l

|Duk −Du|qdx

Using the triangle inequality and the definition of our constructed measure, we get that

lim sup
k→∞

|E4| ≤ γCµ
(
∪ml=1Ql \ Q̂l

)
Taking σ → 1, this quantity goes to zero. Putting this all together, we get that

lim inf
k→∞

I(uk)︸ ︷︷ ︸ ≥ I(u)︸︷︷︸− lim sup
k→∞

(ˆ
V

|Du−Duk|q + |E1|+ |E2|+ |E3|+ |E4|
)

By assumption, the difference of the quantities with the underbraces goes to zero as
k →∞, and this proves the result.

It turns out that the growth condition (23) is actually incompatible with applications
to nonlinear elasticity. In particular, in nonlinear elasticity we require an invertibility
condition on solutions to variational problems, which is enforced in the model problem
by requiring blowup of the function F (A) as the determinant detA→ 0.

We now turn our attention to another type of convexity which is in fact compatible
with nonlinear elasticity applications—namely, polyconvexity. In the following we will
restrict our focus to functions from R3 to itself. Recall that we denote Mn as the space
of all n×n matrices with real entries, and that Mn

+ is the set of all those matrices A with
detA > 0.

Definition 2. A function g : M3 → R is said to be polyconvex if there is a function
G : M3 ×M3 × (0,∞) → R such that g(A) = G(A, adjA,detA) for all A ∈ M3

+, where
G is a convex function of each of its variables.

14



We now prove an existence theorem for minimizers of a polyconvex variational prob-
lem. This problem was mentioned in one of Ball’s recent papers on open problems [3]
and we will follow Ball & Murat’s [4] in the presentation of the proof below.

We consider an elastic homogeneous body in reference configuration in a bounded
domain Ω ⊂ Rn. We assume that the boundary ∂Ω = ∂Ω1 ∪ ∂Ω2 ∪ N is strongly
Lipschitz, with ∂Ω1 a measurable subset of ∂Ω with positive (n−1)-dimensional measure,
and H2(N) = 0. We consider a mixed placement, zero traction boundary value problem,
so that u(∂Ω \ ∂Ω1) is traction-free. The deformation u : Ω→ Rn is required to satisfy

u(x) = ū(x) a.e. x ∈ ∂Ω1 (26)

The total energy is given by

J(u) :=

ˆ
Ω

|g(∇u(x))|dx (27)

where g : Mn → R̄ is the stored energy function. The function space for which we
consider possible minimizers is

A := {u ∈W 1,1(Ω;Rn) : (1) holds and J(u) <∞}

The existence theorem is the following:

Theorem 4. Let n = 3, and suppose that the stored energy function g satisfies

(H1) g is continuous

(H2) g(A) =∞ if and only if detA ≤ 0

(H3) g is polyconvex, so that there is a convex function G : M3 ×M3 × (0,∞)→ R such
that g(A) = G(A, adjA,detA) for all A ∈M3

+.

(H4) g(A) ≥ K1 +K (|A|p + | adjA|q) for all A ∈M3
+, for some K > 0, K1 constant, for

p ≥ 2 and q ≥ p
p−1 .

If A is non-empty, then J attains its absolute minimum on A, and the minimizer u
satisfies det∇u(x) > 0 a.e. x ∈ Ω.

Proof. First, we would like to extend the corresponding convex function G to be defined
on all matrices, not just those with positive determinant. To this end, let us define

L := M3 ×M3 × R ≡ R19 , L+ := M3 ×M3 × (0,∞) ,

and ∆ : M3 → L by ∆(A) = (A, adjA,detA). Let now G̃ : L→ R̄ be the greatest convex
function such that

g(A) = G̃(∆(A)) ∀A ∈M3
+

Such a function exists since the function Ḡ,

Ḡ(H) :=

{
G(H) H ∈ L+

∞ H ∈ L \ L+
,

is convex. From the above, we see that G̃ also satisfies G̃(H) = ∞ for all H ∈ L \ L+.
We now want to show that G̃ is continuous and agrees with g on L. We recall Theorem
4.3 of Ball’s paper [5]
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Theorem 5 (Ball [5], Theorem 4.3). Let K ⊂ R be convex and non-empty, and let
U = {F ∈M3 : detF ∈ K}. Then, denoting the convex hull of a set A by CoA, we have
that

Co ∆(U) = M3 ×M3 ×K ,

where ∆ : M3 →M3 ×M3 × R is defined by ∆(F ) = (F, adjF,detF ).

Applying this theorem with K = (0,∞) we deduce that Co ∆(M3
+) = L+; i.e., the

convex hull of matrices with positive determinant gives matrices with positive determi-
nant. This means that any H ∈ L+ can be written as H = tA+ (1− t)B with A = ∆(a)
and B = ∆(b) for some a, b ∈ M3

+. (We should note that this is not exactly true, as we
should write H =

∑
i αiAi where

∑
i αi = 1, Ai = ∆(ai) for ai ∈ M3

+, but the analysis

following is the same in any case.) Then convexity of G̃ implies that

G̃(H) ≤ tG̃(∆(a)) + (1− t)G̃(∆(b))

= tg(a) + (1− t)g(b)

<∞ (by (H2))

Thus we have that 0 ≤ G̃(H) < ∞ for all H ∈ L+. Since G̃ is convex and finite on L+,
this means that it is continuous on L+. Since it is infinite on the complement of L+, this
means that it is continuous on all of L.

Let now M > 0 be arbitrary, and define θM by

θM (A) :=
g(A)−M

detA

We can take K1 ≥ 0 without any loss of generality (otherwise we could just subtract the
difference and proceed the proof with the corresponding positive K ′1). Since K1 ≥ 0, if
detA ≥ 1 then θM (A) ≥ −M since

θM (A) =
g(A)−M

detA
≥ K1 +K (| adjA|q + |A|p)−M

detA

≥ −M
detA

≥ −M .

Let S := {A ∈ M3 : 0 < detA ≤ 1}, and ξ := infA∈S θM (A), and let (Aj) ∈ S be the
minimizing sequence of θM (A), so that θM (Aj) → ξ as j → ∞. By hypothesis (H4), we
have that

K|Aj |p ≤ g(Aj)−K1 −K| adjAj |q

= G̃(∆(Aj))−K1 −K| adjAj |q <∞ (since 0 ≤ G̃(H) <∞ for H ∈ L+

Thus Aj is bounded, and so a subsequence Aµ converges to some A0. Since by (H1) g is
continuous and detA ≤ 0 if and only if g(A) =∞ by (H4), we have that g(Aµ)→ g(A0),
and so we must have that detA0 > 0, since otherwise tails of the sequence Aµ would have
non-positive determinant. Since Aj is the minimizing sequence of θM (A) on S, we have
that θM (A) ≥ θM (A0) for all A in S. But this means that

g(A)−M
detA

≥ θM (A0)
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Thus there is a constant m = m(M) such that g(A) ≥M −m detA for all A ∈M3
+. And

hence the function θ(A,B, δ) := M−mδ is an affine function that satisfies θ(∆(A)) ≤ g(A)
for all A ∈ M3

+. Since G̃ is the maximal convex function such that g(A) = G̃(∆(A)), we
have

G̃(A,B, δ) ≥M −mδ ∀(A,B, δ) ∈ L
But M > 0 is arbitrary, so as (Ak, Bk, δk)→ (A,B, 0), we have that G̃(Ak, Bk, δk)→∞.
Thus G̃ is continuous on all of L = M3 ×M3 × R, and g(A) = G̃(∆(A)) for all A ∈M3.

For the second part of the proof, let now {uj} ⊂ A be a minimizing sequence of J
over A, and let ξ := infw∈A J(w), so that J(uj)→ ξ as j →∞. Let j be large enough so
that ξ + 1 ≥ J(uj). We then have that

ξ + 1 ≥ J(uj) =

ˆ
Ω

|g(∇uj)|dx

≥
ˆ

Ω

|K1 +K (|∇uj |p + | adj∇uj |q) |dx (by (H4))

= K1meas(Ω) +K

ˆ
Ω

|∇uj |p +K

ˆ
Ω

| adj∇uj |q

= c+K ‖Duj‖pLp +K ‖adj∇uj‖qLq

Recall now the Poincaré inequality: ‖Du‖Lp ≥ ‖u‖W 1,p for all u ∈ W 1,2
0 (Ω) if Ω is an

open and bounded set in Rn. This inequality applies to uj − ū ∈W 1,p
0 so that

‖Duj‖Lp ≥ ‖Dū‖Lp + γ1 ‖uj‖W 1,p − γ1 ‖ū‖W 1,p

= γ1 ‖uj‖W 1,p + c

So there is some γ2 = γ2(Ω, p, ū) such that ‖Duj‖pLp ≥ ‖uj‖
p
W 1,p + c. This implies that

ξ + 1 ≥ c+Kγ2 ‖uj‖pW 1,p +K ‖adjDuj‖qLq

Thus the tails of uj are bounded in W 1,p and the tails of adjDuj are bounded in Lq. So
by Banach-Alaoglu theorem, there is a weakly convergent subsequence {uµ} such that

uµ ⇀ u in W 1,p(Ω;R3)

uµ → u a.e. in Ω

adj∇uµ ⇀ χ in Lq(Ω;R9)

Now, Theorem 3.4(a) and (b) from Ball [6] give that{
adj∇uµ → adj∇u in D ′(Ω)

det∇uµ → det∇u in D ′(Ω)
,

so by uniqueness of limits for distributions, we get that χ = adj∇u. Recall now the
elementary inequality |det∇uµ(x)| ≤ C| adj∇uµ(x)||∇uµ(x)|; using this and Hölder’s
inequality we get that {det∇uµ} is bounded in L1:ˆ

Ω

|det∇uµ(x)|dx = ‖det∇uµ(x)‖L1

≤ C ‖adj∇uµ · ∇uµ‖L1

≤ ‖∇uµ‖Lp ‖adj∇uµ‖Lp′ <∞ .
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That the last quantity is finite follows since uµ ∈ W 1,p implies ∇u ∈ Lp, and adj∇uµ ∈
Lp
′
by assumption. Since {det∇uµ} is bounded in L1, it follows from Banach-Alaoglu that

det∇uµ → η for some η; but uniqueness of limits in distributions gives that η = detDu.
So we have that uµ ⇀ u in W 1,p, Duµ ⇀ Du in Lp, and since Cc(Ω) is dense in

Lp(Ω), we have that Duµ ⇀ ∗ Du in the sense of measures. In the same way, we have
that adjDuµ ⇀ ∗ adjDu. We thus have that

(Duµ, adjDuµ,detDuµ) ⇀ ∗ (Du, adjDu,detDu) in the sense of measures.

We now will use Proposition A.3 of [4], the proof of which is in the paper as well.

Proposition 1 (Proposition A.3 [4]). Let Ω ⊂ Rm be a bounded open set, and let
H : Rs → R̄ be convex, lower semicontinuous and bounded below. Let θ, θj ∈ L1(Ω;Rs)
with θj ⇀ ∗ θ in the sense of measures, so that for each φ ∈ Cc(Ω) we have

ˆ
Ω

θjφdx→
ˆ

Ω

θφdx .

We then have that ˆ
Ω

H (θ(x)) dx ≤ lim inf
j→∞

ˆ
Ω

H (θj(x)) dx

We apply the above proposition to deduce that

ˆ
Ω

g(Du(x))dx =

ˆ
Ω

G̃(Du, adjDu,detDu)dx

≤ lim inf
µ→∞

ˆ
Ω

G̃(Duµ(x), adjDuµ(x),detDuµ(x))dx

= lim inf
µ→∞

ˆ
Ω

g(Duµ(x))

This implies that
J(u) ≤ lim inf

µ→∞
J(uµ) = inf

A
J(·)

Now, trace theory gives that u ∈ A just as before, and since
´
g(Du) <∞, we must have

that detDu(x) > 0 a.e.

2.3 Some open problems

In the previous section we considered some results for the existence of minimizers to func-
tionals under various structural hypotheses on the integrand. We now consider some of
the open questions regarding convexity and existence of minimizers, such as the necessity
of growth conditions or bounded domains, or the effect of the choice of function space
W 1,p, or the need to control the determinant or adjugates of the gradient Du. The two
main papers that we consulted for these open problems were by Ball [3], [7]. The fol-
lowing open problems are taken almost directly from these papers, and I have included
some of the calculations that the working group has worked out that Ball left out when
discussing these problems.
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2.3.1 Open problems related to applications to nonlinear elasticity and the
weak Euler-Lagrange equations.

Here we consider a bounded domain Ω ⊂ R3 with boundary ∂Ω = ∂Ω1 ∪ ∂Ω2 ∪ N
where ∂Ω1, ∂Ω2 are disjoint, relatively open subsets of Ω and N has zero two-dimensional
Hausdorff measure (area), H2(N) = 0; we can think of our domain as a cylinder and the
corresponding decomposition of the boundary as surfaces where traction may or may not
occur. We consider deformations y : Ω → R3 in the function space W 1,2(Ω;R3). The

gradient is given by a 3-dimensional matrix Dy(x) =
(
∂yi
∂xj

)3

i,j=1
, and we have some fixed

boundary condition
y|∂Ω1

= ȳ : ∂Ω1 → R3 (28)

The functional we consider is I(·) given by

I(y) =

ˆ
Ω

W (Dy(x))dx , (29)

where W : M3
+ → R is the stored-energy function of the material, and is assumed to be

C1 and bounded below. We turn our attention again to the existence of minimizers y∗

to the functional. A formal calculation (assuming sufficient conditions for differentiation
through the integral for the moment) of d

dτ I(y∗ + τφ)
∣∣
τ=0

leads to the weak formulation
of the Euler-Lagrange equilibrium equations:

ˆ
Ω

DAW (Dy) ·Dφdx = 0 . (30)

which holds for all φ that are smooth and satisfy φ|∂Ω1
= 0. We will consider the assump-

tions necessary in leading to the passage of the limit momentarily. In nonlinear elastics, a
common hypothesis is one of nondegeneracy of the determinant of the gradient; the idea
is that only those deformations that may be “undone” are possible in real applications,
and that fractures or other problems that may cause “uninvertible” deformations should
require infinite energy. This is enforced through the condition that

W (A)→∞ as detA→ 0+ (31)

Now we notice that if a deformation y has finite energy I(y) <∞, then the nondegeneracy
condition gives that

detDy(x) > 0 a.e. in Ω (32)

Now notice that (32) is not sufficient for the passage of the limit in (30). A stronger
condition presented below is, however. Let us consider y∗ ∈ W 1,∞ as a W 1,∞ local
minimizer of I in

A = {y ∈W 1,1(Ω;R3) : y|∂Ω1
= ȳ} .

In particular, this means that there is some ε > 0 such that for any z ∈ A satisfying
‖z − y∗‖W 1,∞ ≤ ε, we have I(y∗) ≤ I(z). Suppose we have the nondegeneracy condition
(31), and suppose further that we have strict positivity of the Jacobian, so that for some
ε > 0,

detDy∗(x) ≥ ε > 0 a.e. in Ω (33)
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Then since Dy∗(x) + τDφ → Dy∗(x), since det(·) is continuous, we have for τ small
enough,

det(Dy∗(x) + τDφ(x)) ≥ ε

2
a.e. in Ω (*)

Since y∗ ∈ W 1,∞, we have that ‖Dy∗‖L∞ is bounded. Since φ has compact support,
for small τ , {Dy∗(x) + τDφ(x) : x ∈ Ω} ⊂ R3 is in a bounded, compact set. So W is
uniformly continuous over its argument, and thus has a maximum. Since the range of
W is restricted to R (rather than R̄), from (*) we can take the Dominated Convergence
Theorem to deduce

lim
τ→0

ˆ
Ω

1

τ
[W (Dy∗ + τDφ)−W (Dy∗)] dx

=

ˆ
Ω

DW (Dy∗) ·Dφdx

= 0

Essential in this passage to the limit was the strict positivity of the Jacobian (33) and a
priori knowledge that y∗ ∈W 1,∞. What would be helpful in determining the satisfaction
of the weak Euler-Lagrange equations (30) is when exactly the strict positivity of the
Jacobian is satisfied, so that we could use this information as in the above proof. Ball
listed the following two open problems after detailing this issue:

Problem 1. Prove or disprove, under reasonable growth conditions on W , global or
suitably defined local minimizers of I that satisfy (30).

Problem 2. Prove or disprove, under reasonable growth conditions on W , global or
suitably defined local minimizers of I that satisfy (33)

We should note that there are functions which satisfy (32) but fail to satisfy the strict
positivity (33).

Example. An example of a smooth deformation y satisfying I(y) < ∞, detDy(x) > 0
a.e., but failure of (33) would be{

~y(~x) = |x|2~x
W (A) = − log detA+ g(A)

,

where g : M3 → R is smooth. For such a deformation, its gradient is given by ∂yi
∂xj

=

|x|2δi,j + 2xixj ,

Dy(x) =

3x2
1 + x2

2 + x2
3 2x1x2 2x1x3

2x1x2 x2
1 + 3x2

2 + x2
3 2x2x3

2x1x3 2x2x3 x2
1 + x2

2 + 3x2
3


Its determinant is given by detDy(x) = 3

(
x2

1 + x2
2 + x2

3

)3
= 3|x|6 and we easily see that

this satisfies all the mentioned properties.
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2.3.2 Regularity and classification of singularities

We consider the problem of minimizing the functional

I(y) =

ˆ
Ω

W (Dy(x))dx , (*)

over a bounded domain Ω with boundary ∂Ω = ∂Ω1 ∪ ∂Ω2 ∪N , where again H2(N) = 0.
The permissible functions are in some given space A, and W : M3

+ → R is C1 and
defined for all matrices with positive determinant. We suppose a traction condition on
the boundary ∂Ω1, whereby y|∂Ω1

= ȳ. A current open problem is the following:

Problem 3. When is the local or global minimizer of I(·) over A smooth, either on all
of Ω or except at points where x ∈ ∂Ω1 ∩ ∂Ω2?

Not much work has been done in this area. Some possible assumptions that may aid
in making some work towards this problem include:

• W is C∞

• ∂Ω is smooth, except possibly at ∂Ω1 ∩ ∂Ω2

• ȳ is C∞

• W is strictly polyconvex, meaning that it is strictly convex in the matrix, adjugate,
and determinant.

One known result along these lines is in the case of pure displacement boundary condition,
meaning that ∂Ω2 = ∅.

A more ambitious project would be to characterize the various singularities of a pos-
sible solution. One result along these lines is the following. Suppose W has a local
minimizer. Then W is strictly rank-one convex if and only if every locally weak solution
of the corresponding Euler-Lagrange equation to (*) has a constant gradient.

An important physically relevant singularity is that of cavitation. An example of
radial cavitation would be the deformation y : B(0, 1)→ R3 defined by

y(x) = r (|x|) x

|x|
(x ∈ B(0, 1)) (**)

If r(0) > 0 in (**), then y is discontinuous at zero, so that cavitation occurs.
In general, when does cavitation occur? It is known that if W is polyconvex and A =

W 1,3 with specified boundary conditions, then the minimizer is of the form ȳ(x) = λx,
so that no cavitations occur. Howeer, if W is polyconvex and satisfies

W (A) ≥ c0 (|A|p + | adjA|q)− c1

for 2 ≤ p < 3 and q < 3
2—so, the exact conditions of the existence theorem for polycon-

vexity, Theorem 4—then I attains a minimizer over A = W 1,1 among radial deformations
of the form (**) satisfying boundary conditions, and when λ is very large, r(0) > 0, and
so we have cavitation.

Cavitation is itself an example of the Laurentiev phenomenon, i.e., for Ap = W 1,p,
that

inf
A1

I < inf
A3

I .
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This phenomenon can happen in continuous function spaces as well, e.g. in one dimension.
One open problem regarding the Laurentiev phenomenon is the following.

Problem 4. Can the Laurentiev phenomenon occur for elastostatics under growth con-
ditions on W , ensuring that all finite-energy deformations are continuous?

We do know that there are minimizers of

I(y) :=

ˆ
Ω

f(Dy(x))dx , (?)

where f : Mm×n → R, that are not smooth. For example, if m = n2, for large n there are
strictly convex f such that the minimizer of I(·) subject to its own boundary condition
is of the form

y∗(x) =
1

|x|
x⊗ x . (x ∈ B(0, 1))

On the other hand, even if the minimizers are not smooth, one could ask if the set of
singularities is “small”. A recent result by Evans gives that the minimizer of (?), where
f is strictly convex and satisfies

c1|A|p − c0 ≤ f(A) ≤ c2 (|A|p + 1) , (p ≥ 2)

is smooth almost everywhere in Ω.
In elasticity, only certain singularities should be allowed: cavitation, fracture, and so

on. Some possible reasons for not having other types of singularities may include:

• W depends only on the gradient Dy, and not y itself.

• We are working in low dimensions in general (n = m = 3).

• Frame indifference condition for the integrand F , although this seems to be rarely
utilized in proofs that we have seen.

• Requirement of invertibility of y, i.e., that detDy > 0.

2.3.3 Sverak example of a rank-one but not quasiconvex function

Although no longer an open problem, it was a long-standing question about the possible
equivalency of quasiconvexity and rank-one convexity. Recall the definitions of these
convexities. Let F : Mm×n → R where m ≥ 3 and n ≥ 2, and we consider Ω ⊂ Rn as a
bounded domain.

Definition 3. We say that F is rank-one convex if for each A,B ∈ Mm×n, where B
is rank-one (i.e., B = η ⊗ ξ), the mapping 7→ F (A+ tB) is convex.

Definition 4. We say that F is quasiconvex if for every A ∈ Mm×n and for all φ ∈
C∞c (Ω;Rm), ˆ

Ω

F (A+Dφ)dx ≥
ˆ

Ω

F (A)dx . (QC)
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It has long been known that quasiconvexity implies rank-one convexity. It was also
known that if W has quadratic form, i.e. F = cijklA

k
jA

l
i, then rank-one convexity in

fact does imply quasiconvexity. The statement for general F , however, was not known
until the famous recent example by Sverak [8]. Here we will go through the proof of his
example. We begin with a lemma.

Lemma 2. Say that f is C0 on Mm×n. Then f is quasiconvex if and only if, for every
smooth, periodic (with respect to Zn) functions u, we have thatˆ

[0,1]n
f(A+Du) ≥

ˆ
f(A) . (A ∈Mm×n)

Proof. The “if” statement is obvious by extending compactly supported smooth functions
to being periodic over Rn.

For the other direction, fix such a smooth, periodic function u. For ε > 0, define a
cut-off function ηε satisfying

ηε ≡ 1 on [ε, 1− ε]n

0 on a neighbourhood of ∂([0, 1]n)

|Dηε| ≤ 2
ε

Let us now define
uε(x) := ε2ηε(x)u(x2/ε) . (*)

Then uε is smooth with support in Ω. We will prove the lemma for A = 0 in the following,
but it will work for any A. We then have that

f(0) ≤
ˆ

[0,1]n
f(Duε(x))dx

The idea is to take ε to zero and get out Du; the ε will cancel in (*). Let us take ε = 1
k ,

and break [0, 1]n into little cubes {Qk} with sides 1
k . This brings the above inequality

into

f(0) ≤
∑
Qk

ˆ
Qk

f
(
ε2u⊗Dηε(x) + ηεDu(x/ε2)

)
dx

= lim
k→∞

1

kn

∑
x∈Zn

ˆ
[0,1]n

f
(
ε2u⊗Dηε(x+ x̂) + ηεDu(x)

)
dx

= lim
k→∞

1

kn

∑ˆ
[0,1]n

f (ηεDu(x)) = lim
k→∞

1

kn

∑ˆ
[0,1]n

f(Du(x)) .

This completes the proof of the lemma.

We will now construct the desired counter example for the case n = 2 and m = 3,
and after the completion of the proof we will explain how to extend the proof to case of
general n,m.

Let W : R2 → R3 be defined by

W (x) =
1

2π

 sin 2πx1

sin 2πx2

sin 2π(x1 + x2)

 .
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Then the gradient of W is given by

DW (x) =

 cos 2πx1 0
0 cos 2πx2

cos 2π(x1 + x2) cos 2π(x1 + x2)

 .

Let now L =

{r 0
0 s
t t

 : r, s, t ∈ R

}
, and let f : L → R be defined by f(x) = −rst.

We will extend f to a function on all matrices, and will show that the functional satisfies
rank-one but not quasi- convexity.

In L, there are only three rank-one directions:

B1 =

1 0
0 0
0 0

 , B2 =

0 0
0 1
0 0

 , B3 =

0 0
0 0
1 1

 .

i.e., the coordinates must satisfy
x1y1 = a x1y2 = 0

x2y1 = 0 x2y2 = b

x3y1 = c x3y2 = c

.

Then f(A + tBi) is linear in t for rank-one Bi: f(A + tBi) = −(a11 + t)a22a33. Thus f
is rank-one on L. We then have thatˆ

[0,1]2
f(Du)dx = −

ˆ
[0,1]2

cos(2πx1) cos(2πx2) cos (2π(x1 + x2)) dx1dx2

= −
ˆ

[0,1]2
cos2(2πx1) cos2(2πx2)dx1dx2

+

ˆ
[0,1]2

sin(2πx1) cos(2πx1) sin(2πx2)︸ ︷︷ ︸
=0

cos(2πx2)dx1dx2

< 0 = f(0)

The last inequality follows since the first term in the second line is negative due to the
positive integrand. Thus f is not quasi-convex on L. We now want to extend the function
to all of M2. Before doing so, we will need the following lemma.

Lemma 3. Let L and f be as before, and define

F (x) = f(Px) + ε|x|2 + ε|x|4 + k|x− Px|2

where | · |2 represents the `2 norm, i.e., the sums of squares, and P is the orthogonal
projection of M3,2 → L, so that

P

a b
c d
e f

 =

a 0
0 d
e f

 .

Then for every ε > 0 there is k such that F is rank-one convex.
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Proof. Fix A, Y ∈ M3×2. Then, using the product rule and the fact that |A + tY |2 =∑
(ai + tyi)

2,

d2

dt2
F (A+ tY )

∣∣∣∣
t=0

=
d2

dt2
f(A+ tPY )

∣∣∣∣
t=0

+ 2ε|Y |2 + 4ε|A|2 + 7ε

(
d

dt

|A+ tY |2

2

)2

+ 2k|Y − PY |2

Now, all of these terms are strictly positive except for d
dt2 f(·), for which we want a lower

bound. We have

f(PA+ tPY ) = (a11 + ty11)(a22 + ty22)(a33 + ty33) .

Taking the second derivative, we get a constant c, independent of A, Y ∈ M3×2, such
that

d

dt2
f(PA+ tPY )

∣∣∣∣
t=0

≥ −c|A| · |Y |2 .

This means that

d2

dt2
F (A+ tY )

∣∣∣∣
t=0

≥
(
−c|A|+ 4ε|A|2

)
|Y |2 ≥ 0 ,

where the last inequality follows provided that |A| ≥ c
4ε . In this case, F is rank-one

convex. To prove the lemma, we need to show that the second derivative is non-negative
everywhere. We have that

d2

dt2
F (A+ tY ) ≥ d2

dt2
f(PA+ tPY )

∣∣∣∣
t=0

+ 2ε|Y |2 + 2K|Y − PY |2 =: g(A, Y, k) .

Then g is C0.
Let us define K := {(A, Y ) ∈M3×2×M3×2 : |A| ≤ c

4ε , |Y | = 1, Y is rank-one convex}.
Then K is a closed and bounded subset of Rs, and hence compact.

Claim. There is k0 such that g(A, Y, k0) ≥ ε for all (A, Y ) ∈ K.

Proof of claim. Suppose not. Then for k = 1, . . ., there is (Ak, Yk) ∈ K such that
g(Ak, Yk) ≤ ε. Since K is compact, passing to a subsequence we get that (Ak, Yk) →
(Â, Ŷ ). This implies that

lim
k→∞

2ε|Yk|2 + 2k|Yk − PYk|2 +
d2

dt2
f(PAk + tPYk)

∣∣∣∣
t=0

≤ −ε .

Therefore Ŷ = PŶ , and so d2

dt2 f(PÂ+ tP Ŷ )
∣∣∣
t=0
≤ −ε. But this is a contradiction to the

fact that f is rank-one convex. This proves the claim.

So there is k0 such that d2

dt2F (A + tY )|t0 = d2

dt2F ((A + t0Y ) + tY )|t=0 ≥ 0 for all
A ∈M3×2, with Y rank-one and |Y | = 1. So we have shown that for all ε > 0 there is kε
such that F is rank-one convex, and this proves the lemma.
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We can now prove the desired theorem.

Theorem 6. There is ε, kε such that F is rank-one convex but not quasiconvex.

Proof. We have that
´

[0,1]2
f(Dw)dx < 0. We see that |Dw| is bounded (see the previous

calculation at the beginning of the section), so that there is ε > 0 such that

ˆ
[0,1]2

(
f(Du) + ε|Dw|2 + ε|Dw|4

)
dx < 0 .

Now ε > 0 is fixed. Take kε as in the previous lemma. Then F is rank-one convex, but
now

F (Dw) = f(Dw) + ε|Dw|2 + ε|Dw|4 + kε |PDw −Dw|2︸ ︷︷ ︸
=0 since already in subspace

.

This implies that

ˆ
[0,1]2

F (Dw) =

ˆ
[0,1]2

f(Dw) + ε|Dw|2 + ε|Dw|4 < 0 = F (0) .

Thus F is not quasiconvex in the case n = 2 and m = 3. To extend to n > 2,m > 3, take
T : Mm×n →M3×2 defined by

T

(
x11 · · ·
. . . · · ·

)
=

x11 x12

x21 x22

x31 x32

 .

Then T preserves rank-one lines, and so F̃ : Mm×n → R defined by F̃ (X) = F (TX) is
rank-one convex, and we can take Ŵ : Rn → Rm defined by

W̃ (x) =
1

2π



sin 2πx1

sin 2πx2

sin 2π(x1 + x2)
0
0
...


.

3 Compactness methods for nonlinear PDEs

3.1 Concentrated compactness

The idea for this section is to analyze the sets where compactness may fail, in the hopes
of somehow showing these sets are negligible in some sense, or ideally that these sets are
empty. The reference is Evans, Chapter 4.
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3.1.1 Variational problems

To do so, we will study variational problems involving (Sobolev) critical growth nonlin-
earities. Such problems barely fail to satisfy the usual compactness (Sobolev embedding)
criteria.

To that end, we will consider the following model problem. For n ≥ 3, we want to
study the existence of minimizers for the functional,

I(w) =

ˆ
Rn
|Dw|2dx , (34)

over the set of admissable functions A = {w ∈ L2∗(Rn) : ‖w‖L2∗ = 1, Dw ∈ L2}. Here,
p∗ = np

n−p > p is the Sobolev conjugate of the exponent p.
Recall the Gagiardo-Nirenberg-Sobolev inequality: for 1 ≤ q < n, we have the in-

equality
‖f‖Lq∗ (Rn) ≤ Cq ‖Df‖Lq(Rn;Rn) , (GNS)

which holds for all f ∈ C1
0 (Rn); by the usual density arguments, the inequality is also

valid when f ∈ Lq∗ and Df ∈ Lq. In this inequality, Cq = Cq(q, n) is an optimal constant.
Note that the infimum of the functional (34) can be expressed in terms of this constant.
We have that (ˆ

|Df |q
) 1
q

≥ C−1
q

(ˆ
|f |q

∗
) 1
q∗

,

which gives that
´
|Df |q ≥ C−qq ‖f‖

q

Lq∗
; thus we have

I(f) =

ˆ
|Df |2 ≥ C−2

2 ‖f‖2L2∗ .

Since C2 is an optimal constant, we get that

I := inf
w∈A

I(w) = C−2
2 .

Now we turn to the question at hand: is the infimum I attained by a function in A? As
usual, consider a minimizing sequence {uk} ⊂ A, so that

I(uk) =

ˆ
|Duk|2 → I .

Since I = C−2
2 <∞, this means that supk ‖Duk‖L2 <∞, and since ‖uk‖L2∗ = 1 for each

k, we can extract a weakly convergent subsequence, not relabeled, such that{
Duk ⇀ Du in L2

uk ⇀ u in L2∗
.

Since I(·) is convex, we know that it is lower semicontinuous with respect to weak conver-
gence from the preceding sections, so that lim infk→∞ I(uk) = I. So, if u ∈ A, then we
indeed have a minimizer to I over A. Clearly Du ∈ L2, so we need only concern ourselves
with ‖u‖L2∗ . As a general property of weak convergence in Banach spaces, we know that

‖u‖L2∗ ≤ lim inf
k→∞

‖uk‖L2∗ = 1 . (*)
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We need to prove that the above is a legitimate equality. We will cast the above problem
in terms of probability measures, given by integration of functions along Rn. We first
need a definition.

Definition 5. Let (X, τ) be a topological space, and let Σ be a σ-algebra containing
τ (namely, containing the Borel σ-algebra). A collection of measures M on Σ is called
tight if for every ε > 0 there is compact set Kε ⊂ X such that for each measure µ ∈M ,
we have that |µ(X \Kε) < ε.

Notice that in the specific case of probability measures, the above reduces to the
existence of compact sets Kε such that µ(Kε) > 1 − ε. We now recall a result about
probability measures on separable metric spaces, known as Prokhorov’s theorem.

Theorem 7. Let (X, d) be a separable metric space, and let P(X) denote the collection
of all probability measures on (X,BX). Then a collection of measures K ⊂ P(X) is tight
if and only if the closure of K is weakly sequentially compact in P(X).

To return to the problem at hand, we want to show that ‖u‖L2∗ = 1. The inequality
in (*) may be strict if either of these two possibilities occur:

(1) The measures {νk} := {|uk|2
∗} (defined by integration over Rn) are not tight. In this

case, {νk} does not have a weakly convergent subsequence in P(X); i.e., there is no
probability measure ν̄ = |ū|2∗ such that ν(Rn) =

´
Rn |ū|

2∗dx = 1.

(2) The measures {νk} are actually tight, but the limit νk → ν does not correspond to
the limit u; i.e.,

1 = ν(Rn) 6=
ˆ
Rn
|u|2

∗
dx .

Such a possibility may occur if ν has a singular part. Recall that by the Lebesgue-
Radon-Nikodym theorem, we can decompose the measure ν into the sum of an ab-
solutely continuous measure and a singular measure. That is, there are measures ν0

and ν1, where ν0 is absolutely continuous with respect to the Lebesgue measure m on
Rn, and ν1 is mutually singular with respect to m. (This means that there is some
g ∈ L1(Rn) such that ν0(A) =

´
A
gdm for all measurable sets A ⊂ Rn.) We then

have that
1 = ν(Rn) = ν0(Rn) + ν1(Rn) .

So if ν1 is not identically zero—namely, if ν has a non-trivial singular component—
then ν will not directly correspond to integration over Rn to the Radon-Nikodym
derivative g. If it were zero, however, then since the Radon-Nikodym derivative is
unique, we would hope that u = g.

Singular components of measures generally arise when there are highly oscillatory func-
tions that are being dealt with. What is particularly unfortunate is that our problem at
hand is not affected by changes in translations or oscillations: our choice of minimizing
sequence could be quite unfortunate in this respect. Let v ∈ A, y ∈ Rn, s > 0 be arbitrary.
Then define

vy,s(x) := s−(n−2)/2v

(
x− y
s

)
. (x ∈ Rn)
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Then we have that 1 =
´
Rn |v|

2∗dx =
´
Rn |v

y,s|2∗dx, as well as
´
Rn |Dv|

2 =
´
Rn |Dv

y,s|2.

To see this, write u = (x − y)/s, so that x = us + y, and note that 2∗ = 2n
n−2 , so that

−2∗/2 = −n/(n− 2), and so

|vy,s(u)|2
∗

= |s−(n−2)/2|2
∗
|v(u)|2

∗
= s−n|v(u)|2

∗
.

The Jacobian cancels out the s−n so that the integral of |vy,s|2∗ is also one. For the
gradient, we have that

|Dvy,s(u)|2 = |1
s
s−(n−2)/2Dv(u)|2 = |s−2s−(n−2)||Dv(u)|2 = s−n|Dv(u)|2 ,

so that the Jacobian again cancels out the s−n. So we see that by taking s > 0 very
small, we can construct highly oscillatory functions which satisfy the requirements of the
minimizing sequence, but whose measures may have singular parts and hence preclude
the existence of a minimizer.

What is a more interesting possibility is that for a given minimizing sequence {uk},
one can construct translations and dilations so that the new minimizing sequence {uyk,skk }
actually is a minimizer.

Theorem 8. Let {uk} ⊂ A be a minimizing sequence to I(·), so that I(uk) → I =
infA I(w). As before, Duk ⇀ Du in L2, and uk ⇀ u in L2∗ . Then there are translations
{yk} ⊂ Rn and dilations {sk} ⊂ (0,∞) such that the rescaled family {uyk,skk ⊂ A is
strongly precompact in L2∗ . In particular, there is a minimizer u ∈ A.

Proof. First we define the Lévy concentration functions

Qk(t) := sup
y∈Rn

ˆ
B(y,t)

|uk|2
∗
dx . (t > 0, k = 1, . . .)

Then Qy,sk (t) = Qy,1k (t/s), where Qy,sk is the concentration of function of uy,sk . This
identity follows since |s−(n−2)/2|2∗ = s−n, so

Qy,sk (t) = sup
z∈Rn

ˆ
B(z,t)

∣∣∣∣s−(n−2)/2uk

(
x− y
s

)∣∣∣∣2∗ dx = sup
z∈Rn

ˆ
B(z,t/s)

|uk(x− y)|2
∗
dx .

Note that Qk(0) = 0 and that limt→∞Qk(t) = limt→∞ supy∈Rn
´
B(y,t)

|uk|2
∗ → 1 since

uk ∈ A implies that ‖uk‖L2∗ = 1. For fixed k, Qk is also a continuous, increasing function
of t, as the integral is taken over a larger area for larger t and the integrand is positive.
So Qk(t) takes values in [0, 1]. Hence we can choose dilations {sk} such that Qy,skk (1) = 1

2
for all y ∈ Rn (k = 1, . . .). This is possible since

Qy,skk (1) = Qy,1k (
1

sk
) = sup

z∈Rn

ˆ
B(z, 1

sk
)

|uk(x− y)|2
∗
dx ,

and Qk(t) = supz∈Rn
´
B(z,t)

|uk(x)|2∗dx.

This allows us to choose translations {yk} such that νyk,skk := |uyk,skk |2
∗

are tight in
M(Rn). (Recall Definition 5). See Lions [9], Lemma I.1 for more information on this.
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Now for notational simplicity, let us assume that the translations and dilations above
were unnecessary, so that the measures {νk} are tight. (In the following, we could instead
write νyk,skk instead). By Prokhorov’s theorem (Theorem 7), there is a subsequence, still
denoted νk, such that

νk ⇀ ν in M(Rn), ν(Rn) = 1 .

Since Duk ∈ L2 for all k, and
´
|Duk|2 → C−2

2 <∞, we also have that

µk ⇀ µ in M(Rn) ,

for µk := |Duk|2.
For the third step of the proof, we would like to show that u 6= 0. Let us recall

Theorem 9 of Chapter 1 of Evans.

Theorem 9. For n ≥ 3, suppose that fk → f in L2
loc, Dfk ⇀ Df in L2, |Dfk|2 ⇀ µ in

M, and that |fk|2
∗
⇀ ν in M. Then we have the following.

(i) There is a countable index set J , and countable set of distinct points {xj} ⊂ Rn and
non-negative weights {µj , νj}j∈J such that

ν = |f |2
∗

+
∑
J

νjδxj ,

and
µ ≥ |Df |2 +

∑
J

µjδxj .

(ii) νj ≤ C2∗

2 µ
2∗/2
j for each j.

(iii) If f ≡ 0 and also ν(Rn)1/2∗ ≥ C2µ(Rn)1/2, then ν is concentrated at a single point.

Now, notice that since uk ⇀ u in L2∗ , we have that uk → u strongly in L2
loc, since

2∗ > 2. We also have that µk(Rn) =
´
Rn |Duk|

2 → I, and by weak convergence we have
that

µ(Rn) ≤ lim inf
k→∞

µk(Rn) = lim inf
k→∞

ˆ
Rn
|Duk|2 = I = C−2

2 .

Therefore µ(Rn)1/2 ≤ C−1
2 , and so C2µ(Rn)1/2 = ν(Rn) = ν(Rn)1/2∗ . Thus we are in

the setup of Theorem 9. Suppose for the contradiction that u ≡ 0. Then by (iii), ν is
concentrated at a single point x0. Thus

1

2
= Qk(1) ≥

ˆ
B(x0,1)

|uk|2
∗
dx .

But for large k, the quantity on the right hand side goes to one, which is a contradiction.
Thus u 6= 0.

The final step of the proof is to show that u ∈ A; namely, that the L2∗ norm is actually

equal to one. Suppose not. Then for some 0 < α < 1, we have ‖u‖2
∗

L2∗ = α. (α 6= 0 since
u 6= 0.) Let us define

Iα := inf
w∈Aα

I(w) ,
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where
Aα := {w ∈ L2∗ : ‖w‖2

∗

L2∗ = α,Dw ∈ L2} .

Then as before, the Sobolev inequality states that I(f) =
´
|Df |2 ≥ C−2

2 ‖f‖2L2∗ , and
since C2 is an optimal constant, we get that

Iα = inf
w∈Aα

I(w) = inf
‖w‖

L2∗=α−2∗
I(w)

= C−2
2 α2/2∗

= Iα2/2∗ .

We now can conclude the proof. By (i) and (ii) of Theorem 9, we have that

ν = |u|2
∗

+
∑
J

νjδxj , µ ≥ |Du|2 +
∑
J

µjδxj

for some countable points {xj}j∈J and positive weights {νj , µj} such that νj ≤ C2∗

2 µ
2∗/2
j .

This implies that for each j ∈ J ,

µj ≥ C−2
2 ν

2/2∗

j = Iν
2/2∗

j .

Integrating the first quantity over Rn, we get that 1 = α +
∑
J νj . This gives the

contradiction, as

I ≥ µ(Rn)

≥
ˆ
Rn
|Du|2 +

∑
J

µj

≥ Iα +
∑
J

µj = Iα2/2∗ +
∑
J

µj

≥ I

(
α2/2∗ +

∑
J

ν
2/2∗

j

)
> I .

The final strict inequality follows since 2∗ > 2 and α < 1 implies that α2/2∗ > α; and if
any of the νj ≥ 1, then we needn’t worry about the satisfaction of the inequality, and if

any νj < 1, then ν
2/2∗

j > νj so that (α2/2∗+
∑
j ν

2/2∗

j ) > 1. This completes the proof.

We now consider a variation on the preceding problem, where we deal with a similar
functional but with a lower order perturbation. The problem we consider is that of
minimizers for

Iλ(w) =

ˆ
U

|Dw|2 − λw2dx ,

defined over the set of admissable functions

A := {w ∈W 1,2
0 (U) : ‖w‖L2∗ = 1} .

31



Here, U ⊂ Rn is a bounded domain. As usual, let {uk} ⊂ A be the minimizing sequence
to I(·) over A, so that

Iλ(uk)→ inf
w∈A

Iλ(w) =: Iλ .

Write I0 = infv∈A I
0(v) and I0(w) =

´
U
|Dw|2. As to prove compactness, we begin with

the following lemma, which shows that the minimum energy Iλ is strictly smaller than
I0 when λ > 0. This should intuitively make sense since we are subtracting a positive
quantity in the functional.

Lemma 4. If λ > 0 and n ≥ 4, then Iλ < I0.

Proof. From Section 1 of this chapter in Evans, we know that if U = Rn, then the infimum
is attained by functions of the form

uy,ε =
cε

(ε+ |x− y|2)
n−2
2

,

for some ε > 0, and cε is a normalization constant so that uy,ε has the appropriate norm
to belong to the desired function space. But U ( Rn is bounded. So let us assume
for simplicity that 0 ∈ U . One would guess that u0,ε would be a good candidate for a
minimizer to the functional for small ε, except that u0,ε 6= 0 on ∂U . So let us fix this
defect by writing

vε(x) := ζ(x)u0,ε(x) ,

where ζ ∈ C∞c (U) is a cutoff function such that ζ ≡ 1 near the origin. Choose cε so that
‖vε‖L2∗ (U) = 1. An analysis performed by Brezis and Nirenberg [10] (see Lemma 1.1)
makes the estimates

´
U
|Dvε|2 = K1

ε(n−2)/2 +O(1)(´
U
|vε|2∗dx

)2/2∗
= ‖vε‖22∗ = K2

ε(n−2)/2 +O(ε)

´
U
|vε|2dx =

{
K3

ε(n−4)/2 +O(1) if n ≥ 5

K3| log ε|+O(1) if n = 4

.

The paper goes through all of the necessary calculations and merely involve basic calculus.
These estimates imply that

Iλ(vε) =

{
I0 +O(ε(n−2)/2)− λKε if n ≥ 5

I0 +O(ε)− λK| log ε| if n = 4
.

So choose ε > 0 small enough so that Iλ ≤ Iλ(vε) < I0, as desired. The reason for a
different bound for the n = 4 case in the final estimate is because if we just assume a
general n ≥ 4, we have the following. Recall that f(ε) = O(g(ε)) as ε → 0 means that
there are δ,M > 0 such that for |ε| < δ, |f(ε)| ≤ M |g(ε). This means that Iλ(vε) ≤
I0 − λKε + Mε(n−2)/2; if we want this quantity to be strictly smaller than I0, we need
that ε(n−4)/2 < λK

M , and so we cannot take ε small enough for the desired strict inequality
to hold unless n ≥ 5.

We now begin with the actual theorem on compactness.
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Theorem 10. Let 0 < λ < λ1, where λ1 is the principal eigenvalue for −∆ on W 1,2
0 (U).

Let {uk} ⊂ A be a minimizing sequence for I and n ≥ 4. Then there is a subsequence
{ukj} ⊂ {uk} and a function u ∈ A such that ukj → u strongly in W 1,2

0 (U). In particular,
u ∈ A is a minimizer.

Proof. Step 1. Since {uk} is a minimizing sequence, we have that

Iλ(uk) = Iλ + o(1) . (*)

Since {uk} is bounded in W 1,2
0 (U), there is a subsequence ukj such that{
ukj ⇀ u in W 1,2

0

ukj → u a.e. and strongly in L2(U)
. (**)

The reason ukj → u strongly in L2 is, of course, due to Rellich compactness.

Step 2. Define vkj := ukj − u. Then vkj ⇀ 0 in W 1,2
0 , vkj → 0 a.e., and so (*) gives

that

Iλ(u) + I0(vkj ) =

ˆ
U

|Du|2 − λ|u|2dx+

ˆ
|Dvkj |2 = Iλ + o(1) . (***)

This o(1) comes from writing u = vkj + ukj .
We now need a refinement of Fatou’s lemma (from Evans, Chapter 1) to go on with

the proof.

Lemma 5. Suppose that U is a bounded, open, and smooth domain, and that 1 ≤ q <∞,
with a sequence (fk) ∈ Lq such that fk ⇀ f in Lq(U), and fk → f a.e. in U . We then
have that the norms decouple in the limit,

lim
k→∞

(‖fk‖qLq − ‖fk − f‖
q
Lq ) = ‖f‖qLq .

The proof of this lemma is fairly elementary. Recall first the inequality

||a+ b|q − |a|q| ≤ ε|a|q + C(ε)|b|q , (#)

which holds for a, b ∈ R and C(ε) depends only on ε and q. Define the function

gεk := (||fk|q − |fk − f |q − |f |q| − ε|fk − f |q)+
,

where (·)+ denotes the positive part. Then gεk(x) → 0 a.e. as k → ∞. Applying the
inequality (#) with a = fk − f , b = f with the triangle inequality gives

gεk ≤ (||fk|q − |fk − f |q − |f |q|+ |f |q − ε|fk − f |q)+

≤ (ε|fk − f |q + C(ε)|f |q + |f |q − ε|fk − f |q)+

= (1 + C(ε)) |f |q .

Dominated convergence then gives that

lim
k→∞

ˆ
U

gεkdx = 0 .
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Since ||fk|q − |f − fk|q − |f || ≤ gεk + ε|fk − f |q, we get that

lim sup
k→∞

ˆ
U

||fk|q − |f − fk|q − |f || dx ≤ ε lim sup
k→∞

ˆ
U

|fk − f |qdx = O(ε)

since weakly convergent sequences are bounded. This completes the desired refinement
of Fatou’s lemma.

We can now apply the above to deduce that

1 =
∥∥ukj∥∥2∗

2∗
= ‖u‖2

∗

2∗ +
∥∥vkj∥∥2∗

2∗
+ o(1) .

Then the elementary inequality (a+b)η ≤ aη+bη (which holds for a, b > 0 and 0 ≤ η ≤ 1)
gives us that

1 + o(1) ≤
(ˆ

U

|u|2
∗

+ |vkj |2
∗
) 2

2∗

≤ ‖u‖2L2∗ +
∥∥vkj∥∥2

L2∗ . (4)

Now (***) and (4) give that

Iλ(u) + I0(vkj ) ≤ Iλ
(
‖u‖2L2∗ +

∥∥vkj∥∥2

L2∗

)
+ o(1) . (44)

Step 3. By definition, we know that Iλ ≤ Iλ(u). By weak convergence, ‖u‖L2∗ ≤ 1,
and so

Iλ ‖u‖2L2∗ ≤ Iλ(u) ,

so that (44) is now

I0(vkj ) ≤ Iλ
∥∥vkj∥∥2

L2∗ + o(1) .

For large j, since vkj → 0 a.e.,
∥∥vkj∥∥L2∗ ≤ 1, and by definition of infimum, we have that

I0
∥∥vkj∥∥L2∗ ≤ I0(vkj ) .

This implies
(I0 − Iλ)I0(vkj ) ≤ o(1) .

By Lemma 4, I0 − Iλ > 0, and so I0(vkj )→ 0 strongly, i.e.,
´
U
|Dukj −Du|2 → 0. This

means that ukj → u strongly in W 1,2
0 (U), so that u ∈ A is a minimizer to Iλ(·).

3.1.2 Nonvariational problems

In the last section we focused on concentration methods concerning the lack of compact-
ness of the injection L2∗ ↪→W 1,2. We now consider some nonvariational problems where
compactness is again in question due to critical growth nonlinearities.

We consider a function u : Ω ⊂ Rn → Rm, where Ω is a bounded domain. The
non-variational problem of interest is{

−∆u = b(Du) in Ω

u = 0 on ∂Ω
. (*)
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We subject the function b to the growth condition

b(P ) ≤ C
(
1 + |P |2

)
. (GC)

Suppose that we have a sequence of approximate solutions

−∆uk = bk(Duk), uk|∂Ω = 0 ,

and suppose that {uk} is bounded in W 1,2
0 ∩L∞, and suppose that each bk satisfies (GC),

and that bk → b locally uniformly. Now we ask the obvious: if uk ⇀ u in W 1,2, does u
solve (*)? We first consider a scalar problem to gain some insight into the problem.

Theorem 11. Suppose we have a sequence of approximating scalar problems −∆uk = fk.
Suppose that {uk} is bounded in W 1,2(Ω), and that {fk} is bounded in L1(Ω). Then {uk}
is precompact in W 1,p(Ω) for 1 ≤ p < 2.

Proof. Passing to a subsequence, we get that uk ⇀ u in W 1,2 and uk → u a.e. and
strongly in L2.

Claim. Duk → Du a.e.

Assuming the claim is true, let vk = |Duk − Du|p; then vk → 0 a.e. By Egorov’s
theorem, for each δ > 0, there is a measurable set Eδ such that vk → 0 uniformly on Eδ
with m(Ω \ Eδ) < δ. So we have

ˆ
vk ≤

ˆ
Eδ

|Duk −Du|p +

ˆ
Ecδ

|Duk|p +

ˆ
Ecδ

|Du|p ,

and we want to show that these last two terms go to zero as δ ↓ 0. We know that {Duk}
is uniformly bounded in L2. Thus by Hölder’s inequality,

ˆ
Ecδ

|Duk|p ≤

(ˆ
Ecδ

|Duk|2
)p/2

δ
2−p
2 = o

(
δ

2−p
2

)
.

Thus this term goes to zero as δ → 0 so long as p < 2.
We now prove the claim. Let σ, δ > 0 and introduce the function β defined by

β =


σ x ≥ σ
−σ x ≤ −σ
linear function connecting function x ∈ (−σ, σ)

.

For any function u, the composition β ◦ u truncates the function to be between ±σ. By
Egorov’s theorem, uk → u uniformly on Eδ. So let ζ be a cut-off function such that ζ ≡ 1
on Eδ, and we may suppose that |uk−u| ≤ σ

2 on Eδ. (We can do this by just considering
the tails of {uk}. Then, taking into consideration the weak formulation of the problem
at hand,
ˆ
Eδ

|Duk −Du|2 ≤
ˆ

Ω

ζD(uk − u) ·Dβ(uk − u)

=

ˆ
fkζβ(uk − u)−

ˆ
Dζ ·Duk · β(uk − u)−

ˆ
ζDu−Dβ(uk − u) .
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This implies that

lim sup
k→∞

ˆ
Eδ

|Duk −Du|2 ≤ σ sup
k
‖fk‖L1 = O(σ .

Taking σ ↓ 0 finishes the proof.

We now consider a new type of method for analysing possible failures of compactness,
known as the capacity method. We define the p-capacity of a set as follows.

Definition 6. The p-capacity of a set is defined by

Cp(A) := inf
{
‖Df‖pLp : f ∈ Lp

∗
, Df ∈ Lp, A ⊂ int{f ≥ 1}

}
.

Let us suppose that Duk → Du in Lp for some p < 2. We define the reduced defect
measure θ by

θ(E) := lim sup
k→∞

ˆ
E

|Duk −Du|2dx ,

where E ⊂ Ω is a Borel set. We say that the p-capacity of a reduced defect measure θ
is zero, denoted Cp[θ] = 0, if there is a sequence of open sets {Vi} with θ(Ω \ Vi) = 0
with Cp(Vi)→ 0 as i→∞. We now utilize these tools in proving compactness for vector
non-variational problems.

Theorem 12. Let m > 1 and suppose that uk ⇀ u in W 1,2. Then Cp[θ] = 0 for
1 ≤ p < 2. Furthermore, if we also know that C2[θ] = 0, then u is a solution to the PDE
(*) introduced at the beginning of this section.

Proof. Let 1 ≤ p < 2. By Theorem 7, Chapter 1 of Evans, for any δ > 0 there is a
relatively closed set Eδ ⊂ Ω such that uk → u uniformly on Eδ with Cp(Ω \ E) ≤ δ.
(Note that this Eδ is not the same Eδ from Egorov’s theorem.) By the same argument
as before, we get that

ˆ
Eδ

|Duk −Du|2 ≤ σ sup ‖bk(Duk)‖L1 ≤ C
(
σ + σ sup ‖Duk‖2L2

)
= O(σ) .

Since σ > 0 is arbitrary, θ(Eδ) = 0. So we can choose Vi = Ecδi for δi → 0 to get that
Cp[θ] = 0.

Now suppose that C2[θ] = 0. Then there are open sets {Vi} such that θ(Ω \ Vi) = 0
with C2(Vi)→ 0. By definition of capacity, there are φi, 0 ≤ φi ≤ 1, such that φi ≡ 0 on
Vi, φi → 1 a.e., and ‖Dφi‖L2 → 0.

Now pick v ∈W 1,2 ∩L∞, and test φiv. It is identically zero on Vi, which are the sets
where we do not have strong convergence. We have that

ˆ
Ω

φiDuk : Dv +DφTi Duk · v =

ˆ
Ω

φibk(Duk) · v .

We have that Duk → Du strongly in L2(Ω \ Vi) by defect measure property, and so

ˆ
Ω

φiDu : Dv +DφTi Du · v =

ˆ
Ω

φib(Du) · v .
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Using dominated convergence, let now i → ∞. Then φi → 1, and Cauchy-Schwarz on
DφTi ∈ L2, v ∈ L∞ allows us to deduce

ˆ
Ω

Du : Dv =

ˆ
Ω

b(Du) · v .

This is precisely that u is a weak solution to −∆u = b(Du).

3.2 Compensated compactness

The idea of this section is to consider some nonvariational PDEs for which oscillations in
minimizing sequences may cause some types of issues for compactness. We first consider
some direct methods that can be used for specific PDEs to address some passages to
limits. The reference is Evans, Chapter 5.

We consider first harmonic maps into spheres. That is, functions u : U → Rm, where
U ⊂ Rn is a bounded domain, that satisfy{

−∆u = |Du|2u in U

|u| = 1 a.e. in U
. (*)

These equations arise from the (weak) Euler-Lagrange equations for

I(w) =

ˆ
U

|Dw|2dx ,

taken over the admissible set of functions

A = {w ∈W 1,2(U ;Rm) : |w| = 1 a.e., w = g on ∂U} .

A harmonic map is a weak solution u ∈ A of (*). We will first show that the harmonic
map structure of functions is preserved under weak convergence in W 1,2.

Theorem 13. Suppose {uk} ⊂ A are harmonic maps with uk ⇀ u in W 1,2(U ;Rm).
Then u is also a harmonic map.

Proof. Step 1. Fix indices 1 ≤ i, j ≤ m. For vi, vj ∈W 1,2
0 ∩ L∞, we have

ˆ
U

Duik ·Dvidx =

ˆ
|Duk|2uikvidx,

ˆ
U

Dujk ·Dv
jdx =

ˆ
|Duk|2ujkv

jdx .

So let now vi = ujkw and vj = uikw for w ∈ C∞c (U). Subtracting the expressions, we
obtain

0 =

ˆ
U

Duik ·D(ujkw)−Dujk ·D(ujkw)dx

=

ˆ
U

(
Duik ·Dw

)
ujk −

ˆ
U

(
Dujk ·Dw

)
uikdx .

Since uk ⇀ u in W 1,2, by Rellich compactness we have that uk → u strongly in L2, and
so as k →∞ we have that

0 =

ˆ
U

ujDui ·Dwdx−
ˆ
U

uiDuj ·Dwdx . (**)
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By density, (**) holds for w ∈W 1,2
0 (U) ∩ L∞(U).

Step 2. Given v ∈W 1,2
0 (U) ∩ L∞(U), set w = ujvi in (**) to get that

0 =

ˆ
ujDui ·D(ujvi)− uiDuj ·D(ujvi)dx .

The above holds in summation
∑
i,j as well. Expanding this out and using the product

rule, we get that

0 =
∑
i,j

ˆ
|uv|2

(
Dui ·Dui

)
+ uj

(
Du9 ·Duj

)
vi

− ui
(
Duj ·Duj

)
vi − ui

(
Duj ·Dvi

)
uj .

Summing over j first, and then i, we get that

0 =

ˆ
Du : Dv + 0− |Du|2u · v − 0 .

This is exactly what it means for u to be a weak solution. The reason the second and
fourth terms are zero is because |u|2 =

∑
i(u

i)2 = 1, which implies (Du)Tu = 0, so
differentiating gives us that

1

2

∂

∂xj

(∑
i

ui
2

)
= 0 =

∑
j

(∑
i

ui
∂ui

∂xj

)
.

The second term is uj
(
∂ui

∂xk
∂ui

∂xk

)
vi and thus goes to zero.

We now consider the homogenization of divergence structure PDEs. The model prob-
lem we consider is { (

aij(x/ε)u
ε
xi

)
xj

= f in U

uε = 0 on ∂U .
(*)

Here A = (aij)ij is a matrix, ε > 0 is small and we employ summation notation. We
suppose a uniform ellipticity condition

ξTA(u)ξ ≥ ν|ξ|2 , (UE)

for ξ ∈ Rn, ν > 0, and y ∈ Y where Y is the unit cube in Rn; we will restrict our focus
to the unit cube in Rn as the result for general bounded domains follows easily from this.
We also suppose that A is uniformly bounded and Y periodic, so that{

|A(y)| ≤ C
y 7→ A(y) is Y -periodic .

Let now uε ∈W 1,2
0 be a weak solution to the PDE (*), so that for each v ∈W 1,2

0 (U),

ˆ
U

aij(xε)u
ε
xivxjdx =

ˆ
U

fvdx . (**)
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Set now v = uε and use (UE) with Hölder’s inequality to deduce that

ν

ˆ
U

|Duε|2dx ≤
ˆ
U

fuεdx ≤ ‖f‖L2 ‖uε‖L2 .

We can now use Young’s inequality, Poincaré’s inequality and divide by the constant in
Poincaré’s inequality to get a uniform bound supε>0 ‖uε‖W 1,2

0 (U) <∞. We can therefore

pass to a subsequence uk ⇀ u ∈W 1,2
0 (U).

There is no obvious way to pass to the limit in (**). We instead consider a sequence
of “adjoint corrector problems” for 1 ≤ ` ≤ n: −

(
aij(y)w`yj

)
yi

= (ai`(y))yi

w` is Y -periodic .
(***)

Since ai` is Y -periodic, the right hand side integrates to zero, so by the Fredholm alter-
native there is a weak solution w` to (***). Let us now define the averaged coefficients

ãi` :=

ˆ
Y

aij(y)
(
δj` + w`yj(y)

)
dy .

We will show that u satisfies the PDE with these averaged coefficients ã rather than a.

Theorem 14. The weak limit u is a weak solution to the homogenized problem{
− (ãi`uxi)x` = f in U

u = 0 on ∂U .
(HP)

Proof. Step 1. We know that aij(x/epsk)uεkxi ⇀ hj in L2(U) as k → ∞. Since uxi are

bounded, and the coefficients aij are uniformly bounded, we have, for each v ∈W 1,2
0 ,

ˆ
U

h ·Dvdx =

ˆ
U

fvdx =

ˆ
U

aij(xε)u
ε
xivxjdx .

Step 2. Fix 1 ≤ ` ≤ m and define the corrector

vε(x) := x` + εw`(x/ε) , (x ∈ U)

where x` denotes the `th component of x. We know that w` satisfies −(aij(y)w`yj )yi =
(ai`(y))yi . This means, by taking derivatives, that vε is a weak solution of

−
(
aij(x/ε)v

ε
xj

)
xi

= 0 .

Let now ζinC∞c (U) and substitute v = ζvε into (**). We then have
ˆ
U

fvζdx =

ˆ
U

aij(x/ε)u
ε
xi(v

εζ)xjdx

=

ˆ
U

aij(x/ε)u
ε
xi

(
ζxjv

ε + vεxjζ
)
dx (product rule and int. by parts)

=

ˆ
U

aij(x/ε)uxiζxjv
ε − aij(x/ε)vεxju

εζxidx (IV)
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Step 3. We know that vεk → x` in L2(U). Differentiating and recalling the definitions

of vε = vε,`, ãi` we get

aij(x/εk)vεkxj = aij(x/εk)
(
δjk + w`xj (x/εk)

)
⇀ ãi` in L2(U) .

Now send ε→ 0 in (IV). Since vεk → x`, and by weak convergence for h, ãi`, we have

ˆ
fζx`dx =

ˆ
hvx`ζxj − ãi`uζxidx .

Since vεζ ∈W 1,2
0 , we know that

´
fvεζ =

´
h ·D(vεζ), and so differentiating again gives

ˆ
fx`ζdx =

ˆ
U

h`ζ + hjx`ζxjdx ,

so that ˆ
(ãi`u)xi ζdx =

ˆ
h`ζdx .

This means that for each component `, we have the identity (since ãi` is constant)∑
(ãi`u)xi =

∑
ãi`uxi = h` .

Plugging this into
´
h · Dv =

´
fv, we get that

´
ãi`uxi · Dv =

´
fv, so that (HP) is

indeed satisfied,
− (ãi`uxi)x` = f in U .

We now consider a new type of structural constraint on the behaviour of gradients in
divergence-free fully nonlinear PDEs. The problem of interest is{

− div(E(Du)) = f in U

u = 0 on ∂U .
(*)

Here, E : Rn → Rn is given. If E = DF , F : Rn → R, then we have a variational problem
(for which (*) will be the associated Euler-Lagrange equation) and we know from Chapter
2 of Evans that convexity is the proper structural hypothesis. In this case, we know from
convexity that

(E(p)− E(q)) · (p− q) = (DF (p)−DF (q)) · (p− q) ≥ 0 .

In the case that E is not given by DF , the above inequality suggests that we suppose
that E is monotone, meaning that for each p, q ∈ Rn,

(E(p)− E(q)) · (p− q) ≥ 0 . (M)

Now suppose also that we have the growth condition

E(p) ≤ C(1 + |p|) (GC)
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for E. And further suppose that we have a sequence of approximating solutions {uk, fk}
where fk → f in L2 and uk ∈ W 1,2

0 are weak solutions to − ÷ (E(Duk)) = fk in U , so
that ˆ

E(Duk) ·Dvdx =

ˆ
fkvdx , (**)

with uk ⇀ u in W 1,2
0 . Then we have the following result.

Theorem 15. The weak limit u is a solution to the PDE (*).

Proof. By (M), we know that for each v ∈W 1,2
0 ,

0 ≤
ˆ
U

(E(Dv)− E(Duk)) · (Dv −Duk)dx .

Putting v − uk into (∗∗), we get that

0 ≤
ˆ
U

E(Dv) · (Dv −Duk)− fk(v − uk)dx .

Using the growth condition, we take k →∞ to get

0 ≤
ˆ
U

E(Dv) · (Dv −Du)− f(v − u)dx .

For λ > 0 and fixed w ∈W 1,2
0 (U), let v = u+ λw. We then have that

0 ≤
ˆ
U

E(Du+ λDw) ·Dw − fwdx .

Take now λ→ 0 to get the inequality 0 ≤
´
U
E(Du) ·Dw− fwdx; but we can apply this

same analysis to −w to get the opposite inequality, so that u solves the PDE (*).

4 Maximum principle methods

The maximum principle is often used for nonlinear PDE to provide estimates, but our
interest here is to use maximum principles for justifying weak convergence techniques.
The reference for this section is Evans, Chapter 6. To this end, let us consider the model
problem of a fully nonlinear PDE{

F (D2u) = f in U

u = 0 on ∂U .
(*)

Assume F : Sn → R is given, where Sn denotes the space of n×n symmetric matrices. We
assume that the problem (*) is elliptic, i.e., that F is monotone decreasing with respect
to matrix ordering in Sn (so that A ≥ B means xTAx ≥ xTBx for all column vectors x).
In other words, F satisfies

F (P ) ≤ F (P ) if P ≥ R (S,R ∈ Sn) (E)
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Suppose that fk → f uniformly, and that additionally uk is a smooth solution of the
approximating problem F (D2uk) = fk in U , uk = 0 on ∂U . Suppose that {uk} is
bounded in W 2,∞(U), so that we can extract a subsequence {ukj with

ukj → u uniformly

D2ukj ⇀ ?D2u in L∞(U ;Sn)

Then does u satisfy (*)? If F is convex and uniformly elliptic, then there are strong
estimates that are available (see Evans’ text for references on this), so we instead focus on
the non-convex case. This setup is similar to that of the last section where we considered
divergence-structure quasilinear PDEs. Let us recast the above into a more abstract form
to gain an insight into the fundamental structures that allow the desired satisfaction of
PDEs under weak convergence.

Let us suppose that we are given a sequecne of approximation problems in a Hilbert
space H, so that A(uk) = fk, where A(·) is a given operator mapping its domain D(A) ⊂
H into H. We suppose that A satisfies a monotonicity condition

0 ≤ 〈A(u)−A(v), u− v〉 (u, v ∈ D(A)) . (MC)

For u = uk, we then have that for each k,

0 ≤ 〈Av − f, v − uk〉 (k = 1, . . .) .

So if uk ⇀ u in H and fk → f in H, we deduce that in the limit

0 ≤ 〈Av − f, v − u〉 .

For w ∈ D(A), let v = u + λw. If we assume A to be continuous on finite dimen-
sional subspaces of H—which is an appropriate assumption if A represents a differential
operator—then we know A(u+λw) = A(u) + o(1), and so dividing by λ > 0 and sending
λ→ 0 gives us

0 ≤ 〈A(u)− f, w〉 ,
for each w ∈ D(A). Thus this is also true for −w ∈ D(A), and so we have equality in the
above. If we assume D(A) to be dense in H, since we have shown that 0 = 〈A(u)− f, w〉
for a dense subspace of H, this means that

A(u) = f .

Unfortunately, the operator A(u) := F (D2u) does not satisfy (MC) for even smooth
functions u, v where 〈·, ·〉 is the inner product on H = L2(U). On the other hand,
solutions of elliptic PDEs should satisfy some maximum and/or comparison principles,
which are pointwise in nature. This suggests that we should shift our focus from L2 to
L∞ or even C(Ū). The question, then, is to ask whether or not suitably defined operators
A on such spaces satisfy (MC). However, the lack of inner product structure on L∞ and
C(Ū) occlude this immediate possibility.

Instead let us consider another possible type of monotonicity condition. Consider a
real Banach space X. The Sato bracket [·, ·]+ is defined as

[f, g]+ = lim
λ→0+

‖g + λf‖2 − ‖g‖2

2λ
:= lim

λ→0+
∆(f, g, λ)

42



This limit exists for all f, g ∈ X. First notice that t 7→ ‖g + tf‖ is convex, so that
the mapping t 7→ ∆(f, g, t) is monotonic increasing for all t > 0. Also notice that ∆ is

bounded below by −‖g‖2 for all t > 0, and since ∆ is monotonic and bounded above
and below, its limit exists for all f, g. Notice that if X = H, a Hilbert space, then
[f, g]+ = 〈f, g〉, since

〈g + λf, g + λf〉 − 〈g, g〉 = 2λ 〈g, f〉+ |λ|2 〈f, f〉 .

Now consider an operator A : D(A) ⊂ X → X as “monotone in X” if

0 ≤ [A(u)−A(v), u− v]+ (u, v ∈ D(A)) (MC’)

For the case X = C(Ū) under supremum norm (we need Ū so that we are dealing with a
compact set), it turns out that the Sato bracket can be characterized by

[f, g]+ = max{f(x0)g(x0) : x0 ∈ Ū , g(x0) = ‖g‖C(Ū) .

For the proof of this identity, see Sato’s paper [11]. The proof is elementary, and Sato
considers the pairing

τ(f, g) = lim
ε→0+

‖f + εg‖ − ‖f‖
ε

,

and proves that for X = C(Ū), the pairing is equal to

τ(f, g) = max
x∈χ(f)

((sgn f(x))g(x)) .

Thus we have [f, g]+ = ‖g‖ τ(g, f).
We first show that our F satisfies the (MC’).

Theorem 16. The operator A(u) := F (D2u), defined for C2 functions vanishing on the
boundary of U , satisfies (MC’) in C(Ū).

Proof. Let u, v ∈ C2(U) be functions vanishing on the boundary. We want to show that
0 ≤ [F (D2u)− F (D2v), u− v]+. This occurs iff

max{(F (D2u(x0))− F (D2v(x0))) · ((u− v)(x0)) : x0 ∈ Ū , (u− v)(x0) = ‖u− v‖C(Ū)} .

So let x0 ∈ U be such that (u− v)(x0) = ‖u− v‖C(Ū). Then u− v has a maximum at x0,
so by the second derivative test,

D2(u− v)(x0) ≤ 0⇒ D2u(x0) ≤ D2v(x0) .

Therefore (E) gives that
F (D2u(x0)) ≥ F (D2v(x0)) ,

and so A(u)−A(v) ≥ 0 at x0. Since (u− v)(x0) = ‖·‖ ≥ 0, we have that

(A(u)−A(v))(u− v) ≥ 0 at x0 .

On the other hand, if x0 is such that (v−u)(x0) = ‖u− v‖C(Ū), then the same argument

gives that A(v)−A(u) ≥ 0 at x0 and (v − u)(x0) ≥ 0, so that (MC’) is satisfied.
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Now for the problem set above: F (D2uk) = fk, uk = 0 on ∂U , W 2,∞ 3 ukj → u
uniformly, D2ukj ⇀ ? D2u in L∞. Condition (MC’) gives

0 ≤ A(uk)−A(v), uk − v]+ = [fk −A(v), uk − v]+ .

It is easy to verify that [ , ] is upper semicontinuous (just apply the exact definition), so
that lim supk→∞[ , ] ≤ [lim supk→∞, lim supk→∞], and hence we arrive at

0 ≤ [A(v)− f, v − u]+ , (35)

for each C2 function v such that v = 0 on ∂U . However, since we only know that
u ∈ W 2,∞—and not that u is C2—we cannot justify the method as before whereby we
set v = u+ λw. We instead proceed as follows.

Theorem 17. The weak limit u solves the PDE (*) almost everywhere.

Proof. Step 1. As above, we arrive at (35) for all C2 functions v vanishing on ∂U . We
would like to design test functions v to read off useful information.

Step 2. We know that u ∈ W 2,∞(U). Rademacher’s theorem states that if u ∈
W 2,p(U) for p > n, then u is twice differentiable a.e. in the classical sense. So let x0 ∈ U
be any point where D2u(x0) exists. We handcraft a C2 function vk having the form, for
ε > 0,

v(x) = u(x0) +Du(x0) · (x− x0) +
1

2
(x− x0)TD2u(x0)(x− x0) + ε|x− x0|2 ,

for x near x0, such that |u−v| attains a maximum over Ū only at x0. (Notice the similarity
to second order Taylor expansion for u.) This means that |u− v|(x0) = ‖u− v‖C(Ū), and

hence (35) and the identity for [ , ] give us that

[f −A(v), u− v]+

= max{(f(x0)−A(v(x0))) · ((u− v)(x0)) : x0 ∈ Ū , (u− v)(x0) = ‖u− v‖C(Ū)}

≥ 0 .

Therefore f −A(v) ≥ 0 at x0, and so A(v) = F (D2v(x0)) ≤ f(x0). Taking the derivative
of v then gives

F (D2u(x0) + 2εI) ≤ f(x0) .

Assuming F to be continuous, send ε → 0 to get F (D2u(x0)) ≤ f(x0). We deduce the
opposite inequality by performing the same analysis for [A(v)− f, v − u]+ ≥ 0, and this
proves the theorem.
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