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0.1. ABSTRACT v

0.1 Abstract

The relevance of the Einstein constraint equations in physics is first presented.

They arise in the initial-value formulation of general relativity, and must be sat-

isfied by the metric and the extrinsic curvature of a Cauchy surface. Propagating

the resulting tensor fields with the evolution equations is then equivalent to solving

Einstein’s field equation.

The constraint equations consist of a system of two coupled nonlinear second-

order PDEs. Well-posedness of the system is addressed, following the work of

Y.Choquet-Bruhat. Some brief comments about global solutions are made.

The conformal method is introduced. Using this approach, along with York

splitting, the constraint equations now consist of a semilinear elliptic equation

and a linear elliptic system that have to be solved for the conformal factor and a

vector field.

The main part of the thesis addresses the questions of existence and uniqueness

of solutions to the Einstein constraint equations on three-dimensional compact

Cauchy surfaces without boundary. The Yamabe classification turns out to be a

key tool, and is presented. Then follows a thorough literature review of the results

in the cases where the mean curvature, which is part of the prescribed data, is

constant or near-constant. Recent articles on the case where the mean curvature is

far-from-constant are discussed qualitatively. We then turn to a specific toy-model

investigated by D.Maxwell where a family of three-parameters is used to consider

different regimes on a Yamabe-null manifold. A similar approach is then used to

explicitly work out some existence and uniqueness results on a Yamabe-positive

manifold.
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0.2 Abrégé

Tout d’abord, le rôle des équations de contraintes d’Einstein en physique est

présenté. Ces équations font partie de la formulation du problème de Cauchy

de la relativité générale, et doivent être satisfaites par la métrique, ainsi que

par la courbure extrinsèque moyenne d’une surface de Cauchy. Déterminer la

propagation de ces champs tensoriels par les équations d’évolution équivaut à la

résolution de l’équation de champ d’Einstein.

Les équations de contraintes d’Einstein consistent en un système de deux

EDP couplées non-linéaires de deuxième ordre. Le travail d’Y.Choquet-Bruhat

démontrant que le problème est bien posé, est résumé. S’ensuivent quelques brefs

commentaires concernants les solutions globales.

La méthode conforme est exposée. L’utilisation de cette technique combinée

à la décomposition de York tranforme les équations de contrainte en une équation

semi-elliptique et une équation linéaire elliptique, ayant pour inconnues le facteur

conforme et un champ vectoriel.

L’essentiel de la présente thèse se concentre sur les questions d’existence et

d’unicité des solutions des équations de contraintes d’Einstein sur les variétés

compactes tridimensionelles sans frontière. À cet effet, la classification de Yamabe

est un outil important. Une revue de la littérature est alors détaillée dans les cas

où la courbure moyenne, qui est une donnée prescrite, est constante, ou ‘proche-

de-constante’. Puis vient une présentation qualitative d’articles récents traitant

du cas où la courbure moyenne est ‘loin-de-constante’. On s’attarde ensuite sur un

cas spécifique étudié par D.Maxwell, dans lequel une famille de trois paramètres

est utilisée pour passer d’un régime à l’autre sur une variété Yamabe-nulle. Une

approche similaire est ensuite utilisée pour obtenir des résultats d’existence et

d’unicité explicites sur une variété Yamabe-positive.
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0.4 Conventions

Throughout the whole document, Einstein summation convention is used in ex-

pressions involving components of a tensor, i.e.: repetition of an index as an upper

and as a lower index implies summation over all possible values of the index.

In the main body of the thesis, the following conventions are followed:

• M denotes a four-dimensional spacetime manifold, endowed with the Lo-

rentzian metric g. Greek indices are used to label components of tensors living

on M , and they are raised and lowered with the metric g.

• Σ ⊂ M denotes the Cauchy surface on which the initial-value problem is

formulated. The Riemannian metric induced by g on Σ is h. Latin indices are

used to label components of tensors living on Σ, and they are raised and lowered

with the metric h. Vectors normal to Σ are denoted by n, and the vectors in the

canonical basis of TpΣ (where p ∈ Σ) are denoted by e.

• When referring to the geometrical object, a tensor is denoted by a single

letter, whereas the expressions for its components in local coordinates involve

(greek of latin) indices.

• Covariant derivatives are denoted by D, and connections by ∇.

• The notations (g) or (h) are used to make explicit which metric is used to

perform an operation (such as D(g), for example), or to specify which tensor is

meant (eg: R(g) for the Ricci scalar w.r.t. g).

• The Laplacian is denoted by ∆.

• If there is no ambiguity regarding the local coordinates being used, the

notation ∂µ := ∂
∂xµ is used.



Chapter 1

Introduction

1.1 Motivation from physics: Einstein’s equation of

General Relativity

Einstein’s work on gravity culminated in 1916, with his presentation of the theory

of general relativity. Its main result is encompassed in what is now known as

Einstein’s field equation:

Ric− 1

2
Rg = 8πGNT (1.1)

where

• Ric is the Ricci tensor,

• R is the Ricci scalar,

• g is the spacetime metric,

• T is the energy-momentum tensor,

• GN is Newton’s constant of gravitation.

(See Definitions A.27, A.45 & A.47) Equation (1.1) aims to describe how the

geometry of spacetime reacts to the presence of energy-momentum. The energy-

momentum tensor is usually known, and involves the metric. Since Ric and R

are built from first and second derivatives of the metric and its inverse, Equation

1
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(1.1) really is a set of ten non-linear equations to be solved for the ten independent

components of g. [7]

1.2 The constraint equations

As such, Equation (1.1) is very hard to solve. To make it more manageable, it is

recast into an initial-value problem: The underlying idea is that since Equation

(1.1) is a second order tensorial PDE for the metric g, we should provide as initial

conditions gµν and ∂tgµν at an instant of time, in local coordinates. Using the

terminology presented in Appendix B, this idea is now made precise.

The initial-value problem, also called the Cauchy formulation of general rel-

ativity consists in specifying two symmetric tensor fields, h and K on a Cauchy

surface Σ, satisfying the constraint equations

R(h) + (trhK)2 −KabKab = 16πρ (Hamiltonian constraint) (1.2)

DbK
ab −Da(trhK) = 8πja (Momentum constraint) (1.3)

obtained from Equation (1.1), Equations (B.10) & (B.11) and using

16πTαβn
αnβ ≡ 16πρ 8πTαβe

α
an

β ≡ 8πja (1.4)

R(h) is the Ricci scalar on Σ, the covariant derivative is D = D(h), and trhK :=

Ka
a = habKba is the trace of K. ρ and j are usually referred to as the source

terms.

In this formulation:

• Σ is a Cauchy surface representing an ‘instant of time’.

• Initial values for g are given by the six components of h.

• Initial values for the ‘time derivative’ of g are given by the specification of

K, since as revealed by Claim B.7, they are closely related.

A few remarks are now in order:
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Remark 1.1. Section 1.1 mentioned that the ten Einstein’s field equations (1.1)

were to be solved for the ten independent components of g. However, since the

Einstein tensor defined as G = Ric − 1
2Rg has to satisfy the Bianchi identity

gµα (DαGµν) = 0 for α = 0, 1, 2, 3 (cf. Equation (A.33)), only six of the equations

are truly independent. If a metric is a solution to Equation (1.1) in one coordi-

nate system xµ, it must also be a solution in any other coordinate system xµ
′

.

This reveals that there are four unphysical degrees of freedom in g, and only six

coordinate-independent degrees of freedom. [7] △

Remark 1.2. The constraint equations only make up four of the ten Einstein’s

field equations. The others provide evolution equations for h and K. Those

equations can be derived altogether from the Hamiltonian “ADM” formulation

of general relativity (see [2] & [24] for references), which considers variations of

the Einstein-Hilbert Lagrangian to derive the equations of motion of the system.

Note that Appendix B does not follow this approach.

It can be shown that if the constraints are satisfied on the initial surface and

the evolution equations are satisfied everywhere, then the constraints are satisfied

everywhere. This is usually described by saying that “the constraints propagate”.

△

1.3 Outline of the thesis

Before solving the Einstein constraint equations, Chapter 2 studies some qualita-

tive features of the system, and its solutions. Y.Choquet-Bruhat’s work on the

well-posedness of the system is presented in Section 2.1. To this end, the meaning

of having a unique solution is made precise. Her proof also demonstrates that

the Einstein constraint equations are necessary and sufficient conditions for the

existence of a solution to Einstein’s field equation. We also highlight the issues

that arise from the nonlinearity of the equations, and present an existence result



4 CHAPTER 1. INTRODUCTION

for global solutions in Section 2.2. To this day, the most successful approach to

tackle the Einstein constraint equations has been the conformal method, which is

outlined in Section 2.3 in the vacuum case, when the Cauchy surface is a three-

dimensional compact manifold. By considering that we only know the conformal

class within which the metric h lies, and by splitting the extrinsic curvature K

appropriately, the Einstein constraint equations are turned into a system which

consists in two equations: the semilinear elliptic Lichnerowicz equation, and the

momentum constraint, which is linear and elliptic. The new unknowns are the

conformal factor φ and a symmetric and traceless (2, 0)-tensor K̃. This tensor

can be further decomposed using York splitting, which is presented in Section

2.4. The resulting conformal formulation of the Einstein constraint equations is

given by Equations (2.18) & (2.19). They must be solved for the conformal factor

φ and a vector fieldW , when the Cauchy surface Σ, the metric γ (s.t. h ∈ [γ]), the

TT-tensor σ and the mean curvature τ are prescribed. h and K are reconstructed

using Equations (2.20) & (2.21).

Chapter 3 presents existence and uniqueness results for solutions of the Ein-

stein constraint equations. One key tool is Yamabe theorem presented in Section

3.1, which gives rise to the classification of manifolds according to their Yamabe

type. Three situations are then considered, depending on the prescribed mean

curvature τ which is either constant, near-constant, or far-from-constant (‘CMC’,

‘near-CMC’, and ‘far-from-CMC’ cases, resp.). In the CMC and near-CMC cases,

explicit proofs for non-/existence and uniqueness are given, following [16] & [18].

When τ ≡ constant (Section 3.2), the momentum constraint is trivially satis-

fied by W ≡ 0, so that the only equation to consider is the Lichnerowicz equation.

The strategy to prove non-existence is to work in a gauge where the scalar cur-

vature is constant, and then make use of the maximum principle to prove that

no positive solution φ exists. Existence results make use of the sub and super

solution theorem. Uniqueness results are based on a technical lemma which relies
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on the monotonicity of f(x, φ) in φ, in the Lichnerowicz equation ∆φ = f(x, φ).

In the near-CMC case (Section 3.3), a theorem where sufficient conditions for

existence and uniqueness of a solution is proved in detail. It allows for a non-

constant prescribed mean curvature, but imposes some conditions on its gradient,

the so-called ‘near-CMC assumption’. The proof considers a sequence of semi-

decoupled equations. Sub and super solutions are found for each system in the

sequence, so that existence of a sequence of solutions is guaranteed by the sub

and super solution theorem. Those sub and super solutions can be used to build

uniform sub and super solutions. The sequence of solutions is shown to converge

in C0, and a bootstrapping argument shows that the limit is twice differentiable.

The last step shows that the limit is a weak, and therefore a strong solution of

the Einstein constraint equations. Uniqueness is shown by contradiction.

In the far-from-CMC case, we first present the results of [15] & [23] qualitati-

vely in Section 3.4, along with some comments on the presence of matter in the

equations. Those results are the first existence results for non-CMC data without

the near-CMC assumption. We then turn to two toy-models in Section 3.5. The

first one is investigated in [22] by D.Maxwell: using a family of three parameters

that allows to go from the near-CMC to the far-from-CMC regime, as well as

control the size of the TT-tensor, various non-/existence and uniqueness results

are obtained on the conformally flat n-torus, which is a Yamabe-null manifold.

A similar approach is used in the second toy-model that we investigated, which

considers the constraint equations on S2 × S1, a Yamabe-positive manifold.

To ease the reading of the main part, a lot of material has been relegated

to the appendices. The reader familiar with pseudo-Riemannian geometry and

elliptic PDEs should not need to refer to them extensively. Appendices A & B

present the material required to understand the initial-value problem. Appendix

C provides the tools used in the proofs of Chapter 3. Lastly, Appendix D is on

conformal methods.



Chapter 2

The conformal method:

Motivation & Presentation.

This chapter aims to present how the Einstein constraint equations have been

tackled over the past 60 years. For simplicity, we will work with vacuum space-

times (ie: ρ = ja ≡ 0, a = 1, 2, 3) where Σ is a compact three-dimensional

manifold, without boundary.

2.1 Well-posedness of the Cauchy problem

We first discuss the well-posedness of the Cauchy formulation presented in Section

1.2. That is, we wish to show

- Existence: For any choice of initial data, ∃ a consistent solution.

- Uniqueness: Moreover, that solution is unique.

- Continuous dependence of the solution on the initial data: The map from

the space of initial data to the space of solutions is continuous.

[14] The Cauchy problem for the gravitational field differs in several important

respects from that for other physical fields:

• The Einstein equations are non-linear. While other field theories are often

6
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non-linear because they involve several fields interacting with each other, the

distinctive feature of the gravitational field is that it is self-interacting: it is non-

linear even in the absence of other fields. This is because it defines the spacetime

over which is propagates.

• Two metrics g1 and g2 on a manifold M are physically equivalent if there

is a diffeomorphism φ :M →M which takes g1 into g2. Thus the solution of the

field equations can be unique only up to a diffeomorphism.

That second point implies that the meaning of having a ’unique’ solution has

to be made more precise:

Definition 2.1. Let θ : Σ →֒ M be an embedding, and consider a solution

(Σ, h,K) to the Cauchy problem. Then (M,θ, g) is called a development of

(Σ, h,K). Another development (M ′, θ′, g′) of (Σ, h,K) is called an extension

of M if there is a diffeomorphism α : M → M ′ s.t. θ−1α−1θ = id on Σ, and

α∗g′ = g.

Therefore, proving uniqueness amounts to proving geometric uniqueness. In

order to obtain a definite member of the equivalence class of metrics which repre-

sents a spacetime, one introduces a fixed ‘background’ metric and has to impose

four ‘gauge conditions’ on the covariant derivatives of the physical metric with

respect to the background metric. These conditions remove the four degrees of

freedom to make diffeomorphisms and lead to a unique solution for the metric

components.

The well-posedness of the initial-value problem was first addressed by Y.

Choquet-Bruhat in [8]. She showed that the Cauchy formulation of Einstein’s

(vacuum) theory of gravitation, for smooth initial data, is well-posed in the har-

monic gauge. This proof is now sketched, following the presentations given in [4],

[14] & [26].

Sketch of proof:
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Step 1: The harmonic gauge. Looking at the principal part of the differential

operator in equation (1.1), ie: the Ricci tensor:

Rαβ =
1

2
gγδ (∂γ∂δgαβ + ∂α∂βgγδ − ∂α∂γgβδ − ∂β∂δgαγ) + . . . (2.1)

we see that it does not belong to any standard type such as elliptic, hyperbolic,

etc. To freeze the diffeomorphism freedom, the harmonic gauge is imposed. Ie:

in the given coordinates, Γµ = 0, where

Γµ = gαβΓµβα = gµνgαβ
(

∂βgαν −
1

2
∂νgαβ

)

(2.2)

Equivalently, the coordinates xα should satisfy the wave equation. Indeed, in local

coordinates [27]:

2gx
a =

1√−g∂ν
(√−ggµν

)
(2.3)

so that Γµ = 0 ⇐⇒ 2gx
a = 0.

Remark 2.2. Harmonic coordinates exist in (M,g): Indeed, the initial data can

now be chosen so that x0 = 0, nα∂αx
0 = 1 and nα∂αx

a = 0 there. Standard

linear hyperbolic theory then gives the existence of functions xα with these initial

data satisfying the wave equation. The choice of initial data ensures that the

derivatives of these functions are independent of the Cauchy surface and hence,

by continuity, on a neighborhood of it. In these coordinates g00 = −1 and g0a = 0

on the initial hypersurface. △

In such coordinates, the last three terms in parenthesis in Equation (2.1)

drop out and the principal part becomes identical to that of the wave equation.

The equations so obtained are hyperbolic and are called the reduced Einstein

equations.

Step 2: Equivalence of the equations. Sufficiency. It is however not yet clear

that the spacetime obtained from solving the reduced equations satisfies the Ein-

stein equations; for the two systems are only equivalent if the coordinates are
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harmonic. But whenever the reduced equations are satisfied, the Γα’s satisfy a

second order homogeneous linear hyperbolic equation. The construction of the

initial data for the reduced equations ensures that Γα = 0 on the initial surface;

and the reduced equations and the constraints together imply that ∂tΓ
α = 0 there.

Uniqueness in the Cauchy problem for that equation then ensures that Γα = 0

everywhere.

Since the two systems of equations are equivalent, all we need to show is that

the Cauchy problem for the reduced Einstein equations is well-posed. Good ex-

istence theorems for the Cauchy initial value problem for the reduced Einstein

system are well-known, and the initial data (gab(0), ∂tgab(0)) are freely prescrib-

able, subject only to the condition that gab(0) has Lorentz signature with M0

spacelike.

Given a globally hyperbolic spacetime (see Appendix B), we have that the

Einstein constraint equations must be satisfied on any Cauchy surface. A by-

product of the well-posedness proof is that the constraint equations are not only

necessary, but also sufficient conditions for the Einstein equations to have a so-

lution, ie: local existence of a solution to the equations ensures existence of a

development, which is a solution of Equation (1.1). ([4])

Step 3: Uniqueness. Suppose we have two Cauchy developments of the same

initial data. Choose some coordinates on Σ. Based on these, we can uniquely

construct harmonic coordinates as indicated above in each of the two spacetimes.

Call them xα and x̄α. Define a mapping ψ from one spacetime to the other by

the condition that x̄α = ψ ◦ xα. Then the first metric g and the metric obtained

by pulling back the second metric g′ with ψ both solve the reduced equations

and induce the same data on the initial hypersurface. Thus, by uniqueness in

the Cauchy problem for the reduced equations, they must be equal. This gives

geometric uniqueness.

Or using the definition previously introduced, we have that any two develop-
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ments of S are extensions of a common development. This common development

represents a “neighborhood” of S in which the two developments must agree.

q.e.d. Sketch of proof

Since Einstein’s equations are well-posed, the space of solutions of the con-

straints parametrizes the space of solutions Einstein’s field equations.

2.2 Global solutions

[26] The distinction between local and global Cauchy problems is necessary for

nonlinear equations. The question whether the Cauchy problem for the Einstein

equations can be solved globally is related to the existence and nature of spacetime

singularities.

There are two types of boundary conditions which are usually imposed on

initial data sets:

- “Cosmological boundary conditions”: where solutions of the Einstein equa-

tions should describe the universe as a whole.

- Asymptotically flat boundary conditions: where solutions of the Einstein

equations should describe an isolated system, like the solar system.

Existence and uniqueness of global solutions is addressed in [10]:

Theorem 2.3. Given any set of initial data for Einstein’s equations which sat-

isfy the constraint conditions, there exists a development of that data which is

maximal in the sense that it is an extension of every other development.

Sketch of proof: Omit the embedding in (M,θ, g). The proof first considers

the set of all possible developments of (Σ, h,K), and shows that it can be partially

ordered by the relation ≤, writing (M2, g2) ≤ (M1, g1) if (M1, g1) is an extension

of (M2, g2). If the collection (Mα, gα) of all developments of (Σ, h,K) is totally

ordered, M ′ = ∪Mα endowed with an appropriate metric is an upper bound for
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the set. Since every totally ordered set has an upper bound, by Zorn’s lemma,

there is a maximal development (M̃, g̃) of (Σ, h,K) whose only extension is itself.

Suppose (M ′, g′) is another development of (Σ, h,K). By the local Cauchy

theorem, there exist developments of (Σ, h,K) of which (M̃, g̃) are both exten-

sions. The set of all such common developments is likewise partially ordered and

so there will be a maximal development (M ′′, g′′). Let M+ = M̃ ∪M ′ ∪M ′′. M+

can be shown to be Hausdorff, and therefore (M+, g+) is a development, for an

appropriate metric g+. Hence, it is an extension of both (M̃, g̃) and (M ′, g′). But

since the only extension of (M̃ , g̃) is itself, we must have (M̃, g̃) = (M+, g+) and

(M ′, g′) ≤ (M+, g+).

q.e.d. Sketch of proof.

2.3 The conformal method

A popular approach to the Einstein constraint equations is the conformal method,

which manipulates Equations (1.2) & (1.3) as follows [9]:

• Consider that the metric h is given only up to a conformal factor: h = e2λγ

where γ is a given metric, but λ is a function to be determined, ie: h ∈ [γ]. We

then have the following relation between the scalar curvatures of the metrics (cf.

Equation (D.12) Appendix D):

R(h) = e−2λ
(

R(γ) − 2∆(γ)λ− 2 hab ∂aλ ∂bλ
)

(2.4)

Set φ2p = e2λ, so that h = φ2pγ. Then choosing p = 2 cancels out the last term

in Equation (2.4) to give:

R(h) = φ−5
(

φ
(

R(γ)
)

− 8∆(γ)φ
)

where h = φ4γ (2.5)

• Consider the following Lemma:
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Lemma 2.4. If h = φ4γ, then for an arbitrary covariant (2, 0)-tensor P , we have:

D
(h)
i P ij ≡ φ−10 D

(γ)
i

(
φ10P ij

)
− 2φ−1γij∂iφ trγP (2.6)

The lemma makes use of the definition: trγP = γijP
ij = P i i, and suggests

splitting the extrinsic curvature tensor K into a weighted traceless part and its

trace as follows:

Kab = φ−10K̃ab +
1

3
habτ (2.7)

where τ = trhK = habKab = Kb
b is the mean extrinsic curvature (see Appendix

A.9), and K̃ is symmetric and traceless. Equation (2.7) gives:

|K|2(h) := habhcdK
acKbd = φ−12γabγcdK̃

acK̃bd+
1

3
τ2 = φ−12|K̃|2(γ)+

1

3
τ2 (2.8)

The conformally formulated (CF) vacuum Einstein constraint equations then

read as the following system:

∆(γ)φ− 1

8
R(γ)φ+

1

8
φ−7 |K̃|2(γ) −

1

12
φ5 τ2 = 0 (2.9)

D(γ)
a K̃ab − 2

3
φ6 γab ∂aτ = 0 (2.10)

to be solved for (K̃, φ). Equation (2.9) is known as the Lichnerowicz equation,

and is a semilinear elliptic equation for φ when γ, τ , and K̃ are known. Equation

(2.10), the momentum constraint, is a first-order linear system for K̃ when γ and

φ are known.

The following theorem states that the solution to the system is independent

of γ, the choice of representative of the equivalence class of conformally related

metrics:

Theorem 2.5. Suppose that (K,φ) is a solution of the CF vacuum constraints

for the metric γ and a given function τ . Then the CF vacuum constraints in the

metric γ′ = θ4γ, with τ ′ = τ , admit the solution (K̃ ′, φ′) = (θ−10K̃, θ−1φ).
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2.4 York splitting

We now focus on the CF momentum constraint, Equation (2.10):

D(γ)
a K̃ab =

2

3
φ6 γab ∂aτ (2.11)

Since the system is linear, an arbitrary solution is the sum of a solution to the

homogeneous system, and a particular solution.

For convenience, let D := D(γ) momentarily. By definition, symmetric (2, 0)-

tensors satisfying the equation DaK̃
ab = 0 are known as transverse. Since K̃ is

also traceless, it is a TT-tensor, for Transverse-Traceless.

The particular solution should be looked for in the formal L2 dual of the kernel

of the space of TT-tensors.

Lemma 2.6. The formal L2 dual of the space of TT-tensors in a metric γ is the

space of the conformal Lie derivative of γ with respect to some vector field W ,

which consists in the space of symmetric traceless (2, 0)-tensors of the form:

(LconfW )ab ≡ DaW b +DbW a − 2

3
γabDcW

c (2.12)

Therefore, as a particular solution, we should seek a vector field W satisfying:

(∆confW )b := Da(LconfW )ab =
2

3
φ6 γab∂aτ (2.13)

where we define the conformal Laplacian. If given an arbitrary traceless (2, 0)-

tensor U , a TT-tensor can be found by solving: (∆confZ)
b = −DbU for Z, since

then σ := LconfZ + U is transverse. Hence, X :=W + Z is a solution of:

(∆confX)b =
2

3
φ6γab∂aτ −DbU (2.14)

⇐⇒ Db (Lconf(W + Z)) +DbU =
2

3
φ6γab∂aτ (2.15)

⇐⇒ Db (σ + LconfW ) =
2

3
φ6γab∂aτ (2.16)

⇐⇒ Db (LconfW ) =
2

3
φ6γab∂aτ (2.17)
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This suggest decomposing K̃ as σ + LconfW with σ prescribed, and solving

Equation (2.17) for W . This way, we have recast Equation (2.10) into the elliptic

equation (2.17).

In the conformal formulation using York splitting, the Einstein equations now

read (using L := Lconf)

8∆φ = Rφ− φ−7
(

σab + (LW )ab
)

(σab + (LW )ab) +
2

3
φ5 τ2 (2.18)

Db (LW ) =
2

3
φ6γab∂aτ (2.19)

with prescribed data (γ, σ, τ), to be solved for (h,K), which are reconstructed

using:

h = φ4γ (2.20)

K = φ−10(σ + LconfW ) +
1

3
φ−4γτ (2.21)



Chapter 3

Existence and uniqueness

results

We now turn to the question of existence and uniqueness of solutions to the

Einstein constraint equations, given a set of initial data. The mean curvature τ

turns out to be the most important factor in separating those sets of free data for

which we know whether or not a solution exists from those sets for which we do

not. Accordingly, results are divided as follows:

- Constant Mean Curvature (CMC) data, where τ ≡ constant,

- Near-CMC data, where τ 6≡ constant, but some strict restrictions on τ apply,

- Far-from-CMC data, where τ meets neither of the above conditions.

Of additional interest is the question of roughness: How does the regularity of

the initial data set relate to the existence/uniqueness/regularity of the solution?

If understood, one can then construct solutions from data sets with minimal

regularity, and get some insight on the features of the resulting solution. In

turn, such information on local solutions could then be used to construct global

solutions to the problem of general relativity. Moreover, some of the convergence

results established by numerical relativists rest on the assumptions about the

15
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solution theory. In the following, we will be mostly concerned with statements on

existence and uniqueness. Minimality of the requirements on regularity will not

be addressed (see [15] and [21] for references).

But before turning to explicit results, we introduce the work of Yamabe, which

turns out to be crucial in determining which prescribed set of data yield solutions

to the Einstein constraint equations.

3.1 The Yamabe classification

The Yamabe classification characterizes manifolds according to the class of confor-

mally related metrics they can admit. Theorem 3.9 was conjectured by Yamabe,

and proved by Trudinger, Aubin and Schoen. We follow the treatment of [9], in

the case n = 3. Let us work on (M,γ), where γ ∈ W p
2 is a properly Riemannian

metric, ie: inf∪MI
det γij > 0 in a finite number of charts MI covering M . e is a

smooth metric on M .

Definition 3.1. Define the q-Yamabe functional

Jγ,q(φ) :=

∫

M

(

8|∇φ|2(γ) +R(γ)φ2
)

µγ
(∫

M φ2qµγ
)1/q

(3.1)

Lemma 3.2. If p > 3
2 , the q-Yamabe functional is defined for every φ ∈ H1,

φ 6≡ 0, 1 ≤ q ≤ 3.

Proof. γ ∈W p
2 , p >

3
2 =⇒ γ ∈ C0 by Sobolev embedding theorem (see C.16) and

γ is uniformly equivalent to e. Therefore, the pointwise norms of a tensor in the

metrics γ and e are uniformly equivalent, and their Lp norms in the metrics γ and

e are equivalent. The Sobolev embedding and multiplication theorems (see C.15)

show that R(γ) ∈ Lp. On the other hand, if φ ∈ H1, then φ ∈ L2q, 1 ≤ q ≤ 3,

hence R(γ)φ2 ∈ L1.
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Remark 3.3. By ‘uniformly equivalent’, it is meant that γ is uniformly bounded

w.r.t. e. △

Definition 3.4. Jγ(φ) := Jγ,3(φ) is simply called the Yamabe functional on M .

Lemma 3.5. The Yamabe functional is a conformal invariant in the sense that

if γ′ = θ4γ, φ′ = θ−1φ, then Jγ′(φ
′) = Jγ(φ).

Proof. Since µγ = θ−6µγ′ , we have
∫

M φ6µγ =
∫

M φ′6µγ′ . It can be shown that

∆(γ)φ− 1

8
R(γ)φ = θ5

(

∆(γ′)φ
′ − 1

8
R(γ′)φ′

)

(3.2)

Integrating by parts gives

∫

M

(

8|∇φ|2γ +R(γ)φ2
)

µγ =

∫

M

(

8|∇φ′|2γ′ +R(γ′)φ′2
)

µγ′ (3.3)

Lemma 3.6. The Yamabe functional admits an infimum for φ ∈W p
2 and φ 6≡ 0,

which depends only on the conformal class of γ.

Proof. If γ ∈ W p
2 , p >

3
2 , then R(γ) ∈ Lr ∀ 1 ≤ r ≤ p, hence ||R(γ)||Lq/(q−1) is

bounded if q ≤ 3. By Hölder inequality:

∫

M

(

8|∇φ|2γ +R(γ)φ2
)

µγ ≥ −
∣
∣
∣
∣

∫

M

R(γ)φ2µγ

∣
∣
∣
∣
− ||R(γ)||Lq/(q−1) ||φ2||Lq (3.4)

Definition 3.7. The Yamabe number is defined as:

µ := inf
φ∈W p

2 , φ 6≡0
Jγ(φ) (3.5)

By Lemma 3.5, it only depends on the conformal class of γ.

Definition 3.8. (M,γ) is said to be in the negative Yamabe class if µ < 0, in

the zero Yamabe class if µ = 0, and in the positive Yamabe class if µ > 0.
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Theorem 3.9. (Yamabe Theorem) Let M be compact, and p > 3
2 . Then:

• If γ is in the negative Yamabe class it is conformal to a metric with scalar

curvature −1. We write γ ∈ Y−(M).

• If γ is in the zero Yamabe class it is conformal to a metric with scalar

curvature 0. We write γ ∈ Y0(M).

• If γ is in the positive Yamabe class it is conformal to a metric with continuous

and positive scalar curvature. We write γ ∈ Y+(M).

See [20] or [21] for a proof. Note that the last statement in Theorem 3.9 is

not as strong as the previous two. However, for metrics with higher regularity,

we have the following result, which we state without proof [20]:

Theorem 3.10. [20] If γ is a smooth metric in the positive Yamabe class, then

γ is conformally equivalent to a metric with scalar curvature +1.

Yamabe types link the Yamabe properties to the topology of M :

Definition 3.11. Let M be a compact manifold of dimension n ≥ 3. It is said

to be:

• Yamabe-positive if it admits a metric of positive Yamabe class.

• Yamabe-null if it admits a metric in the zero Yamabe class, but no metric

in the positive Yamabe class.

• Yamabe-negative if it admits no metric in the zero or positive Yamabe class.

Note that a manifold is of exactly one Yamabe type. It is a fact proved by

Aubin that every compact manifold admits a metric in the negative constant scalar

curvature. However, Schoen and Yau used minimal surfaces to find topological

obstructions to the existence of metrics with scalar curvature ≥ 0. For example,

Gromov and Lawson proved that for all n, the n-torus has no metric with strictly

positive scalar curvature [19]. However, since it can be equipped with a flat

product metric, it is a Yamabe-null manifold. The sphere is an obvious example
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of a Yamabe-positive manifold. The torus with n handles, n ≥ 2 is an example of

a Yamabe-negative manifold.

3.2 CMC-results

[16] The assumption τ ≡ constant implies that LW must vanish in Equation

(2.19), even if γ admits a conformal Killing vector field (see Appendix C.3.1).

Equation (2.18) now takes the form

∆φ =
1

8
Rφ− 1

8

(

σabσab

)

φ−7 +
1

12
τ2φ5 (3.6)

and has to be solved for φ > 0. Consider the map

L : Ĉ (Σ) → E (Σ) (γ, σ, τ) 7→ (h,K) (3.7)

where

- Ĉ (Σ) = {(γ, σ, τ) : (3.6) can be solved}
- E (Σ) = {(h,K) : γ is given by (2.20), K is given by (2.21), (φ,W ) satisfy

(3.6) }.
L is surjective: if given (h,K) ∈ E (Σ), Equation (3.6) can be solved for φ

(we get φ = 1) if we take (γ, σ, τ) = (h,K − 1
3h(trK), trK)

L is not injective: Indeed, L is invariant under the group of conformal trans-

form maps

Θθ : Ĉ (Σ3) → Ĉ (Σ3) (γ, σ, τ) 7→ (θ4γ, θ−10σ, τ) (3.8)

with θ any positive definite scalar function on Σ. Hence, in testing a given set

(γ, σ, τ), we may choose a conformal factor θ4 which casts Equation (3.6) into a

more easily studied form. This is a direct consequence of the Yamabe theorem.

Before stating the main result of this section, we prove a useful proposition:



20 CHAPTER 3. EXISTENCE AND UNIQUENESS RESULTS

Proposition 3.12. Let Σ be a closed three-dimensional manifold with a C2

Riemannian metric γ of arbitrary Yamabe class. Let Σ̂ ⊂ Σ be open with regular

boundary ∂Σ̂ and with Σ− (Σ̂ ∪ ∂Σ̂) 6= ∅ open. Then ∃ a C3(Σ) function θ > 0

s.t. on Σ̂, R(θ4γ) < −ξ < 0 where ξ > 0 is some constant.

Proof. Since γ ∈ C2, R(γ) is continuous on Σ. Let R(γ) < µ, for some constant µ,

and α4 = 2µ. Then R(γ̃) < 1
2 on Σ, where γ̃ = α4γ. The following







8∆u = u on Σ̂

u = 1 on ∂Σ̂
(3.9)

has a unique C2 solution, which is positive definite by the maximum principle.

Let u < m for some positive constant m. Let θ be a C3 function on Σ such that

θ = u on Σ̂ ∪ ∂Σ̂, then on Σ̂, R(θ4γ̃) = u−4
(
R(γ̃) − 1

)
< −1

2u
−4 < −1

2m
−4. Let

ξ := 1
2m

−4.

This following theorem provides a complete function space parametrization of

the set of CMC solutions of the Einstein constraints on a given closed manifold.

Theorem 3.13. Let γ ∈ C3(Σ) and σ ∈ W p
2 (Σ), for p > 3. The Lichnerowicz

equation (3.6) admits or does not admit a positive definite solution φ ∈ C2,α(Σ)

as indicated in the following table:

Table 1: Existence / Non-Existence results in the CMC-case.

σ2 ≡ 0, τ = 0 σ2 ≡ 0, τ 6= 0 σ2 6≡ 0, τ = 0 σ2 6≡ 0, τ 6= 0

γ ∈ Y +(Σ) No No Yes Yes

γ ∈ Y 0(Σ) Yes No No Yes

γ ∈ Y −(Σ) No Yes No Yes

For data (γ, σ, τ) in the class (Y 0, σ2 ≡ 0, τ = 0), any constant is a solution.

For data in all other classes for which solutions exist, the solution is unique.
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Proof. Existence: The proofs for non-existence all follow the same scheme: We

first choose a conformal gauge so that the scalar curvature is constant, and con-

clude from the maximum principle that no positive solution exists. The choice of

gauge, and the form of the Lichnerowicz equation are presented in Table 2.

Table 2: Data used in the proof of non-existence results in the CMC-case.

(Y +, σ2 ≡ 0, τ = 0) R = +1 ∆φ = 1
8φ

(Y −, σ2 ≡ 0, τ = 0) R = −1 ∆φ = −1
8φ

(Y +, σ2 ≡ 0, τ 6= 0) R = +1 ∆φ = 1
8φ+ 1

12τ
2φ5

(Y 0, σ2 ≡ 0, τ 6= 0) R = 0 ∆φ = 1
12τ

2φ5

(Y 0, σ2 6≡ 0, τ = 0) R = 0 ∆φ = −1
8σ

2φ−7

(Y −, σ2 6≡ 0, τ = 0) R = −1 ∆φ = −1
8φ− 1

8σ
2φ−7

• (Y 0, σ2 ≡ 0, τ = 0): Choose the conformal gauge so that R = 0, then any

constant function satisfies ∆φ = 0.

The following proofs of existence make use of the sub and super solution

theorem, presented in Appendix C.3.3: finding positive definite sub and super

solutions ensures existence of a solution.

• (Y −, σ2 ≡ 0, τ 6= 0): Choose the conformal gauge so that R = −1, then

φ =
(

3
2τ2

)1/4
is a solution of ∆φ = −1

8φ+ 1
12τ

2φ5.

• (Y −, σ2 6≡ 0, τ 6= 0): Choose the conformal gauge so that R = −1, then

φ− =

(
3

2τ2

)1/4

φ+ = max

{

1,

(
3

2τ2

(

1 + max
Σ

σ2
))1/4

}

(3.10)

are sub and super solutions of ∆φ = −1
8φ− 1

8σ
2φ−7 + 1

12τ
2φ5.

• (Y 0, σ2 6≡ 0, τ 6= 0), Case 1: σ > 0: Choose the conformal gauge so that

R = 0, then

φ− =

(
3

2τ2
min
Σ
σ2
)1/12

φ+ =

(
3

2τ2
max
Σ

σ2
)1/12

(3.11)

are sub and super solutions of ∆φ = −1
8σ

2φ−7 + 1
12τ

2φ5.
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• (Y 0, σ2 6≡ 0, τ 6= 0), Case 2: σ 6> 0: We choose the conformal gauge as

follows: Let p ∈ Σ be a point at which σ2 is not zero. Then there exists an

open ball B containing p such that σ2 ≥ ζ > 0 everywhere in B, ζ ∈ R
+. Then

Σ̂ = Σ−B contains all the zeros of σ2. Applying Proposition 3.12, we can choose

a conformal gauge so that the conformal data satisfy R̃ ≤ −κ < 0 on Σ̂ and

σ̃ ≥ ζ̃ > 0, for κ, ζ̃ ∈ R
+. Then

φ− = min






1,

(

ζ̃

maxΣ |R̃|+ 2
3τ

2

)1/8

,

(
3κ

2τ2

)1/4





(3.12)

φ+ = max

{

1,

(
3

2τ2

(

max
Σ

|R̃|+max
Σ

σ̃2
))1/4

}

(3.13)

are sub and super solutions of ∆φ = 1
8R̃φ− 1

8σ
2φ−7 + 1

12τ
2φ5.

• (Y +, σ2 6≡ 0, τ 6= 0), Case 1: σ 6> 0: The proof is identical to the case just

treated.

• (Y +, σ2 6≡ 0, τ 6= 0), Case 2: σ > 0: Choose the conformal gauge so that

R = +1. Then

φ− = min

{

1,

(

min
Σ
σ2

(

1

1 + 2
3τ

2

))}

φ+ =

(

max
Σ

σ2
)1/8

(3.14)

are sub and super solutions of ∆φ = 1
8φ− 1

8σ
2φ−7 + 1

12τ
2φ5.

• (Y +, σ2 6≡ 0, τ = 0), Case 1: σ > 0: Choose the conformal gauge so that

R = +1. Then φ− =
(
1
8 minΣ σ

2
)1/8

and φ+ =
(
1
8 maxΣ σ

2
)1/8

are sub and super

solutions of ∆φ = φ− 1
8σ

2φ−7.

• (Y +, σ2 6≡ 0, τ = 0), Case 2: σ 6> 0: Choose the conformal gauge so that

R = +1. Let A := max
{
1, 18 maxΣ σ

2
}
and consider the linear PDE

−∆φ− + φ− =
σ2

8
A−7 (3.15)

Since −∆ + 1 has trivial kernel, λab ∈ C3(Σ), and σ2 ∈ W p
2 (Σ), ∃! solution

φ− ∈ W p
4 (Σ). We show that φ− is a subsolution of ∆φ = φ − 1

8σ
2φ−7. Since
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σ2

8 A
−7 ≥ 0, φ− > 0. Consider the function

G(x, s) :=
σ2

8
s−7 =⇒ ∂G

∂s
= −7

8
σ2s−8 (3.16)

so that G(x, s) is monotonically nonincreasing in s. Since A ≥ 1:

G(x,A) ≤ G(x, 1) =
σ2

8
≤ A =⇒ G(x,A) ≤ A (3.17)

Hence

−∆φ− + φ− ≤ A

max.princ.ver.3
︷︸︸︷
=⇒ φ− ≤ A =⇒ G(x,A) ≤ G(x, φ−) (3.18)

=⇒ −∆φ− + φ− ≤ G(x, φ−) =
σ2

8
φ−7
− (3.19)

Finally, φ+ = A is a supersolution.

Proof. Uniqueness: We first prove a Lemma:

Lemma: Let f : Σ × R
+ → R be C1, with ∂

∂sf(x, s) ≥ 0, ∂
∂sf(x, s) 6≡ 0,

for s ∈ I, I some interval of R+. If ψ1 and ψ2 are both solutions of the PDE

∆ψ = f(x, ψ(x)) and if both ψ1(x) and ψ2(x) take values in I for all x ∈ Σ, then

ψ1(x) = ψ2(x) for all x ∈ Σ.

Proof of Lemma: Suppose ψ1(x) and ψ2(x) are both solutions of ∆ψ =

f(x, ψ(x)) and consider the quantity:

I (ψ1, ψ2)(x) :=

∫ 1

0

{
d

dν
[∆(νψ1(x) + (1− ν)ψ2(x)) − f(x, νψ1(x) + (1 − ν)ψ2(x)]

}

dν

(3.20)

We compute expressions for I in two ways: First using the Fund. Thm. of Calc.:

I (ψ1, ψ2)(x) = [∆(νψ1(x) + (1 − ν)ψ2(x))− f(x, νψ1(x) + (1− ν)ψ2(x)]|ν=1
ν=0

= [∆ψ1 − f(x, ψ1)]− [∆ψ2 − f(x, ψ2)] = 0 (3.21)

then computing the derivative first:

I (ψ1, ψ2)(x) =

∫ 1

0

{(∆ψ1 −∆ψ2)−D2f(x, νψ1 + (1− ν)ψ2)(ψ1 − ψ2)}dν

= ∆(ψ1 − ψ2)−
[∫ 1

0

D2f(x, νψ1 + (1− ν)ψ2)

]

(ψ1 − ψ2) (3.22)
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where D2 takes the derivative w.r.t. the second argument of f . Hence

∆(ψ1 − ψ2)−
[∫ 1

0
D2f(x, νψ1 + (1− ν)ψ2)

]

(ψ1 − ψ2) = 0

⇐⇒ ∆(ψ1 − ψ2) = F [x, ψ1, ψ2](ψ1 − ψ2) (3.23)

where F [x, ψ1, ψ2] :=

∫ 1

0
D2f(x, νψ1 + (1− ν)ψ2) (3.24)

Multiplying both sides by (ψ1 − ψ2), integrating over Σ, and integrating the first

term by parts yields:

∫

Σ
|∇(ψ1 − ψ2)|2 + F [x, ψ1, ψ2]|ψ1 − ψ2|2 = 0 (3.25)

Since by the hypothesis of the lemma, F [x, ψ1, ψ2] ≥ 0, we must have ψ1 = ψ2.

q.e.d. Lemma

We shall use the lemma to prove uniqueness, in five of the cases that admit

solutions. Indeed, the case (Y 0, σ2 ≡ 0, τ = 0) has infinitely many solutions.

This corresponds to a freedom of choice in the spatial scale of the spacetimes.

Note that the choice of conformal gauge does not have to be the same for the

uniqueness proof as for the existence proof.

• (Y +, σ2 6≡ 0, τ = 0): The Lichnerowicz equation, with the conformal gauge

condition R = 8, takes the form ∆φ = φ− 1
8σ

2φ−7, so that in terms of the lemma,

f(x, φ) = φ− 1
8σ

2φ−7, and D2f(x, φ) = 1 + 7
8σ

2φ−8 > 0.

• (Y +, σ2 6≡ 0, τ 6= 0): Choose the conformal gauge so that R = +1. Then

f(x, φ) = 1
8φ− 1

8σ
2φ−7 + 1

12τ
2φ5, and D2f(x, φ) =

1
8 +

7
8σ

2φ−8 + 5
12τ

2φ4 > 0.

• (Y 0, σ2 6≡ 0, τ 6= 0): Choose the conformal gauge so that R = 0. Then

f(x, φ) = −1
8σ

2φ−7 + 1
12τ

2φ5, and D2f(x, φ) =
7
8σ

2φ−8 + 5
12τ

2φ4 > 0.

• (Y −, σ2 ≡ 0, τ 6= 0): Choose the conformal gauge so that R = −1. Then

f(x, φ) = −1
8φ + 1

12τ
2φ5, and D2f(x, φ) = −1

8 + 5
12τ

2φ4, which is not neces-

sarily positive for positive φ. However, if φ is a solution of ∆φ = −1
8φ +

1
12τ

2φ5, then at any point xmin where φ assumes a minimum, we have 0 ≤
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∆φ(xmin) = −1
8φ(xmin) +

1
12τ

2φ5(xmin), and hence φ(xmin) ≥
(

3
2τ2

)1/4
. And

on I =
((

3
2τ2

)1/4
,+∞

)

, we have D2f(x, φ) ≥ −1
8 +

5
12τ

2
(

3
2τ2

)
≥ 1

2 .

• (Y −, σ2 6≡ 0, τ 6= 0): Choose the conformal gauge so that R = −1. Then

f(x, φ) = −1
8φ−1

8σ
2φ−7+ 1

12τ
2φ5, andD2f(x, φ) = −1

8+
7
8σ

2φ−8+ 5
12τ

2φ4, which is

not necessarily positive for φ > 0. However, we find that φ ∈ I =
((

3
2τ2

)1/4
,+∞

)

,

and D2f(x, φ) ≥ 1
2 + 7

8σ
2(49τ

4) on I.

3.3 Near-CMC-results

As just seen, setting τ = constant greatly simplifies Equations (2.18) & (2.19),

since the momentum constraint then becomes trivial. Letting this assumption

loose, we now have to handle the coupled system. The idea behind the near-CMC

setting is to impose sufficient control over the gradient of τ to determine whether

or not solutions exist. The near-CMC conditions (given by Equations (2.18) &

(2.19)) leave the constraint equations coupled, but ensures the coupling is weak.

The first near-CMC existence results were presented in [12], but a constructive

proof, which is now addressed, was given in [17].

Theorem 3.14. Consider (Σ, γ), where γ is s.t. R = −1, and has no conformal

Killing vector fields. Let σ ∈ W p
2 (Σ). Then for every function τ ∈ W p

2 (Σ), τ :

Σ → R+ which satisfies the inequalities (3.41) & (3.55) on |∇τ |, Equations (2.18)
& (2.19) with data (γ, σ, τ) admit a unique solution (φ,W ), with φ ∈ C2,α(Σ) and

with W ∈ C3,α(Σ) for α = 1− 3/p.

Moreover, for every choice of γ and σ which satisfy the above-stated hypothe-

ses, there is an open set in W p
2 (Σ) of nonzero functions τ which satisfy the in-

equalities (3.41) & (3.55).

Remark 3.15. This theorem prescribes sufficient conditions on conformal data

(γ, σ, τ) so that Equations (2.18) & (2.19) admit a solution, but not necessary

ones. △
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Proof. Consider the sequence of semi-decoupled equations:

∆φ(n) = −1

8
φ(n) − 1

8

(

σab + (LW (n))ab
)(

σab + (LW (n))ab

)

(φ(n))−7

+
1

12
τ2(φ(n))5 (3.26)

Da

(

LW (n)
)a

b
=

2

3
(φ(n−1))6Dbτ (3.27)

which are to be solved for the sequence {φ(n),W (n)}∞n=1, once φ
(0) has been chosen.

Step 1: Existence of the sequence. Pick some positive definite φ(0) ∈ W p
1 (Σ),

and find W (1) by solving Equation (3.27). Since γ ∈ C3(Σ), the coefficients aij ,

ai and a of the conformal Laplacian are all contained in C1(Σ). Since τ ∈W p
2 (Σ),

φ(0) ∈ W p
1 (Σ), and W

p
1 (Σ) is closed under multiplication, we have 2

3(φ
(0))6Dbτ ∈

W p
1 (Σ). Therefore, Equation (3.27) has a unique solution W (1) ∈ W p

3 (Σ) (see

Appendix C.3.1). By C.24, for k = 0 and k = 1, ∃ a constant c(γ, p, k) s.t.

||W (1)||W p
k+2

≤ c(γ, p, k)||(φ(0))6∇τ ||W p
k

(3.28)

The inequality can be turned into a pointwise bound for the quantity

|LW (1)| :=
[(

LW (1)
)

ab

(

LW (1)
)ab
]1/2

(3.29)

By Sobolev embedding theorem: since W (1) ∈W p
k+2(Σ) (for k = 0, 1) with p > 3,

we have W (1) ∈ Ck+1,α(Σ), and for some constant c(γ, p, k), we have

||W (1)||Ck+1,α ≤ c(γ, p, k)||W (1)||W p
k+2

(3.30)

It follows from the definition of these Hölder norms that

||LW (1)||C0 ≤ c||DW (1)||C0 ≤ c||W (1)||C1,α (3.31)

We also have

|LW (1)(x)| ≤ c||LW (1)||C0 ∀ x ∈ Σ (3.32)

Combining inequalities (3.28)-(3.32), with k = 0, we have

|LW (1)(x)| ≤ C||(φ(0))6∇τ ||W p
0

(3.33)
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which implies that, for some c > 0,

|LW (1)(x)| ≤ c

(

max
Σ

φ(0)
)6

max
Σ

|∇τ | (3.34)

which is the desired pointwise bound.

Once we have W (1), we may substitute it into Equation (3.26) with n = 1.

We then prove that there exists a unique solution φ(1) to this equation using the

sub and super solution theorem: The function

f (1)(x, φ(1)) = −1

8
φ(1)−1

8

(

σab + (LW (1))ab
)(

σab + (LW (1))ab

)

(φ(1))−7+
1

12
τ2(φ(1))5

(3.35)

is C1(Σ× R
+). Then the constants

φ
(1)
− =

(
3

2 maxΣ τ2

)1/4

(3.36)

φ
(1)
+ = max







1,




3
(

1 + 2maxΣ σabσ
ab + 2maxΣ LW

(1)
ab LW (1)ab

)

2 minΣ τ2





1/4






(3.37)

are sub and super solutions for Equation (3.26), hence there exists a unique solu-

tion φ(1) ∈ C2,α.

With φ(1) determined, we may proceed on to solve Equation (3.27) with n = 2

for W (2), and then solve Equation (3.26) with n = 2 for φ(2), etc.

Since W (n) ∈ W p
3 (Σ) and φ(n) ∈ C2,α(Σ), the arguments used to show that

W (1) and φ(1) exist and are unique can be used at each stage of the iteration, and

hence we can verify existence and uniqueness of the sequence {W (n), φ(n)} for all

n. The LW (n) satisfy the pointwise bounds:

|LW (n)(x)| ≤ c

(

max
Σ

φ(n−1)

)6

max
Σ

|∇τ | (3.38)

and sub and super solutions for Equations (3.26) are:

φ
(n)
−

=

(
3

2maxΣ τ2

)1/4

(3.39)

φ
(n)
+ = max







1,




3
(

1 + 2maxΣ σabσ
ab + 2maxΣ LW

(n)
ab LW (n)ab

)

2 minΣ τ2





1/4






(3.40)
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Step 2: Uniform bounds on the sequence. While we have established bounds

for the functions φ(n) and |LW (n)| for each n, in principle, these bounds could go

to ∞ or to 0. We now show that this does not happen:

The subsolution φ
(n)
− in Equation (3.39) is independent of n, and thus provides

a uniform lower bound φ
(∞)
− .

As for the upper bound, imposing the restriction

cmaxΣ |∇τ |2
minΣ τ2

< 1 (3.41)

some algebra shows that the constant

ξ = max

{

1,

(

1− cmaxΣ |∇τ |2
minΣ τ2

)−1(
3

2minΣ τ2

)(

1 + 2max
Σ

σabσab

)}

(3.42)

provides a uniform upper bound: φ
(∞)
+ := 4

√
ξ.

Note that so far, we had not imposed any restriction on the initial guess φ(0),

however, we now see that we must have φ
(∞)
− ≤ φ(0) ≤ φ

(∞)
+ . It follows from

inequality (3.38) that |LW (n)| has an n-independent upper bound on Σ.

Note that for any fixed choice of the metric γ (with or without R(γ) = −1),

there is always an open set of functions τ ∈W p
2 (Σ) such that inequality (3.41) is

satisfied.

Step 3: C0 convergence of the sequence. We now use a contraction mapping

argument to show that the sequence converges in C0 to a limit (φ(∞),W (∞)).

Since W (n) is very strongly controlled by φ(n−1) via the momentum equation and

inequality (3.38), convergence of W (n) will follow from the convergence of φ(n).

Consider the functional:

I
(

x, φ(n−1), φ(n), φ(n+1)
)

:=

∫ 1

0

{
d

dt

[

∆ψ(n+1)(t)− F
(

x, ψ(n)(t), ψ(n+1)(t)
)]}

dt

(3.43)

where ψ(n)(t) := tφ(n) + (1 − t)φ(n−1)

and F
(

x, ψ(n), ψ(n+1)
)

:= −1

8
ψ(n+1) − 1

8

(

σab +
(

LW
[

ψ(n)
])ab

)

×
(

σab +
(

LW
[

ψ(n)
])

ab

)

(ψ(n+1))−7 +
1

12
τ2(ψ(n+1))5 (3.44)



3.3. NEAR-CMC-RESULTS 29

and LW [ψ(n)] is determined by the equation

Da

(

LW [ψ(n)]
)a

b
=

2

3
(ψ(n))6Dbτ (3.45)

Computing I in two ways (using the Fund. Thm. of Calc., and taking the

derivative directly), one obtains:

0 =

∫ 1

0

{

∆
(

φ(n+1) − φ(n)
)

−D2F
(

x, ψ(n), ψ(n+1)
) [

φ(n) − φ(n−1)
]

−D3F
(

x, ψ(n), ψ(n+1)
) [

φ(n+1) − φ(n)
]}

dt (3.46)

=: ∆
(

φ(n+1) − φ(n)
)

−F
[

φ(n) − φ(n−1)
]

− G
[

φ(n+1) − φ(n)
]

(3.47)

⇐⇒ F
[

φ(n) − φ(n−1)
]

= ∆
(

φ(n+1) − φ(n)
)

− G
[

φ(n+1) − φ(n)
]

(3.48)

where we defined:

F
[

φ(n) − φ(n−1)
]

=

∫ 1

0
D2F

(

x, ψ(n)(t), ψ(n+1)(t)
)

dt
[

φ(n) − φ(n−1)
]

(3.49)

G
[

φ(n+1) − φ(n)
]

=

∫ 1

0
D3F

(

x, ψ(n), ψ(n+1)
)

dt
[

φ(n+1) − φ(n)
]

(3.50)

Using the lower bound on the φ(n), as have that

G
[

φ(n+1) − φ(n)
]

≥ γ
(

φ(n+1) − φ(n)
)

where γ :=
1

8

[

5
minΣ τ

2

maxΣ τ2
− 1

]

(3.51)

Note that γ > 0 as a consequence of the mean value theorem, and the restriction

of maxΣ(∇τ)2/minΣ τ
2.

Similarly, using the upper bound on the φ(n), one can obtain:

|F
[

φ(n) − φ(n−1)
]

| ≤ Θmax
Σ

|φ(n) − φ(n−1)| where (3.52)

Θ := c

[

max
Σ

|σ|+ ĉ
(

φ
(∞)
+

)6
max
Σ

|∇τ |
](

φ
(∞)
+

)5 (

φ
(∞)
−

)−7
max
Σ

|∇τ | (3.53)

We can now apply the maximum principle to Equation (3.48) and obtain the

pointwise bound:

|φ(n+1) − φ(n)| ≤ (Θ/γ)max
Σ

|φ(n) − φ(n−1)| (3.54)
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Suppose that the conformal data (γ, σ, τ) satisfy the inequality

Θ(γ, σ, τ)

γ(γ, σ, τ)
< 1 (3.55)

Claim: {φ(n)} is a Cauchy sequence in C0(Σ)

Proof of Claim: Let

ρ := ||φ(1) − φ(0)||C0 κ := Θ/γ (3.56)

Then for n,m ∈ N, n > m:

||φ(n) − φ(m)||C0

≤ ||φ(n) − φ(n−1)||C0 + ||φ(n−1) − φ(n−2)||C0 + . . . + ||φ(m+1) − φ(m)||C0

≤
[
κn−1 + κn−2 + . . .+ κm

]
ρ ≤ κm

1− κ
(3.57)

Given any ε > 0, we have that ∀n,m > N where,

N >
|ln (ρ/ε(1 − κ))|

|lnκ| =⇒ κm

1− κ
< ε (3.58)

q.e.d. proof of claim

Therefore, {φ(n)} converges to φ(∞) in C0(Σ), with φ(∞) ≥ φ
(∞)
− > 0.

Convergence of W (n) in W p
2 (Σ) ⊂ C1(Σ) to W (∞) is guaranteed by:

||W (n) −W (m)||W p
2

≤ c||(φ(n))6∇τ − (φ(m))6∇τ ||W p
0

(3.59)

≤ c̃||∇τ ||C0 ||φ(n) − φ(m)||C0 (3.60)

for constants c and c̃.

Step 4: Bootstrapping φ(∞) and W (∞). We show that φ(∞), W (∞) ∈ C2(Σ).

We make use of the following claim (stated without proof):

Claim: The functional

F (x, θ, ψ) := −1

8
ψ−1

8

(

σab + (LW [θ])ab
)

(σab + (LW [θ])ab)ψ
−7+

1

12
τ2ψ5 (3.61)
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is a jointly Lipschitz continuous function in θ nd ψ, so long as both θ and ψ

are bounded from below (by some constant ψ− > 0) and from above (by some

constant ψ+).

We have:

||φ(n) − φ(m)||W p
2

≤ c||F (·, φ(n−1), φ(n))− F (·, φ(m−1), φ(m))||W p
0
+ b||φ(n) − φ(m)||W p

0
(3.62)

≤ c||F (·, φ(n−1), φ(n))− F (·, φ(m−1), φ(m))||C0 + c||φ(n) − φ(m)||C0 (3.63)

where compactness of Σ was used. Using the claim, and the convergence of {φ(n)}
in C0, it follows that {φ(n)} is Cauchy in W p

2 (Σ), and thus converges to a unique

limit φ(∞) in W p
2 (Σ), and by Sobolev embedding theorem, φ(∞) ∈ C1,α(Σ) for

α ∈ (0, 1 − 3/p).

To obtain one more degree of differentiability, we examine the sequence {φ(n)}
in the Holder space C2,α(Σ):

||φ(n) − φ(m)||C2,α ≤ c
(

||F (·, φ(n−1), φ(n))− F (·, φ(m−1), φ(m))||C0,α

+||φ(n) − φ(m)||C0

)

(3.64)

hence φ(∞) ∈ C2,α(Σ).

As for the vector field, we first show that W (∞) is (at least) a weak solution

of the momentum constraint. Let Ŵ (∞) denote the W p
2 solution of the equation

Da

(

LŴ∞

)a

b
=

2

3
φ(∞)6Dbτ (3.65)

and consider the quantity ||W (∞) − Ŵ (∞)||W p
2
:

||W (∞) − Ŵ (∞)||W p
2

= lim
n→∞

||W n − Ŵ (∞)||W p
2

(3.66)

= lim
n→∞

c||(φ(n))6∇τ − (φ(∞))6∇τ ||W p
0

(3.67)

= lim
n→∞

c̃||(φ(n))6 − (φ(∞))6||W p
0
||∇τ ||W p

0
(3.68)

= lim
n→∞

ĉ||(φ(n))6 − (φ(∞))6||W p
0
= 0 (3.69)
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Hence W (∞) = Ŵ (∞) at least weakly.

Since 2
3(φ

(∞))6Dbτ ∈ W p
2 (Σ), the Fredholm alternative theorem guarantees

that W (∞) ∈W p
4 (Σ), and by Sobolev embedding theorem, W (∞) ∈ C3,α(Σ).

Step 5: (φ(∞),W (∞)) is a solution Since φ(∞) and W (∞) are both twice differ-

entiable, they constitute a strong solution iff they constitute a weak solution. We

already showed that the pair is a weak solution of the momentum constraint. To

show that it is a weak solution of the Lichnerowicz equation, rewrite it as:

∆φ = F (x, φ, φ) (3.70)

with F defined by Equation (3.61). Consider the map

D : W p
2 (Σ) → W p

0 (Σ) ψ 7→ ∆ψ − F (x, ψ, ψ) (3.71)

so that φ(∞) solve the Lichnerowicz equation iff Dφ(∞) = 0. Since ∆ and F are

continuous maps, D is continuous and we can write Dφ(∞) = limn→∞Dφ(n) and
||Dφ(∞)||W p

0
= limn→∞ ||Dφ(n)||W p

0
. Then

||Dφ(∞)||W p
0

= lim
n→∞

||Dφ(n)||W p
0

(3.72)

= lim
n→∞

||∆φ(n) − F
(

·, φ(n), φ(n)
)

||W p
0

(3.73)

= lim
n→∞

||F (·, φ(n−1), φ(n))− F (·, φ(n), φ(n))||W p
0

(3.74)

= lim
n→∞

c||F (·, φ(n−1), φ(n))− F (·, φ(n), φ(n))||C0 = 0 (3.75)

Step 6: Uniqueness We first need a claim:

Claim: If (φ,W ) is a solution of Equations (2.18) & (2.19) for the conformal

data (γ, σ, τ) satisfying inequality (3.41), then φ must satisfy φ
(∞)
− ≤ φ(x) ≤ φ

(∞)
+

Proof of claim: Let xmin ∈ Σ be a local minimum for φ. Since ∆φ(xmin) ≥ 0,

we can rewrite the Lichnerowicz equation as:

φ4(xmin) ≥
3

2τ2(xmin)

(

1 + [σ(xmin) + LW (xmin)]
2 φ−8(xmin)

)

(3.76)

⇐⇒ φ(xmin) ≥
(

3

2maxΣ τ2

)1/4

=: φ
(∞)
− (3.77)

=⇒ φ(x) ≥ φ
(∞)
− ∀ x ∈ Σ (3.78)
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Similarly, at a local maximum xmax ∈ Σ, ∆φ(xmax) ≤ 0, so that

φ12(xmax) ≤
3

2τ2(xmax)
φ8(xmax) +

3

2τ2(xmax)
[σ(xmax) + LW (xmax)]

2 (3.79)

Using the condition (LW )2 ≤ cmaxΣ |∇τ |2 maxΣ φ
12 as well as inequality (3.41),

we conclude φ(x) ≤ φ
(∞)
+ . q.e.d. proof of claim

To prove uniqueness, suppose that (φ,W ) and (φ̂, Ŵ ) are both solutions, and

consider the interpolation function Ψ(t) := tφ+ (1− t)φ̂. Define

I(x, φ, φ̂) :=

∫ 1

0

d

dt
[∆Ψ(t)− F (x,Ψ(t),Ψ(t))] dt (3.80)

Computing I(x, φ, φ̂) in two ways, we obtain:

||φ− φ̂||C0 ≤ Θ/γ||φ − φ̂||C0 (3.81)

Since Θ/γ < 1, this is only satisfied if φ = φ̂, which immediately implies that

W = Ŵ .

Last step: We just showed that conformal data (γ, σ, τ) satisfying inequalities

(3.41) & (3.55) always map to a solution of the constraint equations.

Given fixed γ and σ, one can always find a non-zero function τ satisfying both

inequalities, and the set of such functions is open in W p
2 (Σ). Indeed, given any

positive function τ0, add a constant ρ sufficiently large so that:

maxΣ |∇τ |2
minΣ τ2

=
maxΣ |∇τ0|2
minΣ(τ0 + ρ)2

(3.82)

so that inequality (3.41) is satisfied.

Alternatively, ‘squeezing’ τ0 as such:

τ0 → ντ0 + (1− ν)τ̄0 ν ∈ (0, 1) τ̄0 = average of τ0 (3.83)

one can find ν so that both inequalities are satisfied.
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Note that the theorem just proved requires R(γ) = −1. The following corollary

extends this result to metrics in the negative Yamabe class:

Corollary 3.16. Consider (Σ, γ), where γ ∈ C3,α(Σ), γ ∈ Y−(Σ) has no confor-

mal Killing vector fields. Let σ ∈ W p
2 (Σ). Then for every function τ : Σ → R+,

τ ∈W p
2 (Σ) which satisfies a variant of the inequalities (3.41) & (3.55), there is a

vector field U ∈ C3,α(Σ) for α < 1− 3/p and a pair of functions ψ ∈ C3,α(Σ) and

θ ∈ C2,α(Σ) such that the data

γab = (θψ)4γab (3.84)

Kcd = θ−10
(

ψ−10σcd + L(ψ4γ)U
cd
)

+
1

3
θ−4(ψ−4γab)τ (3.85)

are a solution of the Einstein constraint equations.

Those results were recently extended to non-negative Yamabe metrics in [1],

where the following is proved:

Theorem 3.17. Consider (Σ, γ) where γ is a smooth metric which has no con-

formal Killing vector fields, and γ ∈ Y0(Σ)∪Y+(Σ). For each smooth σ 6≡ 0, and

for each smooth function τ : Σ → R+ which satisfies a variant of the inequalities

(3.41) & (3.55), there exist smooth positive functions φ and θ and a smooth vector

field W such that the data

γab = (φθ)4λab (3.86)

Kab = φ−10
(

θ−10σ + (LW )(θ
4λ)
)ab

+
1

3
(φθ)−4 λabτ (3.87)

are a solution to the Einstein constraint equations.

The main difference with the results of [18] is that the sub solutions used to

apply the sub and super solution theorem to the Lichnerowicz equation are not

constant.
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What if we now relax the condition σ 6≡ 0? Here is a non-existence result,

proved in [18]:

Theorem 3.18. Let (Σ, γ, σ, τ) be a set of conformal data s.t. Σ is closed,

R(γ) ≥ 0, σ2 ≡ 0 and τ = T + ρ with T a nonzero constant. For |∇ρ|
|T | sufficiently

small, the Einstein constraint equations admit no solution.

The proof assumes the existence of a solution, and then considers the sign of

the terms in the Lichnerowicz equation at a maximum of φ to derive a contradic-

tion.

In a certain sense, this is a stability result for the non-existence of solutions

to the conformal equations. Specifically, we recall that for CMC conformal data

of the type (Σ closed, γ ∈ Y+ ∪ Y0, σ2 ≡ 0, τ 6= 0), there exist no solutions.

Restricting this result to those special cases in which R(λ) ≥ 0, we see that our

new results show that if we perturb the conformal data above by allowing τ to be

non-constant with small gradient, then the non-existence condition still holds. We

do not expect to retain non-existence if we also perturb σ2 away from zero, since we

know that CMC conformal data of the type (Σ closed, γ ∈ Y+∪Y0, σ2 6≡ 0, τ 6= 0)

do lead to the existence of unique solutions.

3.4 Far-from-CMC case: General results

Although the results of the previous two sections characterize solutions where the

mean curvature is constant or controlled, the case where the mean curvature is

arbitrary, the so-called ‘far-from-CMC case’, remained unexplored until very re-

cently. This is partly because it was long thought that every spacetime admitted

a Cauchy surface of constant mean curvature. However, a general condition en-

suring the existence of CMC Cauchy surfaces in cosmological spacetimes is given

in [3], along with an example of a spacetime that does not satisfy the condition.



36 CHAPTER 3. EXISTENCE AND UNIQUENESS RESULTS

So far, we considered the Einstein constraint equations in vacuum, i.e.: the

energy density ρ as well as the momentum current density j were identically

vanishing. However, the first existence results in the far-from-CMC case were

given in [15], and required in particular that ρ 6≡ 0.

Remark 3.19. More precisely, the energy-momentum tensor in [15] satisfies the

Dominant Energy Condition, ie: the vector −T µνvν is timelike and future-directed,

where vµ is any timelike and future-directed vector field. There exist other types

of energy conditions (weak, null, etc). Physically, energy conditions are not di-

rectly related to energy conservation: T satisfying Bianchi identity (see (A.33))

guarantees that ∇µT
µν = 0 regardless of whether we impose any additional con-

straints on T µν . Rather, they serve to prevent other properties considered as

‘unphysical’, such as energy propagating faster than the speed of light, or empty

space spontaneously decaying into compensating regions of positive and negative

energy. [7] In particular, for an observer moving with four-velocity vν , the quan-

tity −T µ νvν physically represents the energy-momentum four-current density of

matter as seen by him. The fact that it is timelike and future-directed in the DEC

can be interpreted as saying that the speed of energy flow of matter is always less

than the speed of light. [28]

The three-tensors ρ and j enter the Einstein constraint equations (1.2) & (1.3)

as the pullbacks on Σ of the analogous tensors living on M . They are subject

to the condition −ρ2 + j · j ≤ 0 induced by the DEC on T . The conformal

decomposition presented in Section 2.3 now has to account for the presence of

matter terms. Letting ρ = φ−8ρ̂ and j = φ−10ĵ ensures that the inequality

−ρ̂2 + ĵ · ĵ ≤ 0 holds. ρ̂ and ĵ are prescribed non-physical matter fields, so that

the conformally formulated Einstein constraint equations are still to be solved for

γ and W only. [15] △

Under the additional assumptions that γ ∈ Y+ with Σ closed, and the matter

fields and the TT-tensor be small (in some precise sense), the authors devised
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new advances that are free of the near-CMC assumption. Those are a topological

fixed-point argument, and a global supersolution construction for the Hamiltonian

constraint. Together with other tools, they were used to show that a solution

could be constructed from τ taken to be an arbitrary smooth function without

restrictions on the size of its partial derivatives. This is to be contrasted with the

results presented in Section 3.3, where the fixed-point argument and the global

barrier construction relied critically on the near-CMC assumption.

Once these results at hand, there are two remaining open problems regarding

existence of solutions:

- Existence of near-CMC-free global super solutions for the Hamiltonian con-

straint equations when γ ∈ Y0 ∪ Y+ and for large data,

- Existence of near-CMC-free global sub solutions for the Hamiltonian con-

straint equation when γ ∈ Y+ in vacuum.

The weakness in the construction pointed out by the second problem is re-

solved in [23]. In this article, two proofs are presented, that show that the con-

formal method can be used to construct a corresponding set of vacuum solutions.

The first proof builds on the work presented in [15]. It uses the facts that it is

only the global subsolution that requires the presence of matter. The global su-

persolution is applicable in vacuum, and requires that the matter fields, if present,

be weak. The first proof shows that solutions exist, under certain mild technical

conditions, whenever a global supersolution can be found. The proof relies on an

apriori estimate that replaces the need for a global subsolution. The second proof

considers a sequence of non-vacuum solutions (constructed using [15]) where the

matter fields are converging to zero. Again, a lower bound is found for the se-

quence and is used to obtain a corresponding subsequence converging to a vacuum

far-from-CMC solution.

Before summarizing the main results of [15] & [23], we give the definitions of

global sub/supersolution, as understood in those articles:
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Definition 3.20. Consider the equations

−8∆φ+Rφ = −2

3
τ2φ5 + |σ + LW |2φ−7 + 2ρφ−3 (3.88)

∆confW =
2

3
φ6γdτ + J (3.89)

Given a function φ, let W(φ) be the corresponding solution of Equation (3.89).

We say φ+ is a global supersolution if whenever 0 < φ ≤ φ+, then

−8∆φ+ +Rφ+ ≥ −2

3
τ2φ5+ + |σ + LW(φ)|2φ−7

+ + 2ρφ−3
+ (3.90)

We say φ− > 0 is a global subsolution if whenever φ ≥ φ−, then

−8∆φ− +Rφ− ≤ −2

3
τ2φ5− + |σ + LW(φ)|2φ−7

− + 2ρφ−3
− (3.91)

The main existence result of [15] is the following:

Theorem 3.21. [15] Let (Σ, γ) be a 3-dimensional closed Riemannian manifold.

Let γ ∈W p
s admit no conformal Killing field, and be in Y+(Σ), where p ∈ (1,∞)

and s ∈ (1 + 3
p ,∞) are given. Select q and e to satisfy:

• 1
q ∈ (0, 1) ∩ (0, s−1

3 ) ∩ [3−p3p ,
3+p
3p ],

• e ∈ (1 + 3
q ,∞) ∩ [s− 1, s] ∩ [3q + s− 3

p − 1, 3q + s− 3
p ]

Assume that the data satisfies:

• τ ∈W q
e−1 if e ≥ 2, and τ ∈W z

1 otherwise, with z = 3q
3+max{0,2−e}q ,

• σ ∈W q
e−1, with ||σ2||∞ sufficiently small,

• ρ ∈W p,+
s−2 ∩ L∞ 0, with ||ρ||∞ sufficiently small,

• j ∈W q
e−2, with ||j||W q

e−2
sufficiently small.

Then, there exist φ ∈ W p
s with φ > 0 and W ∈ W q

e solving the Einstein

constraint equations.

Results on existence of solutions in vacuum are given in [23] as follows: Con-

sidering the system

−8∆φ+Rφ = −2

3
τ2φ5 + |σ + LW |2φ−7 (3.92)

∆confW =
2

3
φ6dτ (3.93)
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Theorem 3.22. Let γ ∈ W p
2 with p > 3 be a metric on a smooth, compact 3-

manifold. Suppose γ has no conformal Killing fields and that one of the following

conditions holds for a TT-tensor σ ∈W p
1 and a function τ ∈W p

1 .

1. γ ∈ Y+(Σ), σ 6≡ 0

2. γ ∈ Y0(Σ), σ 6≡ 0, τ 6≡ 0

3. γ ∈ Y−(Σ) and ∃ γ̂ ∈ [γ] s.t. R(γ̂) = −2
3τ

2

If φ+ ∈W p,+
2 is a global supersolution for (γ, σ, τ), then there exists a solution

(φ,W ) ∈W p,+
2 ×W p

2 to system (3.92)-(3.93) s.t. φ ≤ φ+.

The following proposition extends the results of [15] to the vacuum setting:

Proposition 3.23. Suppose γ ∈ W p
2 with p > 3, and that γ ∈ Y+(Σ), τ ∈ W p

1 ,

and σ ∈W p
1 . If ||σ||∞ is sufficiently small, then there exists a global supersolution

of the system.

Remark 3.24. In [23], the proofs make use of solution operators, defined as follows:

• Let β = σ + LW in Equation (3.92). The following result can be gathered

from several articles, and is summarized in [21]:

Proposition 3.25. Suppose β, τ ∈ L2p and g ∈ W p
2 , where p > 3. Then there

exists a positive solution φ ∈ W p,+
2 of Equation (3.92) iff one of the following is

true:

1. γ ∈ Y+(Σ), β 6≡ 0

2. γ ∈ Y0(Σ), β 6≡ 0, τ 6≡ 0,

3. γ ∈ Y−(Σ) and ∃ γ̂ ∈ [γ] s.t. R(γ̂) = −2
3τ

2,

4. γ ∈ Y0(Σ), β ≡ 0, τ ≡ 0.

In Cases 1-3 the solution is unique. In Case 4 any two solutions are related

by scaling by a constant multiple.

We say that g and τ are Lichnerowicz compatible if they satisfy one of the

conditions of Cases 1-3 and we say that β is admissible if it further satisfies the

same condition.
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If g and τ are Lichnerowicz compatible, we define the Lichnerowicz operator

Lτ to be the map taking β to the unique solution of Equation (3.92).

• Similarly, for a scalar field τ ∈ W p
1 with p > n, define Wτ : L∞ → W p

2 by

Wτ (φ) =W where W is a solution of ∆confW = 2
3φ

6dτ .

Let us now assume that g ∈ W 2
p and τ ∈ W 1

p (with p > 3) are Lichnerowicz

compatible and that σ ∈ W 1
p is admissible (i.e.: σ 6≡ 0 if γ ∈ Y+(Σ)). This is

exactly the hypothesis that g, τ and σ satisfy one of Cases 1-3 of Proposition 3.25.

Define Nσ,τ : L∞
+ → W 2,+

p by Nσ,τ = Lτ (σ + LWτ (φ)). Nσ,τ is well-defined

provided that g has no conformal Killing fields, so that the domain of Wτ is all

of L∞. It can be verified that σ + LWτ (φ) belongs to the domain of Lτ for any

choice of φ ∈ L∞
+ . Finding solutions to the system (3.92)-(3.93) then amounts to

finding fixed points of Nσ,τ . △

3.5 Toy-models in the far-from-CMC case

3.5.1 Conformally flat torus & the CTS method.

The remaining limitations of the construction presented in [15] are now as follows:

- The near-CMC hypothesis is replaced by a smallness assumption on the

TT-tensor (i.e.: a small-TT hypothesis)

- The construction only works on Yamabe-positive compact manifolds.

- It is not known if small-TT conformal data determine a unique solution.

In order to address the first two issues, [22] makes use of a variation of the

conformal method, which we now briefly present: the conformal thin sandwich

(CTS) method, first introduced in [30]. Applying York splitting gave (Equation

(2.21), at the end of Section 2.4):

K = φ−10(σ + LconfW ) +
1

3
φ−4γτ (3.94)

However, the formulation now depends on the choice of representative γ for
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the class of conformally related metrics. Indeed, if γ′ = θ4γ, then in order to

have that K̃ ′ = θ−10K̃, we must impose σ′ = θ−10σ. But then (L(γ′),confW ) =

θ−4(L(γ),confW ).

A remedy is to look for a particular solution to Equation (2.10) of the form:

L̃(γ),confW := N−1
L(γ),confW (3.95)

where N is a given scalar function, which is such that N = θ−6N ′. Then defining

K̃ := σ + (L̃(γ),confW ) (3.96)

yields the desired decomposition, since

(L̃(γ′),confW ) = θ−10 (L̃(γ),confW ) (3.97)

Letting (∆̃(γ),confW )b := Da(L̃(γ),confW )ab, we obtain the CTS momentum

constraint:

(∆̃γ,confW )b =
2

3
ϕ6γabτa (3.98)

Remark 3.26. [22] From the perspective of working with a fixed background metric

g, the standard conformal method simply corresponds to the CTS method, with

the choice N = 1/2. We can think of the CTS approach as providing many

different parameterizations, one for each choice of N . It is not known if certain

choices of N are superior for the purposes of finding a parameterization. △

Using different (although equivalent) decompositions for the conformal me-

thod, York splitting, and the CTS method, [22] derives the CTS equations for the

conformally flat torus Σ = S1
r1× . . .×S1

rn, where S
1
ri denotes the circle of radius ri.

Equipped with the product metric γ chosen s.t. when restricted to a single circle,

γij = δij , Σ is a Yamabe-null manifold. It is required that γ and K be periodic

functions of xn only, the coordinate of the nth-circle, and that £∂kg = £∂kK = 0

for 1 ≤ k ≤ n − 1. Letting x = xn, rn = 1, and restricting to the specific case
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n = 3 the resulting equations read

−6φ′′ − η2φ−7 −
(

µ+
w′

2N

)2

φ−7 + τ2φ5 = 0 (3.99)

(
w′

2N

)′

− φ6τ ′ = 0 (3.100)

where ′ := d
dx . The constants η and µ constitute the constant part of the

TT-tensor, and the unknown function w is related to the vector field W of the

conformal method via 2W = w∂n. If we let

τ = τt = t+ λ(x) := t+







−1 −π < x < 0

1 0 < x < π
(3.101)

we have that the prescribed data set {η, µ, t} for the CTS equations allows for

violation of both the near-CMC and small-TT conditions on the manifold. De-

creasing the value of t makes the discontinuity in τ more significant (hence large t

corresponds to the near-CMC regime), and increasing η and µmake the TT-tensor

large.

This simple model has the advantages that it comprises important issues:

in particular, the nonlinear coupling between the equations is present, and ∂x

is a nontrivial conformal Killing vector field (see Appendix D.3). However, the

convenient choice of curvature (ie: piecewise constant) gets rid of that last issue,

since it introduces a Dirac distribution in Equation (3.100), which can then easily

be solved to yield: w′

2N = φ(0)q[λ+ γN ], where γN is defined as

γN = −
∫

S1 λN
∫

S1 N
(3.102)

The resulting existence/uniqueness statements for Equation (3.99) are sum-

marized in a series of theorems, which we now state, and partly illustrate in Table

3. It is understood that (φ,w) is a solution of Equations (3.99) & (3.100) if

(φ,w + c) is a solution, for any constant c.

Theorem 3.27. (Near-CMC Results) If |t − γN | > 2, ∃ a solution (φ,w) of

Equations (3.99) & (3.100) iff η 6= 0 or µ 6= 0. Solutions are unique if µ = 0.
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Theorem 3.28. (Exceptional case: t = γN ) If t = γN and µ = η = 0, then ∃
a one-parameter family of solutions to Equations (3.99) & (3.100). If µ = 0 and

η 6= 0, 6 ∃ a solution.

Theorem 3.29. (Small-TT results) Suppose |t| > |γN | and |t| 6= 1. If µ 6= 0

or η 6= 0, and if µ and η are sufficiently small, then ∃ at least one solution of

Equations (3.99) & (3.100).

Theorem 3.30. (Non-vanishing mean curvature) Suppose |t| > 1 and either

µ 6= 0 or η 6= 0. Then ∃ at least one solution of Equations (3.99) & (3.100).

Theorem 3.31. (Non-existence/Non-uniqueness) Suppose |t| < 1 and µ = 0.

There exists a critical value η0 ≥ 0 s.t. if |η| < η0, ∃ at least two solutions of

Equations (3.99) & (3.100), and if |η| ≥ η0, there are no solutions. If in addition

|t| > |γN |, then η0 > 0.

Table 3: Existence & Uniqueness results on Σ = n-torus, in the CTS

formulation.

η = 0, η 6= 0, η = 0,

µ = 0 µ = 0 µ 6= 0

Near-CMC: |t− γN | > 2 6 ∃ ∃ ! ∃
Exceptional case: t = γN ∃ 6 ∃

Small-TT results: |t| > |γN | & |t| 6= 1 ∃ ∃
with µ & η suff. small

τ 6= 0: |t| > 1 ∃ ∃
τ changing sign: |t| < 1 & |t| > |γN | ∃ 6! if |η| < η0

6 ∃ if η0 < |η|

Theorem 3.31 is the first nontrivial non-uniqueness result for the vacuum con-

formal method. It arises from the nonlinear coupling of the equations, and sug-

gests that the conformal and CTS methods might contain poorly behaved terms.
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3.5.2 S2 × S1

Based on the treatment of the toy-model just discussed, we consider now the case

where Σ = S2 × S1 is equipped with the product of the round metrics. This is a

Yamabe-positive manifold, with R(γ) = 2. The following is original work, which

closely follows [22].

We choose to parametrize S2 × S1 using the coordinates: (ψ, θ, ϕ), where

ψ ∈ [−π, π] θ ∈ [0, π] ϕ ∈ [−π, π] (3.103)

and where ϕ corresponds to the coordinate on S1. Imposing the restrictions

£∂ψγ = £∂θγ = 0 implies to work with ψ = π
2 . Using the same kind of decompo-

sitions as in [22] yields the CTS equations:

−12φ′′ + φ5τ2 + 3φ−
[

3η2 +

(

µ+
w′

2N

)2
]

φ−7 = 0 (3.104)

(
w′

2N
)′ − φ6τ ′ = 0 (3.105)

where ′ := d
dϕ . With τ = τt given by Equation (3.101), we also get w′

2N = φ6(0)[λ+

γN ] with γN defined as before.

The C.T.S. Lichnerowicz equation becomes

−12φ′′ + τ2t φ
5 + 3φ−

[

3η2 +
(
µ+ φ6(0)[λ+ γN ]

)2
]

φ−7 = 0 (3.106)

Following [22], let us introduce a family of Lichnerowicz equations depending

on d ∈ R
+:

−12φ′′d + τ2t φ
5
d + 3φd −

[

3η2 +
(
µ+ d6[λ+ γN ]

)2
]

φ−7
d = 0 (3.107)

Defining u = ud := d−1φd gives:

−12u′′d + τ2t d
4u5d + 3ud −

[

3η2d−8 +
(
µd−6 + [λ+ γN ]

)2
d4
]

u−7
d = 0 (3.108)
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Claim 3.32. The solutions to Equations (3.104) & (3.105) with mean curvature

given by Equation (3.101) are in one-to-one correspondence with the functions ud

satisfying

−12u′′d + τ2t d
4u5d + 3ud −

[

3η2d−8 +
(
µd−6 + [λ+ γN ]

)2
d4
]

u−7
d = 0

ud(0) = 1
(3.109)

for some d > 0.

Consider

−12u′′ + α1u
5 + 3u− α2u

−7 = 0 (3.110)

where α1 = τ2t d
4 & α2 =

[

3η2d−8 +
(
µd−6 + [λ+ γN ]

)2
d4
]

(3.111)

Proposition 3.33. Suppose p > 1, α1, α2 ∈ L∞([−π, π]) and α1 6≡ 0, α2 6≡ 0

1. There exists a unique solution u ∈W p,+
2 ([−π, π]).

2. If w ∈W∞,+
2 is a subsolution (resp. supersolution), i.e.

−12w′′ + α1w
5 + 3w − α2w

−7 ≤ 0 (resp. ≥ 0) (3.112)

then w ≤ u (resp. w ≥ u).

3. The solution u ∈W p,+
2 depends continuously on (α1, α2) ∈ (L∞, L∞)

Proof. 1. The statement directly follows from results presented in [11]:

Theorem: The Lichnerowicz equation

∆(γ)ϕ = rϕ− aϕ− 3n−2
n−2 − q1ϕ

− n
n−2 + (b− q2)ϕ

n+2
n−2 (3.113)

on a compact n-manifold (M,e) with given Riemannian metric γ ∈W p
2 properly

Riemannian, p > n
2 , and a, b, q1 ∈ L∞ admits a solution ϕ > 0, ϕ ∈ W p

2 when

γ ∈ Y+ if a+ q1 6≡ 0.

2. Follows from the sub and super solution theorem (See Appendix C.3.3).

3. Consider the map N : W p,+
2 × (L∞ × L∞) → Lp taking

(u, α1, α2) 7−→ −12u′′d + α1 u
5
d + 3ud − α2 u

−7
d (3.114)
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This map is continuous, since ∆(γ) is a continuous operator, andW p
2 is an algebra.

The Fréchet derivative at (u, α1, α2) with respect to u in the direction h is

N ′[u, α1, α2]h = −4h′′ +
[
5 · α1 u

4
d + 3 + 7 · α2 u

−8
d

]
h (3.115)

Continuity of the map (u, α1, α2) → N ′[u, α1, α2] follows from:

• W p
2 ([−π, π]) is an algebra continuously embedded in C0([−π, π]) (See

Propositions C.13 & C.15)

• the following lemma, proved in [22]:

Lemma For constant 0 < m < M and p > 1, define the slab Spm,M = {u ∈
W 2
p (S

1) : m ≤ u ≤ M}. For u ∈ W p,+
2 (S1), let Fr(u) = ur. There exists a

constant K(m,M, r) s.t. ||Fr(u) − Fr(v)||Lp(S1) ≤ K(m,M, r)||u − v||Lp(S1) ∀
u, v ∈ Spm,M . Let Lu,r : W p

2 → Lp be the linear function Lu,rv = Fr(u)v. The

map u 7→ Lu,r is Lipschitz continuous on Spm,M .

We can then make use of the following theorem, presented in [11]:

Theorem The Poisson operator ∆(γ)−a on scalar functions in a metric γ on a

smooth compact Riemannian manifold (M,e), with γ ∈W p
2 properly Riemannian,

p > n
2 , a ∈ Lp, is an isomorphism from W p

2 onto Lp if a ≥ 0, a 6≡ 0.

V = 5 · α1 u
4 + 3 + 7 · α2 u

−8 6≡ 0 since α1 6≡ 0, α2 6≡ 0 and u 6≡ 0. Also,

V ≥ 0. Therefore, −∆(γ) + V : W p
2 −→ Lp is an isomorphism.

The Implicit Function Theorem implies that if u0 is a solution for data (α0, β0),

there is a continuous map defined near (α0, β0) taking (α, β) to the corresponding

solution of Equation (3.110).

Definition 3.34. Define F(d) : R>0 → R>0 by F(d) = ud(0). When µ = η = 0,

we denote F by F0.

Elementary estimates for F

The following claims are proved by manipulating inequalities and limits, assuming

|t| 6= 1. The qualitative results and techniques for the proofs are similar to those
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in [22].

Claim 3.35. (Constant supersolution) If M ≥ Md := max{Md,+,Md,−} > 0

where

Md,± =

[
3η2d−12 + (µd−6 + [γN ± 1])2

(t± 1)2

] 1
12

(3.116)

then M is a constant supersolution to Equation (3.110).

Claim 3.36. (Constant subsolution) If 0 < m ≤ md := min{md,+,md,−, 1} where

md,± =

[

3η2d−12 + (µd−6 + [γN ± 1])2

(t± 1)2 + 3
d4

] 1
8

(3.117)

then m is a constant subsolution to Equation (3.110).

Remark 3.37. We always have md ≤Md. △

Lemma 3.38. Let

M∞ := max

[∣
∣
∣
∣

γ + 1

t+ 1

∣
∣
∣
∣

1
6

,

∣
∣
∣
∣

γ − 1

t− 1

∣
∣
∣
∣

1
6

]

& m∞ := max

[∣
∣
∣
∣

γ + 1

t+ 1

∣
∣
∣
∣

1
4

,

∣
∣
∣
∣

γ − 1

t− 1

∣
∣
∣
∣

1
4

]

(3.118)

Given ǫ > 0, m∞ − ǫ ≤ u ≤M∞ + ǫ holds for d sufficiently large.

If µ = η = 0 then m∞ − ǫ ≤ u ≤M∞ for all d > 0.

Lemma 3.39. If µ = η = 0 then F0(d) ≤M∞ for all d > 0. Otherwise there is a

positive constant c such that F(d) ≥ cd−
2
3 for d sufficiently small..

We can now state a criterion for existence of a solution:

Lemma 3.40. (Existence criterion) Suppose η 6= 0 and µ 6= 0. There exists a

solution of F(d) = 1 if and only if for some d > 0, F(d) ≤ 1.

Proof. From the preceding lemma, we have that for d sufficiently small, F(d) > 1.

Fixing p > 1, we have from Proposition 3.33 that the map d 7→ ud from (0,∞) to

W p
2 (S

1) is continuous. Since W p
2 (S

1) →֒ C(S1), it follows that F is continuous,

so the result is obtained from the Intermediate Value Theorem.
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Near-CMC results

Lemma 3.41, Lemma 3.42 and its proof follow [22].

Lemma 3.41. Suppose |t − γN | > 2. Then M∞ < 1. If η 6= 0 or µ 6= 0, ∃ a

solution of F(d) = 1. If η = µ = 0, then F0(d) < 1 for all d > 0. In particular, 6 ∃
a solution of F0(d) = 1.

Lemma 3.42. (Differentiability of F) The function F is differentiable. Moreover

F ′(d) = h(0) where h ∈W p
2 ([0, π]) solves −∆gh+V (d, u)h = −R(d, u) and where

V (d, u) = 5τ2t d
4u4 + 3 + 7

[

3η2d−8 +
(
µd−6 + [λ+ γN ]

)2
d4
]

u−8(3.119)

R(d, u) = 4τ2t d
3u5 +

[

24η2d−9 − 4
(
µd−6 + [λ+ γN ]

)2
d3

+12
(
µd−6 + [λ+ γN ]

)
µd−3

]
u−7 (3.120)

Proof. Consider the function M : R>0 ×W p,+
2 ([−π, π]) → Lp([−π, π]) defined by

M(d, v) = −12v′′ + τ2t d
4v5 +3v−

[

3η2d−8 +
(
µd−6 + [λ+ γN ]

)2
d4
]

v−7 (3.121)

so that M(d, u) = 0 for all d > 0. M is Fréchet differentiable:

M′[d, v](δ, h)

= −12h′′ +
(

5τ2t d
4v4 + 3 + 7

[

3η2d−8 +
(
µd−6 + [λ+ γN ]

)2
d4
]

v−8
)

h

+
(

4τ2t d
3v5 +

[

24η2d−9 − 4
(
µd−6 + [λ+ γN ]

)2
d3

+12
(
µd−6 + [λ+ γN ]

)
µd−3

]
v−7
)
δ (3.122)

=: −12h′′ + V (d, v)h +R(d, v)δ (3.123)

By an argument similar to the one used in the third part of Proposition 3.33

(W p
2 ([−π, π]) →֒ C([−π, π]) and the lemma) the operators V (v, d) and R(v, d)

are continuous. So the map (d, v) 7→ M′[d, v] is continuous. The operator from

W p
2 ([−π, π]) → Lp([−π, π]), h 7→ −∆(γ)h + V h has a continuous inverse as V ∈

L∞, V ≥ 0 and V 6≡ 0. The Implicit Function Theorem then implies that given a
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solution of M(d0, u0) = 0 there is a unique function G defined near d0 such that

M(d,G(d)) = 0, and G is continuously differentiable. But M(d, u) = 0 for all d,

so by the uniqueness of G we have G(d) = u. Let h = G′(d). Then by the chain

rule

0 =
d

dd
M(d,G(d)) = −h′′ + V h+R (3.124)

Since the map ud 7→ ud(0) is linear and continuous onW p
2 (S

1), and F(d) = ud(0),

it follows that F is continuously differentiable and F ′(d) = G′(d)(0). That is,

F ′(d) = h(0) where h solves Equation (3.124).

The following proposition differs from the analogous proposition in [22]: here,

we have a restriction on η.

Proposition 3.43. Suppose |t − γ| > 2, µ = 0, η ≥ 0. Then for η sufficiently

large, there exists at most one solution of F(d) = 1.

Proof. Suppose F(d) = 1. We show that for η sufficiently large, F ′(d) < 0 and

hence there can be at most one solution.

If µ = 0, η ≥ 0, R defined in the above lemma becomes:

R = 24η2d−9u−7 + 4d3
(

(t+ λ)2u5 − (γN + λ)2 u−7
)

(3.125)

Noticing that R is then an increasing function of u, we have that:

R ≥ 24η2d−9m−7
d + 4d3

(

(t+ λ)2m5
d − (γN + λ)2m−7

d

)

(3.126)

Requiring that R ≥ 0 will give us a condition on how large η should be. After

some arithmetic, we get:

η2 ≥ 1

6
d12(t+ λ)2





(
γN + λ

t+ λ

)2

−
[

3η2d−12 + (γN + λ)2

(t+ λ)2 + 3
d4

] 3
2



 (3.127)

This can easily be solved numerically to find out η0 such that the above inequality

holds for any η ≥ η0. Then for such η, we have that on I+ = (0, π) and I− =
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(−π, 0), R ≥ 0, R 6≡ 0. Note that over I+∪I−, the coefficients of Equation (3.110)

are smooth. Since it was proved that V ≥ 0, V 6≡ 0, we can apply the strong

maximum principle to ∆gh = V h + R to conclude that h < 0 on I+ ∪ I−. In

particular, h(0) = F ′(d) < 0.

The case t = γ

Note that the following results are different from the ones in [22]: on the n-torus,

we have a one-parameter family of solutions when µ = η = 0, and no solution

when µ = 0 and η 6= 0.

• Case µ = η = 0: We have the following non-existence result:

Lemma 3.44. Suppose t = γ and µ = η = 0. Then System (3.109) doesn’t have

a solution.

Proof. Rearranged, Equation (3.110) with η = µ = 0 reads:

−12u′′d + d4(t+ λ)2
(
u5 − u−7

)
+ 3u = 0 (3.128)

M = 1− ǫ is a constant supersolution if

d4(t+ λ)2
(
M5 −M−7

)
+ 3M ≥ 0 (3.129)

or equivalently

(1− ǫ)8

1− (1− ǫ)12
· 3

(t+ λ)2
≥ d4 (3.130)

Given d, it is always possible to find ǫ > 0 such that the last inequality is satisfied.

Therefore u < 1, and in particular, u(0) = 1 cannot have a solution.

• Case µ = 0, η > 0: We have the following non-existence result:

Lemma 3.45. Suppose t = γ and µ = 0, η > 0. Then System (3.109) doesn’t

have a solution.
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Proof. Proceeding as in the previous lemma, we show that the condition 1 > η2d−8

is sufficient to ensure that M = (1 − ǫ) is a constant supersolution, for ǫ > 0

appropriately chosen. Then we show that even in the case where 1 < η2d−8,

M = (1− ǫ) is a constant supersolution.

Equation (3.110) reads:

−12u′′d + d4u5d(t+ λ)2 + 3ud −
[
3η2d−8 + (t+ λ)2d4

]
u−7
d = 0 (3.131)

M = 1− ǫ is a constant supersolution if

1

3
d4(t+ λ)2

(

M5 −M−7 +
3M

d4(t+ λ)2
− 3η2M−7

d12(t+ λ)2

)

≥ 0 (3.132)

or equivalently

3(1 − ǫ)8

d4(t+ λ)2
≥ 3η2

d12(t+ λ)2
+
(
1− (1− ǫ)12

)
(3.133)

If

3(1− ǫ)8

d4(t+ λ)2
>

3η2

d12(t+ λ)2
⇐⇒ (1− ǫ)8 >

η2

d8
(3.134)

is satisfied, then it will be possible to find an appropriate ǫ1 > 0 such that the

previous inequality holds. If 1 > η2d−8, it is possible to find ǫ2 > 0 s.t. the above

inequality to hold. Let ǫ = min(ǫ1, ǫ2).

We now consider the case η2d−8 > 1. M = (1− ǫ) is a supersolution if

d4M5(t+ λ)2 + 3M − 3η2d−8M−7 − (t+ λ)2d4M−7 ≥ 0 (3.135)

or equivalently

d4(t+ λ)2 ≥ −3

>0
︷ ︸︸ ︷

η2d−8 −M8

1−M12
︸ ︷︷ ︸

>0

(3.136)

which is always true.
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• Case µ 6= 0, η = 0: We have the following non-existence result:

Lemma 3.46. Suppose t = γ and µ 6= 0, η = 0. Then System (3.109) doesn’t

have a solution.

Proof. Proceeding as in the previous lemma, we show that M = (1 − ǫ) is a

constant supersolution, for ǫ > 0 appropriately chosen. With µ 6= 0 and η = 0,

Equation (3.110) reads:

−12u′′d + d4u5d(t+ λ)2 + 3ud −
(
µd−6 + (t+ λ)

)2
d4u−7

d = 0 (3.137)

M := 1− ǫ is a supersolution if:

d4M5(t+ λ)2 + 3M −
(
µd−6 + (t+ λ)

)2
d4M−7 ≥ 0 ? (3.138)

Let us derive two stronger conditions, by suppressing the linear term in the above

inequality:

Condition 1: (t+ λ)2 ≥ −
[
µd−6 + 2(t+ λ)

]
µd−6 1

1−M12

Condition 2: (1− ǫ)12 ≥
[

µ
(t+λ)d6

+ 1
]2

Clearly, it is possible to find ǫ > 0 satisfying Condition 2 iff µ
(t+λ)d6

< 0, ie:

µ < 0 and t > 1, or µ > 0 and t < 1. But in the other two possible cases, namely

µ < 0 and t < 1, or µ > 0 and t > 1, Condition 1 holds trivially, since the RHS

is then negative. Therefore, M = (1− ǫ) is a constant supersolution.

Mean curvature of constant sign

First, consider the following perturbed Lichnerowicz equation:

−12ǫ2u′′ǫ −
[
3η2d−8 + (µd−6 + γN + λ)2d4

]
u−7
ǫ + 3ǫ2uǫ + τ2t d

4u5ǫ = 0 (3.139)

⇐⇒ −12ǫ2u′′ǫ − α2
±u

−7
ǫ + 3ǫ2uǫ + β2±u

5
ǫ = 0 (3.140)

where α2
± = 3η2d−8 + (µd−6 + γN ± 1)2d4 & β2± = (t± 1)2d4 (3.141)
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Definition 3.47. We say that f(x) → L rapidly at infinity if

lim
x→∞

|f(x)− L|xn = 0 ∀ n ∈ N (3.142)

We say that f(x) → L rapidly at 0 if

lim
x→0

|f(x)− L|x−n = 0 ∀ n ∈ N (3.143)

The statement of the following theorem is identical to the one in [22], with a

slightly different proof.

Theorem 3.48. Suppose that β± 6= 0, then

lim
ǫ→0

uǫ(0) =

[ |α−|+ |α+|
|β+|+ |β−|

] 1
6

(3.144)

and this convergence is rapid.

Proof. We shall make use of the following results, proved in [22]:

Proposition: Consider the following boundary value problem on R, with

piecewise constant coefficients:

−ν ′′ − α2ν−7 + β2ν5 = 0 (3.145)

where α and β are equal to the constants α± and β± on (−∞, 0) and (0,+∞).

Suppose β± 6≡ 0. Let L± = |α±/β±|1/6. ∃ a solution ν ∈ W∞
2,loc(R) to Equation

(3.145) satisfying limx→±∞ ν(x) = L±. Moreover, ν converges rapidly to its limits

at ±∞, ν ′ converges rapidly to 0 at ±∞, and

ν(0) =

[ |α+|+ |α−|
|β+|+ |β−|

]1/6

(3.146)

Following [22], we use this function to build approximate solutions of Equation

(3.140). On [−π
2 ,

π
2 ], define:

wǫ(x) = ν(x/ǫ) + hǫ(x) (3.147)
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where hǫ is small correction term defined as follows: Let

ζ(x) =







1
πx

2 0 ≤ x ≤ π/2

0 −π/2 < x ≤ 0
(3.148)

hǫ(x) = −dǫ,+ζ(x)− dǫ,−ζ(−x) where dǫ,± =
1

ǫ
ν ′
(

± π

2ǫ

)

(3.149)

With this choice of hǫ, w
′
ǫ(±π/2) = 0.

Then, define the nonlinear Lichnerowicz operator Nǫ :W
p
2 (S

1) → Lp(S1) by:

Nǫ(w) = −12ǫ2w′′ − α2
±w

−7 + 3ǫ2w + β2±w
5 = 0 (3.150)

and compute the resulting ‘error’:

Eǫ = Nǫ(wǫ(x))− Nǫ(νǫ(x)) (3.151)

=
2

π
· 12ǫ2 [dǫ,+χ+ + dǫ,−χ−]− α2

±

[

(ν(x/ǫ) + hǫ(x))
−7 − ν(x/ǫ)−7

]

+3ǫ2hǫ(x) + β2±

[

(ν(x/ǫ) + hǫ(x))
5 − ν(x/ǫ)5

]

(3.152)

where χ± are the characteristic functions on (−π/2, 0) and (0, π/2).

Once again, we make use of a lemma proved in [22]:

Lemma: Consider

Bǫ =
2

π
ǫ2 [d+χ+ + d−χ−]− α2

[

(ν(x/ǫ) + hǫ(x))
−7 − ν(x/ǫ)−7

]

+β2
[

(ν(x/ǫ) + hǫ(x))
5 − ν(x/ǫ)5

]

(3.153)

||Bǫ||L∞(S1) → 0 rapidly as ǫ→ 0.

Comparing Eǫ and Bǫ, they differ by 3ǫ2hǫ(x). Since we easily have that

||3ǫ2hǫ(x)||L∞(S1) → 0 rapidly as ǫ→ 0, we conclude that ||Eǫ||L∞(S1) → 0 rapidly

as ǫ → 0.

The other arguments needed to show that the limit in (3.144) holds are all

taken from [22]. Their proofs carry out without changes, therefore we just state

the main steps.
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Corollary: As a corollary of the lemma stated in the proof of Proposition 3.33,

we have that if 0 < m < M , there exists a constant C(m,M) s.t. ∀ v,w ∈ Spm,M

||N ′
ǫ [v]− N

′
ǫ [w]||L(W p

2 (S1),Lp(S1)) < C(m,M)||v − w||W p
2 (S

1) (3.154)

Proposition: Let V ∈ L∞(S1) and consider the operator Lǫ = −ǫ2∆+ V as

a map from W 2
p (S

1) to Lp(S1), where p > 1. Suppose there is a constant m s.t.

V ≥ m > 0. Then Lǫ is continuously invertible. Moreover, there is a constant C

s.t. if ǫ is sufficiently small, ||L −1
ǫ || ≤ Cǫ−4.

The proof ends using Newton’s method: Let X and Y be Banach spaces,

x ∈ X, r > 0. Let N : Br(x) → Y be a differentiable map with Lipschitz

continuous derivative, ie: there exists k > 0 s.t.

||N ′[x1]− N
′[x2]||L(X,Y ) ≤ k||x1 − x2||X ∀ x1, x2 ∈ Br(x) (3.155)

Suppose x is a point where N ′[x] has a continuous inverse. If

2k · ||N [x]||2 · ||N ′[x]−1|| < 1 and 2 · ||N [x]|| · ||N ′[x]−1|| < r (3.156)

then ∃ a solution of N [u] = 0 satisfying ||u− x||X ≤ 2 · ||N [x]|| · ||N ′[x]−1||.

We can now get results similar to [22]. A direct application of Theorem 3.48

is the following proposition:

Proposition 3.49. Let η = µ = 0 and |t| 6= 1, and denote by u0 the corresponding

solution to Equation (3.110). Then

lim
d→∞

u0(0) =







1 |t| < 1

|t|− 1
6 |t| > 1

(3.157)

and the convergence is rapid.

To obtain an analogous result without η = µ = 0, we show that small pertur-

bations of u0,d are sub and super solutions of the equation for ud. To this end,

first define the nonlinear operator Nd : W
p,+
2 (S1) → Lp(S1):

Nd(v) = −12v′′−
[
3η2d−8 + (µd−6 + γN + λ)2d4

]
v−7+3v+(t+λ)2d4v5 (3.158)



56 CHAPTER 3. EXISTENCE AND UNIQUENESS RESULTS

and the perturbation operator Gd : [−m∞/2,M∞] → L∞ as Gd(K) = Nd(u0+K).

So that u0,d +K is a sub or super solution iff G (K) ≤ 0 or ≥ 0. We may write

Gd(K) = D(K) + E (K) where:

D(K) = (t+ λ)2d4
[
(u0 +K)5 − u50

]
(3.159)

E (K) = (γN + λ)2d4u−7
0 +K

−
[

3η2d−8 +
[
µd−6 + λ+ γN

]2
d4
]

(u0 +K)−7 (3.160)

We have the following lemma [22]:

Lemma 3.50. There exist positive constants D−, D+, E− and E+ s.t.

E−K ≤ (γN + λ)
[
u−7
0 − (u0 +K)−7

]
≤ E+K K ≥ 0 (3.161)

E+K ≤ (γN + λ)
[
u−7
0 − (u0 +K)−7

]
≤ E−K K ≤ 0 (3.162)

and

D−K ≤ D(K) ≤ D+K K ≥ 0 (3.163)

D+K ≤ D(K) ≤ D−K K ≤ 0 (3.164)

∀ d > 1 and ∀ K ∈ [−m∞/2,M∞].

which we use to prove the following proposition:

Proposition 3.51. There exists a constant c > 0 s.t. ||u0 − u||L∞ < cd−2 ∀ d

sufficiently large. In particular,

lim
d→∞

F(d) = lim
d→∞

u(0) = lim
d→∞

u0(0) (3.165)

Proof. The idea is to find constants K−(d) and K+(d) that are O(d−2), and

satisfying G (K−(d)) < 0 and G (K+(d)) > 0. It will then follow that u0 +K−(d)

and u0 + K+(d) are sub and super solutions of Equation (3.110), implying the

asymptotic result.
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First let 0 < K ≤M∞:

E (K) = (γN + λ)2d4u−7
0,d + 3K

−
[

3η2d−8 +
[
µd−6 + λ+ γN

]2
d4
]

(u0,d +K)−7 (3.166)

= (γN + λ)2d4
[

u−7
0,d − (u0,d +K)−7

]

+ 3K

−
[
3η2d−8 + µ2d−8 + 2µd−6(λ+ γN )d

4
]
(u0,d +K)−7 (3.167)

≥ E−K −
[
(3η2 + µ2)d−6 + 2µ(λ+ γN )

]
(m∞/2)

−7d−2 (3.168)

Picking

K+(d) =

[
(3η2 + µ2)d−6 + 2µ(λ+ γN )

]
(m∞/2)

−7

E−
d−2 (3.169)

ensures Gd(K+(d)) ≥ 0, for d sufficiently large.

Then let −m∞/2 ≤ K < 0:

E (K) ≤ E+K −
(
3η2 + µ2

)
d−8(2M∞)−7 + 2µ(λ+ γN )d−2(m∞/2)

−7 + 3K (3.170)

Picking

K−(d) = −
2
3µ(λ+ γN )(m∞/2)

−7

E+
d−2 (3.171)

ensures Gd(K−(d)) ≤ 0, for d sufficiently large.

This proposition now easily follows from the previous results:

Proposition 3.52. Suppose |t| > 1. If η 6= 0 or µ 6= 0, there exists at least one

solution of F(d) = 1.

Non-existence / Non-uniqueness

As in [22], we obtain non-existence and non-uniqueness results, using the same

techniques. We now let µ = 0, and |t| < 1, so that the mean curvature changes

sign. Since we are concerned with the behaviour of F in terms of η, we let

F = F[η].
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Proposition 3.53. For fixed d, the value of F[η](d) is strictly increasing in η.

Moreover,

F[η](d) ≥
[
3η2 + (γN ± 1)2d8

(t± 1)2d4 + 3

] 1
8

d−1 (3.172)

Proof. Fix d > 0 and suppose 0 ≤ η1 ≤ η2. Let ud,1 and ud,2 be the corresponding

solutions of Equation (3.110). Substituting ud,1 into the equation for ud,2, we get:

−12u′′d,1 + τ2t d
4u5d,1 + 3ud,1 −

[

3η22d
−8 + (λ+ γN )

2 d4
]

u−7
d,1

= 3
(
η21 − η22

)
d−8u−7

d,1 < 0 (3.173)

So ud,1 is a subsolution of the equation for ud,2, and ud,1 ≤ ud,2. Since a similar

computation shows that ud,1 + ǫ is also a subsolution, ud,1 < ud,2 everywhere,

F[η1](d) < F[η2](d).

For the estimate (3.172), recall the result 0 < m ≤ md := min{md,+,md,−, 1}
is a constant subsolution of Equation (3.110), where:

md,± =

[

3η2d−12 + (µd−6 + [γN ± 1])2

(t± 1)2 + 3
d4

] 1
8

(3.174)

Setting µ = 0 and rearranging gives the desired estimate:

md,± =

[
3η2 + (γN ± 1)2d8

(t± 1)2d4 + 3

] 1
8

d−1 (3.175)

Proposition 3.54. Suppose µ = 0 and η 6= 0. Then there exists a constant c > 0

such that

ud ≥ u0,d + cd−8 (3.176)

for all d sufficiently large.

Proof. We make use of the perturbation operator Gd and Lemma 3.50, presented

in the previous section. With µ = 0, we have:

E (K) =
1

3
(γN + λ)2d4

[

u−7
0,d − (u0,d +K)−7

]

− η2d−8(u0,d +K)−7 +K

≤ E+K − η2(2M∞)−7d−8 +K (3.177)
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Let

K− =
η2(2M∞)−7

D+ + E+ + 1
d−8 (3.178)

Then we have:

Gd(K−) = D(K−) + E (K−) (3.179)

≤ D+K− + E+K− − η2(2M∞)−7d−8 +K− (3.180)

= (D+ + E+ + 1)K− − η2(2M∞)−7d−8 = 0 (3.181)

Therefore, u0,d+K− is a subsolution, and inequality (3.176) is thus obtained with

c = η2(2M∞)−7

D++E++1 .

We conclude with a proposition on non-existence/non-uniqueness of solutions:

Proposition 3.55. Suppose µ = 0 and |t| < 1. ∃ η0 ≥ 0 s.t. if 0 < |η| < η0,

∃ at least two solutions of F(d) = 1, while if |η| > η0 there are no solutions. If

|t| > γN then η0 > 0.

Proof. We make use of Theorem 3.48 and Proposition 3.54 to show that ud(0) > 1

for d sufficiently large.

ud(0) − 1 ≥ (u0,d(0)− 1) + cd−8 → 0 as d→ ∞ (3.182)

Fix η1, and pick d0 s.t. F[η1](d) > 1 if d > d0. From Proposition 3.53, we can

find η2 s.t. F[η2](d) > 1 ∀ d ∈ (0, d0]. Letting η = max{η1, η2}, we must have

F[η](d) > 1 ∀ d > 1, hence for η sufficiently large, there are no solutions to System

3.109.

Let A = {η ≥ 0 : F[η](d) > 1∀ d > 0}. We have just shown that A 6= ∅. Let

η0 = inf A, and pick η < η0. Then for some d0, F[η](d0) < 1. Since F[η](d) > 1

for d sufficiently small, and d sufficiently large, it follows from the continuity of

F that there are at least two solutions of F[η](d) = 1, one for d < d0 and one for

d0 < d.
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Summary of the results

As was done with the previous toy-model, the non-/existence and non-/uniqueness

results for Σ = S2 × S1 are summarized in Table 4.

Table 4: Existence & Uniqueness results on Σ = S2 × S1, in the CTS

formulation.

η = 0, η 6= 0, η = 0,

µ = 0 µ = 0 µ 6= 0

Near-CMC: |t− γN | > 2 6 ∃ ∃ ∃
! if η0 < |η|

Exceptional case: t = γN 6 ∃ 6 ∃ 6 ∃
τ 6= 0: |t| > 1 ∃ ∃

τ changing sign: |t| < 1 & |t| > |γN | ∃ 6! if |η| < η0

6 ∃ if η0 < |η|

Comparison with Rendall’s result

It is interesting to compare those results to the following theorem proved by

A.Rendall, and presented in [18]:

Theorem 3.56. Let (Σ, γ, σ, τ) be a set of conformal data with Σ = S2 × S1,

γ = (round sphere metric)× (circle metric), σ2 ≡ 0 and τ = f(x), where x is the

coordinate on the S1 factor, and f(−x) = −f(x). For such data, the conformal

Einstein constraint equations either admit no solution, or admit more than one

solution.

Proof. Define a pair of groups:

• S = SO(3) acts on the S2-component of Σ, leaving S1 invariant. Note that

(γ, σ + γτ) 7→ (γ, σ + γτ) under the action of S.
• Z2 is the reflection group, where Ψ ∈ Z2 reflects S1 across some central
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point p0 ∈ S1, leaving S2 invariant. (γ, σ+γτ) 7→ (γ,−(σ+γτ)) under the action

of Ψ.

It follows that if ∃! solution (φ,W ) to the conformal Einstein constraint equa-

tions for these conformal data, then the reconstituted data are s.t. (h,K) 7→
(h,K) under the S action, and (h,K) 7→ (h,−K) under the Ψ action. Let us work

by contradiction, and assume ∃! solution to the conformal ECE, with resulting

initial data set (h,K). Consider (h,K) and its local spacetime development g, we

define

• R(x, t) = radius of S2 at (x, t), where x ∈ S1, and x = 0 at p0;

• m(x, t) = 1
2R(x, t) (1− g(∇R(x, t),∇R(x, t))).

From the vacuum Einstein equations (Equation (1.1)), m and R must satisfy

∇α∇βR =
m

R2
gαβ (3.183)

∇αm = 0 =⇒ m = m̂, a constant (3.184)

where the indices α, β take on the two values x and t.

Claim: At the point (x, t) = (0, 0): (a) ∇R(0, 0) = 0 (b) R(0, 0) = 2m̂.

Proof of Claim: (a) follows from the facts that

• Since K 7→ −K under Ψ, we have Kcd(0, 0) = 0 and therefore ∂tR = 0;

• Since γ 7→ γ under Ψ, ∂xR(0, 0) = 0.

(b) follows immediately from (a), along with the definition of m:

m̂ = m(0, 0) =
1

2
R(0, 0)(1 − g(∇R(0, 0),∇R(0, 0))) =

1

2
R(0, 0) (3.185)

q.e.d. proof of claim.

We next consider a global maximum point xm ∈ S1 of the function R(x, 0). Since

the data are presumed to be smooth, we have ∂xR(xm, 0) = 0. Thus we find that

g(∇R(xm, 0),∇R(xm, 0)) = gtt(∂tR(xm, 0), ∂tR(xm, 0))
2 ≤ 0 (3.186)
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So we have, from the definition of m,

m̂ = m(xm, 0) =
1

2
R(xm, 0)(1− g(∇R(xm, 0),∇R(xm, 0))) ≥

1

2
R(xm, 0) (3.187)

Since xm is a global maximum forR(x, 0), it follows from this result that ∀ x ∈ S1,

R(x, 0) ≤ R(xm, 0) ≤ 2m̂ (3.188)

Now comparing this inequality with R(0, 0) = 2m̂, we verify that x = 0 is a global

maximum for R(x, 0). However, using that Kcd(0, 0) = 0, together with Equation

(3.183), we get

∂x∂xR(0, 0) = ∇x∇xR(0, 0) =
m̂

R2
gxx(0, 0) > 0 (3.189)

This contradicts the assumption that (0, 0) is a global maximum forR, completing

the proof by contradiction.

The proof does not tell which of existence or uniqueness fails in this specific

case. Comparing the CTS formulation used to derive the results with the condi-

tions imposed by Rendall, we see that we must consider the case where:

- t = 0 since we want τ to be an odd function,

- γN = 0 since, as pointed out by Remark 3.26, the CTS formulation reduces to

the conformal formulation, provided that N = 1/2. Then γN =
∫
Σ
λN∫

ΣN
=
∫

Σ λ = 0.

Therefore, this corresponds to the exceptional case t = γN , for which we have

non-existence results. What Rendall’s result tells us is that there cannot be a

unique solution exhibiting symmetry. We have found that there is no solution

with symmetry, however, there could still exist a solution which does not exhibit

symmetry. In order to rule out this possibility, other kinds of arguments must be

used.



Chapter 4

Conclusion

The goal of the thesis was three-fold. We first introduced the initial-value for-

mulation of general relativity, and the conformal method, which to this day has

been the most successful approach to the problem. We then provided the reader

with a clear review of the main achievements regarding the parametrization of

the space of solutions in the CMC and near-CMC cases. Lastly, we explained

the most recent results in the far-from-CMC case, and pointed out the remaining

open questions.

It is hoped that toy-models such as the ones presented at the end of Chapter 3

help to gain a better understanding of the issues that are faced when dealing with

the far-from-CMC case. Carrying on with this idea, there are several possible

directions for further investigations of the new S2 × S1 model presented above.

One can try to understand the nature of the multiplicity of solutions when the

mean curvature changes sign, as in [29]. It would also be interesting to find out

whether this is caused by ‘poorly behaved terms’, such as the ones present in the

extended CTS method (see [5]). The role played by the presence of Killing vector

fields also has to be clarified.
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Appendix A

Calculus on Manifolds

Unless otherwise stated, in this appendix, we will assume that M and N are

manifolds endowed with smooth (C∞-)differentiable structures, of respective di-

mensions m and n. For practical purposes, we assume that a point on M belongs

to some chart (U,ϕ), and has local coordinates xµ, and that a point on N belongs

to some chart (V, ψ), and has local coordinates yν .

A.1 Vectors, Dual vectors, and Tensors

Definition A.1. [25] Let f : M → N ; f : p 7→ f(p) be a map. Then f and f(p)

have the following representations:

ψ ◦ f ◦ ϕ−1 : Rm → R
n y = ψ ◦ f ◦ ϕ−1(x) (A.1)

abbreviated as yν = f ν(xµ). f is differentiable or smooth at p if is it C∞ with

respect to each xµ. f ∈ C∞(M) if it is smooth ∀ p ∈M .
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A.1.1 Vectors

Let c : (a, b) ⊂ R →M be a curve on M such that t = 0 ∈ (a, b), and f :M → R,

f ∈ C∞(M). Then [25]:

df(c(t))

dt

∣
∣
∣
∣
t=0

=
dxµ(c(t))

dt

∣
∣
∣
∣
t=0

∂µf =: Xµ∂µf =: X[f ] (A.2)

where we used ∂µf := ∂µ(f ◦ ϕ−1(x)), and defined Xµ = dxµ(c(t))
dt |t=0. The last

equality defines the action of the differential operator X on f .

Consider the following equivalence class of curves:

[c(t)] =

{

c̃(t) : c̃(0),
dxµ(c̃(t))

dt

∣
∣
∣
∣
t=0

=
dxµ(c(t))

dt

∣
∣
∣
∣
t=0

}

(A.3)

Definition A.2. [25] Equation (A.2) defines X, the tangent vector to M at

p = c(0), along the direction given by the curves in [c(t)].

Remark A.3. Based on this definition, a tangent vector appears as a generalization

of the directional derivative in Euclidian space. The following alternate definition

puts the emphasis on viewing a tangent vector as a differential operator. △

Definition A.4. [6] Consider the set of C∞-functions whose domain includes

p ∈ M , and define an equivalence relation on this set as follows: f ∼ g if ∃ and

open neighborhood U containing p s.t. f = g on U . Then the germ of f at p

is the equivalence class [f ] of f under ∼. The set of germs at p is denoted by

C∞(M, {p},R).

Definition A.5. A tangent vector at p ∈ M is a map X : C∞(M, {p},R) → R

s.t. for any chart (U,ϕ) about p, ∃ {aµ} ∈ R
m s.t. X([f ]) = aµ∂µ([f ◦ ϕ−1]).

Definition A.6. The set of all tangent vectors at p ∈M forms the tangent space

TpM . The tangent vectors eµ = ∂µ form a basis for TpM known as the canonical

basis. Therefore, TpM has dimension m, like M .
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A.1.2 Dual vectors

Definition A.7. [25] The dual vector space to TpM is denoted by T ∗
pM and is

called the cotangent space at p. The element ω : TpM → R of T ∗
pM is a dual

vector or a one-form.

Definition A.8. Consider the natural inner product 〈 , 〉 : T ∗
pM × TpM → R.

In local coordinates, the dual basis of T ∗
pM associated to the canonical basis of

TpM is denoted by {dxµ} and defined as:

〈dxν , ∂µ〉 := ∂µx
ν = δνµ (A.4)

In local coordinates, a dual vector can be written as ω = ωνdx
ν. From the last

definition, the inner product between a vector and a dual vector can be inferred

[25]:

〈ω, V 〉 = 〈ωνdxν, V µ∂µ〉 = ωνV
µ 〈dxν , ∂µ〉 = ωνV

µδνµ = ωµV
µ (A.5)

A.1.3 Tensors

Definition A.9. [25] A (q, r)-tensor is a map T µ1...µq ν1...νr : ⊗qT ∗
pM⊗rTpM → R.

Remark A.10. By definition, dual vectors are (0, 1)-tensors. △

In local coordinates, a (q, r)-tensor can be written as [25]

T = T µ1...µq ν1...νr∂µ1 ⊗ . . .⊗ ∂µq ⊗ dxν1 ⊗ . . .⊗ dxνr (A.6)

and it acts on q dual vectors ωiµdx
µ, (1 ≤ i ≤ q) and r vectors Vj = V ν

j ∂ν ,

(1 ≤ j ≤ r) as:

T (ω1, . . . , ωq;V1, . . . Vr) = T µ1...µq ν1...νrω1µ1 . . . ωqµqV
ν1
1 . . . V νr

r (A.7)
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A.2 Pushforward & Pullback

A smooth map f :M → N naturally induces two maps. [25]

Definition A.11. The differential map or pushforward f∗ : TpM → Tf(p)N is

induced by f , in the sense that if V ∈ TpM and g ∈ C∞(N), then we define

(f∗V )[g] := V [g ◦ f ] ⇐⇒ (f∗V )[g ◦ ψ−1(y)] := V [g ◦ f ◦ ϕ−1(x)] (A.8)

where x = ϕ(p) and y = ψ(f(p)). Let V = V µ ∂
∂xµ and f∗V =W ν ∂

∂yν , then

W ν ∂

∂yν
[g ◦ ψ−1(y)] = V µ ∂

∂xµ
[g ◦ f ◦ ϕ−1(x)] (A.9)

or taking g = yν : W ν = V µ ∂
∂xµ y

ν(x) =: V µJ since J = ∂yν(x)
∂xµ is the Jacobian of

f .

Definition A.12. The pullback f∗ : T ∗
f(p)N → T ∗

pM is induced by f , in the sense

that if V ∈ TpM and ω ∈ T ∗
f(p)N , the pullback of ω by f∗ is defined by:

〈f∗ω, V 〉 = 〈ω, f∗N〉 (A.10)

Remark A.13. • The pullback map f∗ naturally extends to (0, r)-tensors.

• The differential map f∗ naturally extends to (q, 0)-tensors.

• There is no natural extension of those maps to tensors of mixed type (ie:

(q, r)-tensors, q ≥ 1, r ≥ 1), unless f is a diffeomorphism. △

A.3 Submanifolds

Definition A.14. [25] Let f :M → N , f ∈ C∞(M), and dimM ≤ dimN .

• f is an immersion of M into N if f∗ : TpM → Tf(p)N is an injection, ie:

rankf∗ = dimM .

• f is an embedding if f is an injection and an immersion. f(M) is then

called a submanifold of N .

Definition A.15. [24] A hypersurface is a submanifold of codimension 1.
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A.4 Flows & Lie derivatives

A.4.1 Vector & Tensor fields

Definition A.16. [25] A vector field is a smooth assignment of vectors to each

point of M . In other words, X is a vector field if X(f) ∈ C∞(M) for any

f ∈ C∞(M). Define χ(M) := {X : X is a vector field on M}.

Remark A.17. Xx denotes the vector field evaluated at x ∈M . △

Definition A.18. [25] Similarly, a (q, r)-tensor field is a smooth assignment

of (q, r)-tensors to each point of M . Define T q,r(M) := {T : T is a (q, r) −
tensor field on M}.

A.4.2 Flows

Let X = Xµ∂µ be a vector field in M .

Definition A.19. [25] An integral curve x(t) of X is a curve onM , whose tangent

vector at x(t) is Xx. In local coordinates:

dxµ

dt
= Xµ(x(t)) (A.11)

In other words, solving Equation A.11 gives the integral curves of X: existence

and uniqueness results for such ODEs guarantee that ∃! local solution, provided
that xµ0 = xµ(0). Moreover, for compact M , the integral curves are known to

exist for all t ∈ R. [25]

Let σ(t, x0) be an integral curve of X passing through the point x0 at t = 0.

Then it satisfies

d

dt
σµ(t, x0) = Xµ(σµ(t, x0)) σµ(0, x0) = xµ0 (A.12)

Definition A.20. The map σ : R×M →M is called a flow generated by X.
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A.4.3 Lie derivatives

Let σ(t, x) and τ(t, x) be two flows generated by the vector fields X and Y :

dσµ(s, x)

ds
= Xµ(σ(s, x))

dτµ(t, x)

dt
= Y µ(τ(t, x)) (A.13)

Suppose we wish to evaluate the change of the vector field Y along σ(s, x). This

implies that we must compare the vector Y at a point x and at a nearby point

x′ = σε(x). For the difference of those two vectors to be well-defined, they must

belong to the same tangent space, so that Y |σε(x) first has to pushforwarded by

the map (σ−ε)∗.

Definition A.21. The Lie derivative of a vector field Y along the flow σ of X is

defined by

LXY = lim
ε→0

1

ε
[(σ−ε)∗Y |σε(x) − Y |x] (A.14)

Definition A.22. Let f ∈ C∞(M), then the Lie bracket [X,Y ] is defined s.t.

[X,Y ]f = X[Y [f ]]− Y [X[f ]].

Claim A.23.

LXY = (Xµ∂µY
ν − Y µ∂µX

ν)eν = [X,Y ] (A.15)

Provide proof?

Remark A.24. Geometrically, the Lie bracket shows the non-commutativity of

two flows. Indeed, let ε and δ be small parameters, then it can be shown

τµ(δ, σ(ε, x)) − σµ(ε, τ(δ, x)) = εδ[X,Y ]µ (A.16)

△

Definition A.25. Similarly, we may define the Lie derivative of a dual vector ω

along X as:

LXω = lim
ε→0

1

ε

[
(σε)

∗ω|σε(x) − ωx
]

(A.17)
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which yields

LXω = (Xν∂νωµ + ∂µ (X
νωµ)) dx

µ (A.18)

The Lie derivative of f ∈ C∞(M) along the flow generated by X is the usual

directional derivative of f along X: LXf = X[f ].

Proposition A.26. The Lie derivative satisfies

LX(t1 + t2) = LXt1 + LXt2 (A.19)

where t1 and t2 are tensor fields of the same type and

LX(t1 ⊗ t2) = (LXt1)⊗ t2 + t1 ⊗ (LXt2) (A.20)

where t1 and t2 are tensor fields of arbitrary types.

From Definitions A.21 & A.25, and Proposition A.26, one can now get the Lie

derivative for an arbitrary tensor:

LXT
µ1µ2...µk

ν1ν2...νl

= XσDσT
µ1µ2...µk

ν1ν2...νl

−(DλV
µ1)T λµ2...µk ν1ν2...νl − (DλV

µ2)T µ1λ...µk ν1ν2...νl − . . .

+(Dν1V
λ)T µ1µ2...µk λν2...νl + (Dν2V

λ)T µ1µ2...µk ν1λ...νl + . . . (A.21)

A.5 The metric

Definition A.27. [9] A pseudo-Riemannian metric g onM is a symmetric (0, 2)-

tensor field on M s.t. the quadratic form it defines on vectors is non-degenerate.

In local coordinates, gp = gµν(p)dx
µ ⊗ dxν at p ∈ M , which is usually abbre-

viated as gµνdx
µdxν . Therefore, it is common to regard (gµν) as a matrix. If it

has maximal rank, its inverse is defined, and satisfies gµνg
νλ = gλνgνµ = δλµ. We



A.6. COVARIANT DIFFERENTIATION 71

denote g ≡ det(gµν). The non-degeneracy condition in the above definition then

says that for any chart, g(X,X) = gµνX
µXν is s.t. g does not vanish. [25]

Since gµν is a symmetric matrix, its eigenvalues are real.

Definition A.28. If there are i positive and j negative eigenvalues, the pair (i, j)

is called the index or the signature of the metric.

The definition of a pseudo-Riemannian metric is very general. In the Cauchy

problem, here are two kinds of metric we are interested in:

Definition A.29. g is a Riemannian metric if the quadratic form it defines is

positive-definite, ie: g(U,U) ≥ 0, with equality holding iff U = 0. It follows that

it has index (i, 0).

Definition A.30. g is a Lorentzian metric if it has index (i, 1).

Let M ⊂ N be a submanifold, (N, g) be a pseudo-Riemannian manifold, and

g have constant index over N . If f : M → N is the embedding which induces

the submanifold structure of M , then h = f∗g is the induced metric on M , with

components given by [25]:

hab = gαβ(f(x))
∂fα(x)

∂xa
∂fβ(x)

∂xb
(A.22)

A.6 Covariant differentiation

Heuristically, we would like to have an analog of the directional derivative for

tensors. But in order to be able to compare a tensor from one point on the

manifold to another, we must transport it on the manifold. This requires the

introduction of an extra-structure [13]:

Definition A.31. An affine connection ∇ is a map ∇ : χ(M)× χ(M) → χ(M),

∇ : (X,Y ) 7→ ∇XY which satisfies:
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• ∇fX+gY Z = f∇XZ + g∇Y Z

• ∇X(Y + Z) = ∇XY +∇XZ

• ∇X(fY ) = X[f ]Y + f∇XY

for X,Y,Z ∈ χ(M), and f, g ∈ C∞(M).

The connection allows us to obtain a new kind of differentiation:

Proposition A.32. [13] Let M be a differentiable manifold with an affine con-

nection ∇. Let V andW be vector fields along the differentiable curve c : I →M ,

and f ∈ C1(I). Then ∃! correspondence which associates to V another vector field

DV
dt along c, called the covariant derivative of V along c such that:

• D
dt(V +W ) = DV

dt + DW
dt

• D
dt(fV ) = df

dtV + f DVdt

• If V is induced by a vector field Y , ie: V (t) = Y (c(t)), then DV
dt = ∇dc/dtY .

A.7 The Levi-Civita connection

The Levi-Civita connection is the only connection that satisfies some very specific

properties, which we now describe. In the main body of the thesis, ∇ is always

assumed to be a Levi-Civita connection.

Definition A.33. Let ∇ be an affine connection on M . A vector field V along a

curve c : I →M is called parallel when DV
dt = 0, for all t ∈ I.

Definition A.34. Let (M,g) be a Riemannian manifold with an affine connection

∇. A connection is said to be compatible with g when for any smooth curve c

and any pair of parallel vector fields X and Y along c, we have g(X,Y ) = Cst.

Proposition A.35 and Corollary A.36 provide alternate definitions of compat-

ibility.
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Proposition A.35. Let (M,g) be a Riemannian manifold. A connection ∇
on M is compatible with a metric iff for any vector fields V and W along the

differentiable curve c : I →M we have

d

dt
g(V,W ) = g(

DV

dt
,W ) + g(V,

DW

dt
) t ∈ I (A.23)

Corollary A.36. A connection ∇ on a Riemannian manifold M is compatible

with the metric iff Xg(Y,Z) = g(∇XY,Z) + g(Y,∇XZ) ∀ X,Y,Z ∈ χ(M)

Definition A.37. An affine connection ∇ is said to be symmetric when

∇XY −∇YX = [X,Y ] ∀ X,Y ∈ χ(M) (A.24)

Theorem A.38. Given a Riemannian manifold M , ∃! affine connection ∇ on M

satisfying the conditions:

• ∇ is symmetric,

• ∇ is compatible with the Riemannian metric.

∇ is then referred to as the Levi-Civita or the Riemannian connection.

The following provide pratical ways of working with connections, and in par-

ticular with the Levi-Civita connection:

Definition A.39. [25] Define m3 functions Γλ νµ by ∇eνeµ = eλΓ
λ
νµ called the

connection coefficients or the Christoffel symbols of the connection. They specify

how the basis vectors change from point to point.

Let X = Xµeµ and Y = Y νeν , then

∇XY = Xµ∇eµ(Y
νeν) = XµY ν∇eµeν +Xµeµ(Y

ν)eν (A.25)

=
(

XµY νΓλ µν +Xµeµ(Y
λ)
)

eλ (A.26)

Claim A.40. If ∇ is symmetric, then Γk ij = Γk ji.
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The Christoffel symbols of the Levi-Civita connection can be computed in

local coordinates as:

Γm ij =
1

2
(∂igjk + ∂jgki − ∂kgij) g

km (A.27)

Given a vector field X, we may view ∇X as an operator acting on vector fields.

We can also define its action on C∞-functions by remembering that since it has the

meaning of a directional derivative, the most natural definition is ∇Xf := X[f ].

Then ∇X satisfies the Leibnitz rule, since

∇X(fY ) = X[f ]Y + f∇XY = (∇Xf)Y + f∇XY (A.28)

We may require that ∇X follows the Leibnitz rule when it acts on tensors of

arbitrary type, ie: ∇X(T1 ⊗ T2) = (∇XT1)⊗ T2 + T1 ⊗ (∇XT2).

Let ω be a dual vector field on M and Y a vector field on M . Using that

〈ω, Y 〉 ∈ C∞(M), we can compute ∇Xω:

X [〈 ω, Y 〉] = ∇X (〈 ω, Y 〉) = 〈∇Xω, Y 〉+ 〈ω,∇XY 〉 (A.29)

⇐⇒ (∇Xω)ν = Xµ∂µων −XµΓλ µνωλ (A.30)

We can now generalize these results:

∇eνT
λ1...λp

µ1...µq = ∂νT
λ1...λp

µ1...µq + Γλ1
νκT

κλ2...λp
µ1...µq + . . .

+Γλp
νκT

λ1...λp−1κ
µ1...µq − Γκ

νµ1T
λ1...λp

κµ2...µq − . . .− Γκ
νµqT

λ1...λp
µ1...µq−1κ (A.31)

A.8 Curvature

In this appendix and the next, we describe some very important objects that

live on manifolds, and characterize them geometrically. We follow the rather old-

fashioned treatment of [13], which hopefully gives a more complete mathematical

picture than most modern presentations.
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Definition A.41. The curvature R of a Riemannian manifold (M,g) is a cor-

respondence that associates to every pair X,Y ∈ χ(M) a mapping R(X,Y ) :

χ(M) → χ(M) given by

R(X,Y )Z = ∇Y∇XZ −∇X∇Y Z +∇[X,Y ]Z Z ∈ χ(M) (A.32)

where ∇ is the Levi-Civita connection on M .

One way to think of R is as a measure of how much M deviates from being

Euclidian. Since in local coordinates R(ei, ej)ek = (∇ej∇ei −∇ei∇ej )ek, we may

also think of R as measuring the non-commutativity of the covariant derivative.

Proposition A.42. We have the following identities, the first of which is known

as Bianchi identity :

R(X,Y )Z +R(Y,Z)X +R(Z,X)Y = 0 ⇐⇒ Rijks +Rjkis +Rkijs = 0

g(R(X,Y )Z, T ) = −g(R(Y,X)Z, T ) Rijks = −Rjiks
g(R(X,Y )Z, T ) = −g(R(X,Y )T,Z) Rijks = −Rijsk
g(R(X,Y )Z, T ) = g(R(Z, T )X,Y ) Rijks = Rksij

(A.33)

Definition A.43. Consider R : χ(M)× χ(M)× χ(M)× χ(M) → D(M), where

D(M) := {f : f ∈ C∞(M)}, defined by R : (X,Y,Z,W ) 7→ g(R(X,Y )Z,W ).

This is the curvature or Riemann tensor.

Tracing over the curvature tensor still provides some useful information on the

geometry of the manifold:

Given a vector space V , define, for x, y ∈ V :

|x ∧ y| :=
√

|x|2|y|2 − 〈x, y〉2 (A.34)

Definition A.44. Let p ∈ M and σ ⊂ TpM be a two-dimensional subspace of

the tangent space TpM . Let X,Y ∈ σ be two linearly independent vectors. Then

the real number

K(σ) = K(X,Y ) =
R(X,Y,X, Y )

|X ∧ Y |2 (A.35)
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(which does not depend on the choice of the vectors X,Y ∈ σ) is called the

sectional curvature of σ at p.

Definition A.45. Let X = Zn be a unit vector in TpM ; we take an orthonormal

basis {Z1, Z2, . . . , Zn−1} of the hyperplane in TpM orthogonal to X and consider:

Ricp(X) =
1

n− 1

n−1∑

i=1

R(X,Zi,X,Zi) (A.36)

R(p) =
1

n

n∑

j=1

Ricp(Zj) =
1

n(n− 1)

n−1∑

i=1

n∑

j=1

R(Zi, Zj , Zi, Zj) (A.37)

Those expressions define the Ricci curvature in the direction x and the scalar

curvature or the Ricci scalar at p, respectively.

Claim A.46. These expressions do not depend on the choice of the corresponding

orthonormal basis.

Proof. The proof makes use of a bilinear form defined on TpM as follows: Let

X,Y ∈ TpM , and put Q(X,Y ) = (trace of the mapping Z 7→ R(X,Z)Y ). By

definition, Q is symmetric, and satisfies

Q(X,X) = (n− 1)Ricp(X) (A.38)
n∑

j=1

Q(Zj , Zj) = (n− 1)

n∑

j=1

Ricp(Zj) = n(n− 1)R(p) (A.39)

which shows that Ricp(X) and K(p) are defined intrinsically.

Definition A.47. The bilinear form 1
n−1Q is the Ricci tensor, denoted as Ric.

In local coordinates: Ricik = Rj ijk = gsjRsijk and R = 1
n(n−1)g

ikRicik.

A.9 The extrinsic curvature

Let f :M → M̃ be an immersion, with (M,g) a Riemannian manifold, dimM = m

and dimM̃ = m+ n = k. For each p ∈M , the inner product on TpM̃ splits TpM̃
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into the direct sum TpM̃ = TpM ⊕ (TpM)⊥ where (TpM)⊥ is the orthogonal

complement of TpM in TpM̃ . If v ∈ TpM̃ , p ∈M , we can write

v = vT + vN with vT ∈ TpM, vN ∈ (TpM)⊥ (A.40)

ie: we can decompose v into tangential and normal components. Let us denote

by ∇̃ and ∇ the Riemannian connections on M̃ and M , respectively. If X and Y

are local vector fields on M , and X̃ and Ỹ are local extensions on M̃ , define

∇XY := (∇̃X̃ Ỹ )T B(X,Y ) := ∇̃X̃ Ỹ −∇XY (A.41)

Claim A.48. B(X,Y ) is a local vector field on M̄ normal to M , and does not

depend on the extensions X̃ , Ỹ . Moreover, B is bilinear and symmetric.

Proof. Let X̃1 and Ỹ1 be other extensions of X and Y , then

(∇̃X̃ Ỹ −∇XY )− (∇̃X̃1
Ỹ −∇XY ) = ∇̃X̃−X̃1

Ỹ = 0 (A.42)

(∇̃X̃ Ỹ −∇XY )− (∇̃X̃ Ỹ1 −∇XY ) = ∇̃X̃(Ỹ − Ỹ1) = 0 (A.43)

since X̃ − X̃1 = 0 and Ỹ − Ỹ1 = 0 on M . Bilinearity and symmetry easily follow

from the definitions.

Definition A.49. Let p ∈M and η ∈ (TpM)⊥, and define the symmetric bilinear

form: Hη : TpM × TpM → R by Hη(X,Y ) = g(B(X,Y ), η), X,Y ∈ TpM .

The quadratic form defined on TpM×TpM by Hη(X,Y ) is called the extrinsic

curvature of f at p along the normal vector η.

Remark A.50. Note that heuristically, B(X,Y ) has no components in the embed-

ded manifold. The extrinsic curvature effects the projection of B(X,Y ) onto some

vector, normal to the embedded manifold. This motivates the representation of

the extrinsic curvature in local coordinates used in the next appendix. △
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The bilinear mapping Hη is associated to a linear self-adjoint operator Sη :

TpM → TpM by

g(Sη(X), Y ) = Hη(X,Y ) = g(B(X,Y ), η) (A.44)

Note that in the special case where f : Mn → M̃n+1, ie: f(M) ⊂ M̃ is

a hypersurface, we may choose as our basis of TpM the eigenbasis {e1, . . . , en},
where Sη(ei) = λiei. We then define the mean curvature of f by 1

n(λ1+ . . .+λn),

which is the trace of Sη.

A.10 The Gauss & Codazzi equations

Given an isometric immersion, let us denote the space of differentiable vector

fields normal to M by χ(M)⊥. The extrinsic curvature of the immersion can

then be considered as a tensor B : χ(M) × χ(M) × χ(M)⊥ → R defined by

B(X,Y, η) = g(B(X,Y ), η). This allows us to define the covariant derivative for

this tensor:

(∇̃XB)(Y, Z, η) = X(B(Y, Z, η))−B(∇ZY, Z, η)−B(Y,∇XZ, η)−B(Y, Z,∇⊥

Xη)(A.45)

Proposition A.51. The following equations hold:

R̃(X,Y, Z, T ) = R(X,Y, Z, T )− g(B(Y, T ), B(X,Z)) + g(B(X,T ), B(Y, Z)) (A.46)

R̃(X,Y, Z, η) = (∇̃Y B)(X,Z, η) − (∇̃XB)(Y, Z, η) (A.47)

and are known are the Gauss and Codazzi equations, respectively.



Appendix B

Hypersurfaces in Lorentzian

spacetime

This appendix makes use of the material presented in Appendix A, in the context

of general relativity. Its goal is to introduce the definitions and notations used

when addressing the Einstein constraint equations. We start with a remark:

Remark B.1. Although all the definitions in Appendices A.6 - A.10 were given

on Riemannian manifolds, equivalent definitions hold when the metric is pseudo-

Riemannian, and in particular, Lorentzian. △

Definition B.2. If (M,g) is Lorentzian, the elements of TpM are divided into

three classes:

• if g(X,X) > 0, X is spacelike

• if g(X,X) = 0, X is lightlike or null

• if g(X,X) < 0, X is timelike

Definition B.3. A vector is called causal if it is timelike or null. A curve is

causal if its tangent vector is everywhere causal. The terminology is due to the

fact that the causal curves are precisely those along which causal influences can

propagate.

79
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B.1 Hypersurfaces

A hypersurface Σ can be represented by giving parametric equations of the form

xα = xα(ya), where ya (a = 1, 2, 3) are coordinates intrinsic to the hypersurface.

The vector ∂αΦ, which is normal to the hypersurface, can be used to define a unit

normal nα such that:

nαnα ≡ ǫ =







−1 if Σ is spacelike

+1 if Σ is timelike
(B.1)

Remark B.4. Since the initial-value problem of general relativity is mostly con-

cerned with spacelike hypersurfaces, we will not treat the special case of null

hypersurfaces, which needs to be handled with a lot of care. For a reference, see

[24]. △

Definition B.5. [26] A spacelike hypersurface is called a Cauchy surface if each

(inextendible) causal curve hits it precisely once.

Remark B.6. Not every spacetime possesses a Cauchy surface. Those which do are

called globally hyperbolic. However, if the strong cosmic censorship hypothesis

is true, then only globally hyperbolic spacetimes are physically significant; other

spacetimes are then just mathematical artefacts. △

B.2 The induced metric

Let (M,g) be a four-dimensional spacetime manifold, and Σ ⊂M a hypersurface.

h, the metric on Σ, is obtained by pulling back g (cf. Appendix A.5), and is given

in local coordinates by hab = gαβe
α
ae
β
b , where the vectors eαa = ∂xα

∂ya are tangent to

curves contained in Σ. The completeness relation for the inverse metric is given

by:

gαβ = ǫnαnβ + habeαae
β
b (B.2)

where hab is the inverse of the induced metric.
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B.3 The extrinsic curvature

We note that an arbitrary tensor T defined on M can always be projected down

to the hypersurface, so that only its tangential components survive. The quantity

that effects the projection is hαβ ≡ habeαae
β
b = gαβ − ǫnαnβ.

Let us now examine how tangent tensor fields are differentiated. For simplicity,

consider the case of a tangent vector field:

Aα = Aaeαa , Aαnα = 0, Aa = Aαe
α
a (B.3)

We want to relate the covariant derivative of Aαβ..., defined with respect to a

connection ∇(g) compatible with gαβ to the covariant derivative of Aab..., defined

in terms of a connection ∇(h) compatible with hab.

We define the intrinsic covariant derivative of Aa to be the projection of

D
(g)
β Aα onto the hypersurface:

Aa|b :=
(

D
(g)
β Aα

)

eαae
β
b (B.4)

Aa|b are the tangential components of the vector
(

D
(g)
β Aα

)

eβb . We would now

like to see whether this vector possesses also a normal component:
(

D
(g)
β Aα

)

eβb

= gαµ

(

D
(g)
β Aµ

)

eβb

= (ǫnαnµ + hameαaemµ)
(

D
(g)
β Aµ

)

eβb using (B.2)

= ǫ
(

nµ

(

D
(g)
β Aµ

)

eβb

)

nα normal

+ham
((

D
(g)
β Aµ

)

eµme
β
b

)

eαa + tangential part

= −ǫ
((

D
(g)
β nµ

)

Aµe
β
b

)

nα + hamAm|be
α
a

∫
by parts & using (B.4)

= Aa|be
α
a − ǫAa

((

D
(g)
β nµ

)

eµae
β
b

)

nα

= Aa|be
α
a − ǫAaKabn

α

where we used a definition of the second fundamental form of the hypersurface Σ

Kab ≡
(

D
(g)
β nα

)

eαae
β
b (B.5)
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Thus, the normal components of
(

D
(g)
β Aα

)

eβb vanish iff Kab vanishes.

Claim B.7. [24] Kab =
1
2 (£ngαβ) e

α
ae
β
b

Proof. Note that applying the formula for the Lie derivative of an arbitrary tensor

(Equation (A.21)) to the metric, we get:

LXgµν = XσDσgµν + (DµX
λ)gλν + (DνX

λ)gµλ = DµVν +DνVµ (B.6)

Using that Kab is symmetric:

Kab =
1

2
(Kab +Kba) =

1

2

(

D
(g)
β nαe

α
ae
β
b +D(g)

α nβe
β
b e
α
a

)

=
1

2

(

D
(g)
β nα +D(g)

α nβ

)

eαae
β
b =

1

2
(Lngαβ) e

α
ae
β
b (B.7)

While h is concerned with the purely intrinsic aspects of a hypersurface’s

geometry, K is concerned with the extrinsic aspects, ie: the way in which the

hypersurface is embedded in the enveloping spacetime manifold. Those tensors

thus provide a complete characterization of the hypersurface.

B.4 The Gauss & Codazzi equations

We would now like to express the intrinsic Riemann tensor Ra bcd in terms of the

Riemann tensor of the four-dimensional manifold, Rγ δαβ , evaluated on Σ. This is

partially done by the Gauss & Codazzi equations (See Equations (A.46) & (A.47)

in Appendix A.10), which in local coordinates read:

Rαβγδe
α
ae
β
b e
γ
c e
δ
d = Rabcd + ǫ (KadKbc −KacKbd) (B.8)

Rµαβγn
µeαae

β
b e
γ
c = Kab|c −Kac|b (B.9)

The missing components areRµανβn
µeαan

νeβb , and these cannot be expressed solely

in terms of hab, Kab, and related quantities.
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Remark B.8. The Mainardi equations make use of the Lie derivative of the ex-

trinsic curvature, and other quantities to express those missing components, but

they are not needed for the initial-value formulation [4]. △

We can use Equations (B.8) & (B.9) to rewrite G ≡ Ric(g) − 1
2R

(g)g. A little

algebra gives:

−2ǫGαβn
αnβ = R(h) + ǫ

(

KabKab − (trhK)2
)

(B.10)

Gαβe
α
an

β = Kb
a|b − ∂a(trhK) (B.11)

where R(h) = habRm amb is the intrinsic Ricci scalar, and (trhK) = Ka
a = habKba

is the trace of K.

Finally, using Einstein’s field equation to rewrite Equations (B.10) & (B.11)

in terms of the energy-momentum tensor, we obtain the Einstein constraint equa-

tions:

R(h) + (trhK)2 −KabKab = 16πρ (B.12)

DbK
ab −Da(trhK) = 8πja (B.13)

where we set ǫ = +1 since the problem is formulated on a Cauchy surface, and

where D = D(h) in the second line.



Appendix C

PDEs on Riemannian

manifolds

To introduce definitions, we endow M with a smooth Riemannian metric e. We

make use of the volume element µe when integrating over M . →֒ denotes a

continuous embedding. Constants are generically denoted by C, and only depend

on their subscript.

C.1 Functional spaces

We first introduce the functional spaces of relevance for the study of existence

and uniqueness of solutions to the constraint equations.

C.1.1 Differentiability class spaces Ck(M, e)

Definition C.1. We use Ck(M,e) to denote the space of k-times continuously

differentiable functions f , or tensor fields of some given type, with finite norm:

||f ||Ck =
∑

|l|≤k

|Dlf | (C.1)
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where | · | is the pointwise norm of tensors with the metric e. For example, for a

continuous function u :M → R, |u| = ||u||C(M,e) = supx∈M |u(x)|, whereas for an
(r, s)-tensor |T | =

(
T a1...arb1...bsTa1...arb1...bs

)1/2
.

C.1.2 Hölder spaces Ck,α(M, e)

Definition C.2. Let f ∈ Ck(M,e). The αth-Hölder semi-norm of f is

[f ]C0,α(M,e) := sup
x,y∈M,x 6=y

{ |f(x)− f(y)|
|x− y|α

}

(C.2)

Ck,α(M,e) is the space of k-times continuously differentiable functions f with

finite Hölder semi-norm:

||f ||Ck,α =
∑

|l|≤k

|Dlf |C(M,e) +
∑

|l|=k

[Dlf ]C0,α (C.3)

where | · | is the pointwise norm of tensors with the metric e. The definition for

tensors of some given type is similar.

Remark C.3. If (M,e) has finite volume, then Lq ⊂ Lp for all p ≤ q. Indeed by

the Hölder inequality it holds that

||u||Lp ≤ (Vol(M,e))1/q
′ ||u||Lq

1

q
+

1

q′
=

1

p
(C.4)

△

Remark C.4. It follows from definitions that for positive integers k and l and for

numbers α, β ∈ (0, 1) such that k+α ≥ l+β, one has that f ∈ Ck,α(Mn) implies

f ∈ C l,β(Mn), and one has ||f ||Cl,β ≤ ||f ||Ck,α . △

Proposition C.5. (Closedness under multiplication) The Hölder spaces as well

as the Ck spaces are closed under multiplication: f, g ∈ Ck,α(M,e) implies that

fg ∈ Ck,α(M,e).



86 APPENDIX C. PDES ON RIEMANNIAN MANIFOLDS

C.1.3 Sobolev spaces W p
s (M, e) and Hs(M, e)

Definition C.6. [9] The Sobolev space W p
s is the space of functions, or tensor

fields of some given type, with Lp integrable weak derivatives of order ≤ s in the

metric e. It is a Banach space with norm:

||f ||W p
s
:=





∫

M

∑

0≤k≤s

|Dkf |pµe





1/p

1 ≤ p <∞ (C.5)

where | · | is the pointwise norm of tensors in the metric e.

For example [17], for a vector field X we have

||X||W p
s

:=

{∫

M

[(

XcXdecd

)p/2
+
(

DaXcDbXdeabecd

)p/2
+ . . .

+
(

Da1 . . . DasDb1 . . . DbsXdea1b1 . . . easbsecd

)p/2
]

µe

}

(C.6)

Remark C.7. [17] While this definition depends explicitly on the choice of the

metric e, one readily verifies that for any pair of C∞ metrics e and ẽ, the corre-

sponding norms || ||(e)
W p
s
and || ||(ẽ)

W p
s
are compatible in the sense that

- for a given vector field X, ||X||(e)
W p
s
exists iff ||X||(ẽ)

W p
s
exists as well,

- there exists a positive pair of constants c1 and c2 such that

c1||X||(e)
W p
s
≤ ||X||(ẽ)

W p
s
≤ c2||X||(e)

W p
s

(C.7)

for every vector field for which these norms exist. Therefore, for practical purposes

(ie: making estimates), the norms are equivalent. △

Definition C.8. We define Hs := W 2
s , which is a Hilbert space, with inner

product (u, v) =
∫

M ua1...amv
a1...am .

Definition C.9. W̄ p
s ⊂ W p

s is the closure of C∞(M), or tensors fields of some

given type, with compact support in M , w.r.t. the norm (C.5).[9]

Remark C.10. It follows from definitions that for any manifold M , if f ∈ W p
k ,

then f ∈W p
l for l ≤ k, and ||f ||W p

l
≤ ||f ||W p

k
. △
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Proposition C.11. If M is closed, let k ≥ 0 be an integer, and p ≥ 1. If

f ∈W p
k (M), then f ∈W q

k (M) for any q s.t. 1 ≤ q ≤ p. Further, ∃ C > 0 (related

to Vol(M,e)) s.t. ∀ f ∈W p
k , ||f ||W q

k
≤ C||f ||W p

k
.

Proposition C.12. (Schauder ring property) LetM be closed, dim(M) = n, and

let k′ ≥ k, k, k′ positive integers, and k′ > n/p for some p ≥ 1. If f ∈ W p
k (M)

and W p
k′(M), then fg ∈W p

k (M).

C.2 Relations between function spaces

The following are very useful to make estimates.

C.2.1 W p
s in Lr and Ck spaces

Proposition C.13. (Embedding property)

1. Let U ⊂ R
n be open. If s > n

p then W p
s →֒ C̄0 (continuous and bounded

functions); and supM |u| ≤ CU ||u||W p
s
. Also W 1

n ∈ C̄0.

2. If s = n
p , then W

p
s →֒ Lq ∀ q s.t. p ≤ q <∞.

3. If s < n
p , then W

p
s →֒ Lq ∀ q s.t. p ≤ q ≤ np

n−sp

In cases 2 and 3, it holds that ||u||Lq ≤ CU ||u||W p
s
.

Corollary C.14. An easy induction shows the continuous embeddings:

W p
s+m ⊂ C̄m if s >

n

p
(C.8)

W p
s+m ⊂W q

m if s <
n

p
, p ≤ q ≤ np

n− sp
(C.9)

Proposition C.15. Let U ⊂ R
n be open. W p

s has the continuous multiplication

property : if s1 + s2 > s+ n
p and s1, s2 ≥ s, then

W p
s1 ×W p

s2 →W p
s by (u, v) 7→ u⊗ v (C.10)

and ||u⊗ v||s ≤ CU ||u||W p
s1
||u||W p

s2
(C.11)

In particular, W p
s is an algebra if s > n

p .
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C.2.2 Sobolev and Hölder spaces

Theorem C.16. (Sobolev embedding theorem) [17] Let n ≥ 1, k ≥ 0 and p ≥ 1.

If f ∈ W p
k (M), then for any integer l and any number α ∈ (0, 1) which satisfy

l + α < k − n/p one has f ∈ C l,α(M) and f ∈ C l(M). Further, ∃ C > 0 s.t. for

f ∈W p
k (M), one has ||f ||Cl,α ≤ C||f ||W p

k
.

Theorem C.17. (‘converse’ of Sobolev embedding theorem, on manifold with

finite measure) If for any integers k ≥ 0 and any α ∈ (0, 1), one has f ∈ Ck,α(M),

then for any p ≥ 1, one has f ∈ Hp
k(M). Further, ∃ a constant C > 0 such that

∀ f ∈ Ck+α(M), ||f ||Hp
k
≤ C||f ||Ck,α .

C.3 Elliptic operators

[9] A linear differential operator of order m from sections u of a tensor bundle E

over (M,e) (ie: u is a tensor field) into sections of another such bundle F reads

Lu ≡
m∑

k=0

akD
ku (C.12)

with ak a linear map from tensor fields to tensor fields, given also by tensor fields

over M . Note that this expression is not in local coordinates: in particular, Dk

here means ‘apply D k times’.

Definition C.18. [9] The principal symbol of the operator L at a point p ∈ M ,

for a dual vector ξ ∈ T ∗
pM , is the linear map σ(ξ) from Ep to Fp (tensor fields

evaluated at p) determined by the contraction of am with (⊗ξ)m. The operator

is said to be elliptic if for each p ∈ M and ξ ∈ T ∗
pM , its principal symbol is an

isomorphism from Ep onto Fp for all ξ 6= 0.

Let e now be uniformly equivalent in each chart to the Euclidian metric, and

M be compact.
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Theorem C.19. [9] Let Lu ≡∑2
k=0 akD

ku be elliptic, with coefficients s.t. a2 ∈
W p

2 , a1 ∈ W p
1 , and a0 ∈ Lp, where p > n

2 . Then L is a continuous mapping

W q
2 → Lq for any 1 < q ≤ p.

Proof. • By Sobolev embedding theorem, a2 ∈ W p
2 ∈ C0,α with 0 < α ≤ 2 − n

p ,

so that if u ∈W q
2 , then a2D

2u ∈ Lq.

• By Sobolev embedding theorem, if p < n, q < n, p ≤ p1 ≤ np
n−p and

q ≤ q1 ≤ nq
n−q , then a1 ∈ Lp1 and Du ∈ Lq1 . Then, by Hölder inequality,

a1Du ∈ Lr with

1

r
=

1

p1
+

1

q1
≥ n(p+ q)− 2pq

npq
=: s (C.13)

Therefore, if p ≥ n
2 , then for any q, we have a1Du ∈ Lq if s ≥ 1

q .

• Assume a0 ∈ Lp and u ∈W q
2 , then u ∈ Lq2 , with

q2 = +∞ if q >
n

2
q2 arb. large if q2 =

n

2

1

q2
=

1

q
− 2

n
if q <

n

2

So a0u ∈ Lr with 1
r = 1

p +
1
q2
, hence a0u ∈ Lq if q ≤ p, p > n

2 .

Theorem C.20. [9] Under the hypotheses of the above theorem, it holds that

1. The operator L :W q
2 → Lq has finite dimensional kernel and closed range.

2. If L is injective on W q
2 , then there is a number CL such that for each u in

W q
2 the following inequality holds: ||u||W q

2
≤ CL||Lu||Lq

3. If the formal adjoint L∗ of L satisfies the same hypothesis as L and is

injective, then L is surjective from W q
2 onto Lq, and hence is an isomorphism if

also injective.

Proof. 1. Recall that a Banach space is finite dimensional if the unit sphere is

a compact subset; or equivalently, if every sequence of elements of norm 1 has

a convergent subsequence. Consider a sequence un ∈ W q
2 , with ||un||W q

2
= 1.

The unit ball of W q
2 is compact in the W q

1 topology. The sequence un admits

therefore a subsequence, still denoted un, which converges in the W q
1 topology. If
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un ∈ Ker(L) ∀n, it satisfies

||un − um||W q
2
≤ CL||un − um||W q

1
(C.14)

(stated without proof) which shows that the subsequence converges also in the

original topology of W q
2 . Hence dim(Ker(L)) <∞.

Denote by E a vector space complementary to Ker(L): E is closed since Ker(L)

is finite dimensional. Suppose there is no constant C s.t. ||u||W q
2
≤ C||Lu||Lq

∀u ∈ E. Then ∃ a sequence {un} ⊂ E s.t. ||un||W q
2
= 1 and ||Lun||W q

1
tends to 0;

hence Lun admits a Cauchy subsequence Lun in W q
1 . The subsequence un is then

a Cauchy sequence in W q
2 by the above inequality; it converges to some function

ū ∈ E, with ||ū||W q
2
= 1. By continuity Lū = 0. The existence of ū contradicts

the hypothesis that E is complementary to the kernel of L. The inequality (C.14)

shows that the range of L as mapping from E, equivalently as mapping from W q
2 ,

is a closed subspace of Lq.

2. This is a particular case of inequality (C.14) when Ker(L) = {0}.
3. Let φ, ψ ∈ C∞(M) be arbitrary. By definition:

∫

M Lψφµe =
∫

M ψL∗φµe.

To show that the range of L : W q
2 → Lq is the entire space Lq, it is sufficient

to show that if
∫

M Lψφµe = 0 ∀ψ, then φ ≡ 0, because the closure of Lψ in Lq,

that is the range of Lu, u ∈W q
2 , is then identical to Lq, since Lq is the dual of a

space Lq
′

, and C∞ is dense in Lq
′

since M is compact. This is equivalent to the

injectivity of L∗, which says that L∗φ = 0 ⇒ φ = 0.

C.3.1 ∆ and ∆conf

[17] In the conformal formulation, the constraint equations involve two differential

operators: the Laplacian ∆ and the conformal Laplacian ∆conf , defined as:

∆f = DaD
af f ∈ C∞(M) (C.15)

(∆confW )b = Da (LconfW )ab W ∈ χ(M) (C.16)

where (LconfW )ab = DaW b +DbW a − 2

n
γabDcW

c (C.17)
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If we work on a closed manifold Σ, both operators are elliptic, self-adjoint and

second-order. We can therefore use Theorems C.19 & C.20:

Theorem C.21. [9] Suppose that γ ∈W p
2 is properly Riemannian, p > 3

2 , q > 1,

6
5 ≤ q ≤ p. Then:

1. The kernel of ∆conf in the space of W p
2 vector fields is the space of W q

2

conformal Killing vector fields.

2. If (Σ, γ) admits no W q
2 conformal Killing vector field, then ∆conf is an

isomorphism from W q
2 onto Lq.

Proof. 1. On a compact manifold, integration by parts shows that the following

identity holds for smooth vector fields X:
∫

M
Xj (∆confX)j µγ ≡

∫

M
XjDi

(

DiXj +DjXi − 2

3
γijDkX

k

)

µγ

≡ −1

2

∫

M

(

DiXj +DjXi − 2

3
γijDkX

k

)(

DiXj +DjXi −
2

3
γijDlX

l

)

µγ

(C.18)

Hence if ∆confX = 0 for W p
2 vector fields,

DiXj +DjXi −
2

n
γijDlX

l = 0 (C.19)

2. Since ∆conf is self-adjoint, the results follow from Theorem C.20.

Proposition C.22. (Existence, uniqueness and regularity) [17] If (Σ, γ) has no

conformal Killing fields (ie: Ker(∆conf) = {0}) and γ ∈ Ck+2 with k ≥ 0 (so the

coefficients aij, ai, a of ∆conf are all Ck) then ∃! solution to ∆confW = Z for any

Z ∈W p
k (Σ) so long as p ≥ 2. Moreover W ∈W p

k+2(Σ).

However, the hypothesis that (Σ, γ) has no conformal Killing fields can be re-

laxed. For smooth metrics, we have a similar existence theorem, and the estimate

follows even in the presence of conformal Killing fields, so long as we take the RHS

to be L2 orthogonal to the subspace of conformal Killing fields. This is shown in

[18], where they consider the model equation Da(LW )ab = Jb.
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Lemma C.23. Let Σ be a closed manifold and let γ be a smooth Riemannian

metric on Σ. If the 1-form field Jb is continuous on Σ and satisfies the condition
∫

Σ V
bJb = 0 for any conformal Killing field V of (Σ, γ), then there exists a solution

W of the model equation, and every such solution satisfies |LW (x)| ≤ C maxΣ|J |.

Proof. The condition
∫

Σ V
bJb = 0 for any conformal Killing field V of (Σ, γ) is

equivalent to saying that Jb is L
2-orthogonal to Ker(∆conf). The existence result

then follows from standard elliptic theory.

Lastly, we use Theorems C.19 & C.20 to make statements about Lψ = ρ where

L = aijDiDj + aiDi + a and ρ is some specified function or tensor field. Those

are used in particular in Section 3.3

Proposition C.24. (Sobolev norm of the solution) [17] For any given aij, ai,

a ∈ Ck(Σ) with k ≥ 0, ∃ constants C1 and C2 (generally depending upon aij ,

ai and a) s.t. ∀ q ∈ W p
k (Σ) for which a solution exists, one has ||ψ||W p

k+2
≤

C1||q||W p
k
+C2||ψ||L1 . Moreover, if ψ is orthogonal to Ker(L) or if Ker(L) = {0},

then one may replace the previous inequality by ||ψ||W p
k+2

≤ C3||q||W p
k
for some

constant C3. Generally, C1, C2 and C3 depend upon aij , ai and a.

Proposition C.25. (Hölder norm of the solution) [17] For the Hölder case: For

aij, ai, a ∈ Ck(Σ3) with k ≥ 0, there exist constants C1 and C2 such that

for any q ∈ Ck,α(Σ3) for which a solution exists (with 0 < α < 1), one has

||ψ||Ck+2,α ≤ C1||q||Ck,α + C2||ψ||C0 . And, if ψ is orthogonal to Ker(L) or if

Ker(L) = {0} then one has instead ||ψ||Ck+2,α ≤ C3||q||Ck,α .

C.3.2 Maximum principles

The maximum principle is a standard result for elliptic operators. For practical

purposes, we state here several versions, following [16]. Let ψ ∈ C2(M)
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Version 1: If ψ satisfies either ∆ψ ≤ 0 or ∆ψ ≥ 0, then ψ must be a constant.

Hence there is no solutions to the equation ∆ψ = F (x, ψ) with F (x, ψ) ≥ 0 or

F (x, ψ) ≤ 0, unless, in fact F (x, ψ) = 0.

Version 2: Let f :M → R be a positive definite (f(x) > 0) function.

If −∆ψ + fψ ≥ 0 then ψ ≥ 0. If −∆ψ + fψ ≥ 0, 6≡ 0 then ψ > 0.

If −∆ψ + fψ ≤ 0 then ψ ≤ 0. If −∆ψ + fψ ≤ 0, 6≡ 0 then ψ < 0.

Version 3: Let µ and κ be positive constants. If −∆ψ+µψ ≤ κ, then ψ(x) ≤ κ
µ .

C.3.3 The sub and super solution theorem

One of the most important tools used to prove existence of solution to the Lich-

nerowicz equation is the sub and super solution method. We prove it here in

detail, following [16].

Proposition C.26. Let Σ be closed manifold. Let f : Σ × R
+ → R be in

C1(Σ× R). Assume that ∃ φ− : Σ → R
+ and φ− : Σ → R

+ s.t. for p > 3:

i) φ−, φ+ ∈W p
2 (Σ) ii) 0 < φ−(x) ≤ φ+(x) ∀ x ∈ Σ

iii) ∇2φ− ≥ f(x, φ−) iv) ∇2φ+ ≤ f(x, φ+)

Then ∃ a function φ : Σ → R
+ s.t.:

(a) φ ∈ C2,α ∀ α ∈ (1− 3

p
) (b) φ−(x) ≤ φ(x) ≤ φ+(x) (c) ∇2φ = f(x, φ)

Proof. The basic idea of the proof of this result is to use φ− and φ+ to construct a

sequence of functions {φn} and to show that this sequence converges to a solution

of ∇2φ = f(x, φ). First note that by Sobolev embedding theorem, if h ∈W p
k (M

n)

and if k−n/p > m+α, m ∈ N, α ∈ (0, 1), then h ∈ C1,α(Σ) for α ∈ (0, 1− 3/p).

Step 1: Consider ∂
∂sf(x, s) on the compact set D := Σ× [minΣ φ−,maxΣ φ+].

Let ρ ∈ R
+ be s.t.: ρ − ∂

∂sf(x, s) > 0 on D, and define L := −∇2 + ρ and
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F (x, s) := −f(x, s) + ρs so that ∂
∂sF (x, s) > 0 on D. Note that if Lψ ≥ 0, then

by the maximum principle ψ ≥ 0 on Σ.

Step 2: Consider the sequence of PDE

Lφn+1 = F (x, φn) Lφ1 = F (x, φ+) (C.20)

Claim: The {φn} exists, in W p
3 (Σ), and satisfies:

φ+(x) ≥ φ1(x) ≥ φ2(x) ≥ . . . ≥ φj(x) ≥ φj+1(x) ≥ . . . ≥ φ−(x) (C.21)

Proof of claim: Since L is self-adjoint, it has trivial kernel. Therefore, Equa-

tions (C.20) have unique solutions, thus defining the sequence {φn}. Since f ∈ C1

on D, so is F , and since φ+ ∈ C1 on Σ, F (x, φ+(x)) ∈ C1 on Σ. The compactness

of Σ then implies that F (x, φ+(x)) ∈ W p
1 (Σ). Hence we may show inductively

that φn ∈W p
3 (Σ). To show that φ1(x) ≤ φ+(x), we calculate

L(φ+ − φ1) ≥ F (x, φ+)− F (x, φ+) = 0

max. principle
︷︸︸︷
=⇒ φ+(x)− φ1(x) ≥ 0 (C.22)

Similarly

L(φ1 − φ2) = F (x, φ+)− F (x, φ1) ≥ 0 =⇒ φ1(x)− φ2(x) ≥ 0 (C.23)

L(φj − φj+1) = F (x, φj−1)− F (x, φj−2) ≥ 0 =⇒ φj(x)− φj+1(x) ≥ 0 (C.24)

We show that φj(x) ≥ φ−(x) inductively. For j = 1:

L(φ1 − φ−) ≥ F (x, φ+)− F (x, φ−) ≥ 0 =⇒ φ1(x) ≥ φ−(x) (C.25)

Then if φj−1(x) ≥ φ−(x)

L(φj − φ−) ≥ F (x, φj−1)− F (x, φj) ≥ 0 =⇒ φj(x) ≥ φ−(x) (C.26)

q.e.d. Claim

Step 3: From standard elliptic estimates results, we have

||φn||W p
2
≤ a1||Lφn||W p

0
= a1||F (x, φn−1)||W p

0
≤ ζ (C.27)
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for some constant a1, and where in the last inequality, we used that F ∈ C1(D),

so that ζ is a fixed constant, independent of n. By Sobolev embedding theorem:

||φn||C1 ≤ a2||φn||W p
2
, for some constant a2. Since we have a uniform bound on

the first derivative of the functions in {φn}, equicontinuity of the sequence follows.

Since we previously showed that {φn} is bounded, it follows from Arzela-Ascoli

theorem that {φn} has a uniformly converging (in C0) subsequence. From the

monotonicity of the sequence, we conclude that {φn} itself converges uniformly.

Denote by φ∞ the limit function. Then φ−(x) ≤ φ∞(x) ≤ φ+(x).

Step 4: It remains to show that φ∞(x) is a solution of ∇2φ = f(x, φ), and is

in C2,α(Σ). We do this via a series of three bootstrap claims:

Claim A: φ∞ ∈W p
2 (Σ) ⊂ C1,α(Σ).

Proof of Claim A: For some positive constant a3 and a4, we have:

||φl − φj ||W p
2

≤ a3||L(φl − φj ||W p
0
= a3||F (x, φl−1)− F (x, φj−1)||W p

0
(C.28)

≤ a4||F (x, φl−1)− F (x, φj−1)||C0 (C.29)

(Last inequality is because Σ is compact, and hence has finite measure. See

Remark C.3.) Therefore, {φn} is a Cauchy sequence in W p
2 , which is a complete

space. It follows that {φn} converges to some limit, which has to be the same

as in C0, namely φ∞(x). By Sobolev embedding theorem, since 2 − 3/p > 1,

φ∞ ∈ C1,α for small α ∈ (0, 1 − 3/p). q.e.d. Claim A

Claim B: φ∞ ∈ C2,α(Σ)

Proof of Claim B: For some positive constant a5, we have:

||φl − φj ||C2,α ≤ a5||L(φl − φj ||C0,α = a5||F (x, φl−1)− F (x, φj−1)||C0,α (C.30)

Since F ∈ C1, and {φn} converges in C1, {φn} is a Cauchy sequence in C2,α.

Since C2,α is complete, {φn} converges in C2,α, and φ∞ ∈ C2,α. q.e.d. Claim B

Claim C: φ∞ is a solution of ∇2φ∞ = f(x, φ∞(x)).
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Proof of Claim C: Since φ∞ is twice differentiable, all we need to verify is that

φ∞ is a weak solution of this equation. Consider the continuous map

(L− F ) :W p
s+2(Σ) →W p

s (Σ) ψ 7→ Lψ − F (x, ψ) s ≤ 2 (C.31)

Since {φn} converges to φ∞ in W p
2 (Σ), it follows that {Lφn−F (x, φn)} converges

to Lφ∞ − F (x, φ∞) in W p
0 . We now calculate

||Lφ∞ − F (x, φ∞)||W p
0

= lim
n→0

||Lφn − F (x, φn)||W p
0

(C.32)

= lim
n→0

||F (x, φn−1)− F (x, φn)||W p
0

(C.33)

≤ a6 lim
n→0

||F (x, φn−1)− F (x, φn)||C0 = 0 (C.34)

Hence φ∞ is a weak, and therefore a strong solution of ∇2φ∞ = f(x, φ∞(x)).

q.e.d. Claim C



Appendix D

Conformal methods

D.1 Isometries

Definition D.1. [25] Let (M,g) be a pseudo-Riemannian manifold. A diffeomor-

phism f :M →M is an isometry if it preserves the metric

f∗gf(p) = gp ⇐⇒ gf(p)(f∗X, f∗Y ) = gp(X,Y ) X,Y ∈ TpM (D.1)

or in local coordinates:

∂yα

∂xµ
∂yβ

∂xν
gαβ(f(p)) = gµν(p) (D.2)

where x and y are the coordinates of p and f(p) respectively.

Definition D.2. [25] Let (M,g) be a pseudo-Riemannian manifold. A diffeomor-

phism f :M →M is called a conformal transformation if it preserves the metric

up to a scale,

f∗gf(p) = e2σgp ⇐⇒ gf(p)(f∗X, f∗Y ) = e2σgp(X,Y ) (D.3)

where σ ∈ C∞(M) and X,Y ∈ TpM , or in components

∂yα

∂xµ
∂yβ

∂xν
gαβ(f(p)) = e2σ(p)gµν(p) (D.4)

97
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Proposition D.3. [25] Let f : M → M be a conformal transformation on a

Lorentzian manifold (M,g). Then f∗ : TpM → Tf(p)M preserves the local light

cone structure, namely:

f∗ =







timelike vector 7→ timelike vector

null vector 7→ null vector

spacelike vector 7→ spacelike vector

(D.5)

Definition D.4. [25] Let g and g̃ be metrics on a manifold M . g̃ is said to be

conformally related to g if

g̃p = e2σ(p)gp (D.6)

This defines an equivalence relation on the set of all metric onM . The equivalence

class is called the conformal structure. The transformation g 7→ e2σg is called a

Weyl rescaling.

Proposition D.5. [9] The difference of the connections of the metrics g and g̃ is

a tensor, given by:

Γ̃λβµ − Γλβµ = δλµ∂βσ + δλβ∂µσ − gβµg
λτ∂τσ =: Sλβµ (D.7)

Recalling the expression for the Riemann tensor: [9]

Rλµαβ = ∂αΓ
λ
βµ − ∂βΓ

λ
αµ + ΓλαρΓ

ρ
βµ − ΓλβρΓ

ρ
αµ (D.8)

we have that since the coefficients of the connection (for instance Γ) can always

be made zero at one point,

R̃λµαβ −Rλµαβ = DαS
λ
βµ −DβS

λ
αµ + SλαρS

ρ
βµ − SλβρS

ρ
αµ (D.9)

From there, we can get the expression for the difference of the Ricci tensors:

R̃βµ −Rβµ = −gβµDα∂ασ − (m− 2)∇µ∂βσ (D.10)

+(m− 2) (∂µσ∂βσ − gβµ∂
ασ∂λσ) (D.11)

and the difference in the scalar curvatures is:

e2σR̃−R = −2(d− 1)Dα∂ασ − (d− 2)(d − 1)∂λσ∂λσ (D.12)
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D.2 Killing vector fields

Let (M,g) be a Riemannian manifold and X ∈ χ(M).

Definition D.6. If a displacement εX, ε being infinitesimal, generates an isom-

etry, the vector field X is called a Killing vector field. In components, f : xµ 7→
xµ + εXµ satisfies:

∂µ(x
κ + εXκ)∂ν(x

λ + εXλ)gκλ(x+ εX) = gµν(x) (D.13)

From Equation (D.13), it can be deduced that gµν and Xµ satisfy the Killing

equation:

Xξ∂ξgµν + ∂µ(X
κgκν) + ∂ν(X

λgµλ) = 0 ⇐⇒ (LXg)µν = 0 (D.14)

Let φt : M → M be the one-parameter group of transformations which gen-

erates the Killing vector field X. Equation (D.14) shows that the local geometry

does not change as we move along φt. In this sense, a Killing vector field represents

a direction of symmetry of the manifold.

D.3 Conformal Killing vector fields

Definition D.7. If a displacement εX, ε being infinitesimal, generates a confor-

mal transformation, the vector field X is called a conformal Killing vector field.

In components, f : xµ 7→ xµ + εXµ satisfies:

∂µ(x
κ + εXκ)∂ν(x

λ + εXλ)gκλ(x+ εX) = e2σgµν(x) (D.15)

Or if we let σ = εψ
2 , where ψ is a C∞-function on M , then gµν and Xµ satisfy:

LXgµν = Xξ∂ξgµν + ∂µ(X
κgκν) + ∂ν(X

λgµλ) = ψgµν (D.16)

which can be solved for ψ to give:

ψ =
1

m

(

Xξgµν∂ξgµν + 2∂µX
µ
)

(D.17)
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It is possible to check that a vector is a conformal Killing vector field by computing

its conformal Lie derivative, which is derived from the above as follows:

Xξ∂ξgµν + ∂µ(X
κgκν) + ∂ν(X

λgµλ)− ψgµν

=
gµνg

µν

m

(

Xξ∂ξgµν + ∂µ(X
κgκν) + ∂ν(X

λgµλ)− ψgµν

)

=
gµν
m

(

gµνXξ∂ξgµν + gµν∂µXν + gµν∂νXµ −
(

1

m

(

Xρgαβ∂ρgαβ + 2∂αX
α
))

gµνgµν

)

=
gµν
m

(

gµνXξ∂ξgµν + gµν∂µXν + gµν∂νXµ −Xρgαβ∂ρgαβ − 2∂αX
α
)

=
gµν
m

(gµν∂µXν + gµν∂νXµ − 2∂αX
α)

= ∂µXν + ∂νXµ −
2

m
gµν∂αX

α

= DµXν +DνXµ −
2

m
gµνDαX

α =: (LconfX)µν (D.18)

By construction, (LconfX)µν = 0 iff X is a conformal Killing vector field.
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