Lecture 24: Sections 6.3, 6.5

Orthogonal projection

Least-squares problems

Orthogonal projection

Let H be a subspace of \mathbb{R}^n . Then for any $\mathbf{x} \in \mathbb{R}^n$, there is unique $\hat{\mathbf{x}} \in H$ such that

$$\mathbf{x} = \hat{\mathbf{x}} + \mathbf{z}$$
 with $\mathbf{z} \perp \mathbf{H}$.

If $\{\mathbf{u}_1,\ldots,\mathbf{u}_p\}$ is an orthogonal basis of H, then $\mathbf{z}=\mathbf{x}-\hat{\mathbf{x}}\perp H$ with

$$\hat{\mathbf{x}} = \frac{(\mathbf{x} \cdot \mathbf{u}_1)}{(\mathbf{u}_1 \cdot \mathbf{u}_1)} \mathbf{u}_1 + \ldots + \frac{(\mathbf{x} \cdot \mathbf{u}_p)}{(\mathbf{u}_p \cdot \mathbf{u}_p)} \mathbf{u}_p.$$

 $\hat{\mathbf{x}}$ is called the orthogonal projection of \mathbf{x} onto H, and denoted by $\text{Proj }_H \mathbf{x} = \hat{\mathbf{x}}$.

- $\mathbf{v} \in H \Rightarrow \operatorname{Proj}_{H} \mathbf{v} = \mathbf{v}$
- $\|\mathbf{x} \hat{\mathbf{x}}\| < \|\mathbf{x} \mathbf{v}\|$ for any $\mathbf{v} \in H$ with $\mathbf{v} \neq \hat{\mathbf{x}} = \operatorname{Proj}_H \mathbf{x}$
- If $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an orthonormal basis of H, then

$$\operatorname{Proj}_{H}\mathbf{x} = (\mathbf{x} \cdot \mathbf{u}_{1})\mathbf{u}_{1} + \ldots + (\mathbf{x} \cdot \mathbf{u}_{p})\mathbf{u}_{p} = UU^{T}\mathbf{x}$$

with the orthogonal matrix $U = [\mathbf{u}_1 \dots \mathbf{u}_p]$

Least-squares problems

 $k \times n$ matrix A

- $A\mathbf{x} = \mathbf{b}$ is inconsistent $\Leftrightarrow \mathbf{b} \notin \operatorname{Col} A$.
- We have $\hat{\mathbf{b}} = \operatorname{Proj}_{\operatorname{Col} A} \mathbf{b} \in \operatorname{Col} A$.

Any solution of $A\hat{\mathbf{x}} = \hat{\mathbf{b}}$ is called a least-squares solution of $A\mathbf{x} = \mathbf{b}$.

- $A\hat{\mathbf{x}} = \hat{\mathbf{b}} \Leftrightarrow \|\mathbf{b} A\hat{\mathbf{x}}\| \le \|\mathbf{b} A\mathbf{x}\|$ for any $\mathbf{x} \in \mathbb{R}^n$ (the least-squares problem)
- $A\hat{\mathbf{x}} = \hat{\mathbf{b}} \Leftrightarrow A^T A \hat{\mathbf{x}} = A^T \mathbf{b}$ (the normal equation)
- The columns of A are linearly independent $\Leftrightarrow A^TA$ is invertible $\Leftrightarrow A^TA\hat{\mathbf{x}} = A^T\mathbf{b}$ has a unique solution

Experimental data: n points (x_i, y_i) on the plane. Fit the data by a line $y = \beta_0 + \beta_1 x$:

$$X\beta = \mathbf{y}$$
 with $\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$, $X = \begin{bmatrix} 1 & x_1 \\ \dots & \dots \\ 1 & x_n \end{bmatrix}$, $\mathbf{y} = \begin{bmatrix} y_1 \\ \dots \\ y_n \end{bmatrix}$

The least-squares solution minimizes $\|\mathbf{y} - X\boldsymbol{\beta}\|^2 = \sum_{i=1}^n \left[y_i - (\beta_0 + \beta_1 x_i) \right]^2$