Ax=b,	$A=[\mathbf{a}_1,$, a _n]

	inconsistant	consistent	
	Inconsistent	unique solution	many solutions
row reduction algorithm	<i>last</i> column of the augmented matrix [A b] is a <i>pivot</i> column	<i>all</i> columns of A are <i>pivot</i> columns	at least one <i>non-pivot</i> <i>column</i> in A
vector language (column picture) b is not in the span of $\mathbf{a}_1, \dots, \mathbf{a}_n$	b is <i>not</i> in the span of	\mathbf{a}_1 \mathbf{a}_2 are linearly	$\mathbf{a}_1,,\mathbf{a}_n$ are linearly <i>dependent</i>
	independent	at least <i>one</i> of the vectors $\mathbf{a}_1,,\mathbf{a}_n$ is a <i>linear combination</i> of the others	
<i>matrix</i> language	b is <i>not</i> in the span of the columns of A	columns of A are linearly <i>independent</i> A x=0 has <i>only</i> the trivial solution	columns of A are linearly <i>dependent</i>

- Row reduction algorithm, related terminology
- Linear combination, span, linear independence
- Matrix-vector multiplication
- Is A**x=b** consistent for every **b** in R^k?
- If **b=0**, nontrivial solution <=> at least one *free* variable (or *non-pivot* column)

 $Ap=b, Av=0 \implies A(p+v)=b$ $Ap=b, Ax=b \implies A(x-p)=0$