
MATH 20F WINTER 2007 PRACTICE FINAL

MARCH 21

Problem 1: Let the matrix A and the vector b be given by

A =

2
4 3 �2 4
�2 6 2
4 2 3

3
5 ; b =

2
4 1

0
1

3
5 :

The eigenvalues of A are 7 and �2.

a). Determine if A can be diagonalized. If it can be diagonalized, �nd a diagonal-
ization of A, that is, �nd an invertible matrix P and a diagonal matrix D such
that A = PDP�1

b). Orthogonally diagonalize A, that is, �nd an orthogonal matrix U and a diagonal
matrix D such that A = UDU�1.

c). Solve the equation Akx = b, where k is a given integer.

Solution:

1a). Following Example 3 of Section 7.1, we have

P =

2
4 1 �1

2 �1
0 1 �1

2
1 0 1

3
5 ; D =

2
4 7 0 0

0 7 0
0 0 �2

3
5 :

Note that your answer may be di�erent than this depending on how you choose
the free variables and how you arrange the columns of P .

1b). Following the example, we have

P =

2
64

1p
2

� 1p
18

�2
3

0 4p
18

�1
3

1p
2

1p
18

2
3

3
75 ; D =

2
4 7 0 0

0 7 0
0 0 �2

3
5 :

Note again that the particular answer you obtained can be di�erent.
1c). Since A = UDU�1, we have Ak = UDkU�1. Taking inverse from the both sides,

we have (Ak)�1 = U(Dk)�1U�1, or x = (Ak)�1b = U(Dk)�1U�1b. Finding
the inverse of an orthogonal matrix is easy: U�1 = UT , so is �nding the inverse
of power of a diagonal matrix:

D�k = (Dk)�1 =

2
4

1
7k

0 0

0 1
7k

0

0 0 1
(�2)k

3
5 :

1
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We conclude

x = UD�kUTb =

2
4 7�k

0
7�k

3
5 :

Problem 2: Let the following vectors be given:

v1 =

2
4 �2

2
�3

3
5 ; v2 =

2
4 4
�6
8

3
5 ; x =

2
4 �1

3
�2

3
5 :

a). Find an orthogonal basis for H = Span fv1;v2g.
b). Find a basis for the orthogonal complement H? of H.
c). Find vectors y 2 H and z 2 H? such that x = y + z.

Solution:

2a). The orthogonal projection of v2 onto v1 is

v̂2 =
v2 � v1
v2 � v1

v1 = �
44

17
v1:

Then the vector u2 = v1 � v̂2 should be orthogonal to v1 and still in H.

u2 = v1 � v̂2 = (1 +
44

17
)v1 =

61

17

2
4 �2

2
�3

3
5 :

Now the set fv1;u2g or if you prefer, fv1; 17u2g is an orthogonal basis for H.
2b). With the matrix V = [v1 v2], we have H = ColV . So using the fundamental

theorem, we have H? = (ColV )? = NulV T . A direct calculation gives

v3 =

2
4 �1

2
1
1

3
5

is a basis for NulV T = H?.
2c). From the problem statement we see that y 2 H is the orthogonal projection of

x onto H and z 2 H? is the orthogonal projection of x onto H?. There are at
least three ways to calculate y and z.
(i) The vectors v1, u2, and v3 together constitute an orthogonal basis for R3.

We can expand x in terms of this basis as x = �v1+�u2+ 
v3. Then the
vectors y = �v1 + �u2 and z = 
v3 satisfy the conditions of the problem
(see Theorem 5 of Section 6.2 and Example 1 of Section 6.3).

(ii) Since we have an orthogonal basis for H, we can calculate y by Theorem
8 of Section 6.3, and �nd z by z = x� y.

(iii) The quickest method: fv3g is trivially an orthogonal basis for H?, since
H? is one dimensional. So we can calculate z by Theorem 8 of Section 6.3,
and �nd y by y = x� z.

Problem 3: Let

u1 =

�
�1
2

�
; u2 =

�
3
3

�
; and u3 =

�
1

�1

�
:
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a). Find the area of the triangle whose vertices are u1, u2, and u3.
b). If A is an orthogonal matrix, �nd the area of the triangle whose vertices are

Au1, Au2, and Au3.

Solution:

3a). Moving u1 to the origin, the area of the triangle is equal to

S =
1

2
jdetU j with U = [u2 � u1 u3 � u1]:

We calculate

detU =

���� 4 2
1 �3

���� = �14;

so S = j � 14j=2 = 7.
3b). Analogously to the above, we would have to calculate the determinant of

U 0 = [Au2 �Au1 Au3 �Au1] = [A(u2 � u1) A(u3 � u1)] = AU:

We have det(AU) = (detA)(detU), and since A is orthogonal,

1 = det I = det(ATA) = (detAT )(detA) = (detA)2:

So the area of the modi�ed triangle is

S0 =
1

2
jdetU 0j =

1

2
j det(AU)j =

1

2
j(detA)(detU)j

=
1

2
jdetAjjdetU j =

1

2
j detU j = S = 7;

where we used j detAj = 1.

Problem 4: Let A be a matrix such that kAxk = kxk for any x 2 Rn. Prove that
A is an orthogonal matrix.

Solution:

Using the linearity and the symmetricity of the inner product, we have

kx+ yk2 = (x+ y) � (x+ y) = x � x+ y � y + 2x � y = kxk2 + kyk2 + 2x � y:

and similarly,

kAx+Ayk2 = kAxk2 + kAyk2 + 2(Ax) � (Ay):

The condition kAxk = kxk for any x 2 Rn, implies that

(1) (Ax) � (Ay) = x � y;

where we have used the above two equalities in combination with

kAx+Ayk2 = kA(x+ y)k2 = kx+ yk2; and kAyk = kyk:

Using x � y = xTy, the equation (1) can be written as (Ax)TAy = xTy, and since
(Ax)T = xTAT , we have

xTATAy = xTy = xT Iy:

where I is the identity matrix. This equality is true for any x and y in Rn, so ATA
should be equal to I, showing that A is orthogonal.
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The above argument can be made more rigorous by taking x = ei and y = ek, where
ei is the i-th standard basis vector in Rn. One can show that for any n� n matrix B
with elements bik, e

T
i
Bek = bik.

Problem 5: Derive a formula for the least-squares solution of Ax = b when the
columns of A are orthonormal.

Solution:

The least squares problem is equivalent to the normal equation ATAx̂ = ATb. Since
A is orthogonal, we have ATA = I, and so x̂ = ATb.

Problem 6: Mark each statement true or false. Brie
y justify each answer.

a). An eigenvector of A corresponding to the eigenvalue � is a solution of the
equation (A� �I)x = 0.

b). Similar matrices have the same eigenvalues.
c). An n� n matrix A is diagonalizable if A has n distinct eigenvalues.
d). An n�n matrix A is diagonalizable if and only if A has n distinct eigenvalues.
e). Any solution of ATAx = ATb is a least-squares solution of Ax = b only if A

has linearly independent columns.

Solution:

6a). True. Ax = �x , (A� �I)x = 0

6b). True. They have the same characteristic polynomials.
6c). True. Distinct eigenvalues have linearly independent eigenvectors.
6d). False. Look at the matrix A in Problem 1. It is a 3 � 3 matrix having 2

distinct eigenvalues but is diagonalizable.
6e). False. Any solution of ATAx = ATb is a least-squares solution of Ax = b

regardless of whether A has linearly independent columns.


