MCgill University
Department of Mathematics and Statistics
Part A Examination
Pure β

Date: Friday, May 10, 1996
Time: 13:00 - 17:00

Instructions: The SEVEN best answers will account for your final grade.

1. (a) Prove there is no simple group with 48 elements.
 (b) Let G be the group of isometries of the integers, viewed as a metric space with
the usual metric, $d(m,n) = |m - n|$. Show that G is generated by two elements
of order 2 and that, in fact, $G \cong \mathbb{Z}_2 \ast \mathbb{Z}_2$, the free product (coproduct)
of two cyclic groups of order 2.

2. Let R be a ring with unit (possibly non-commutative). If M is a 2-sided R-module,
an additive function $d : R \rightarrow M$ is called a derivation if $d(xy) = x(dy) + (dx)y$ for all
$x, y \in R$. Denote the set of all derivations by $\text{Der} (R, M)$.
 (a) Show that $\text{Der}(R, M)$ is an abelian group with pointwise addition. Show that
$\text{Der}(R, -)$ is then a functor from the category of 2-sided modules to abelian
groups.
 (b) Show that this functor is representable. (Hint: the representing object is a quo-
tient of $R \otimes R$, mod a certain submodule.)

3. Let $F = \mathbb{C}[t]$, where t is transcendental over the field \mathbb{C} of complex numbers and let
$K = \mathbb{C}[u]$, where $u = t^3 + t^{-3}$. Show that F is a Galois extension of K and determine
its Galois group.

4. Let the functions f_n and f be Lebesgue measurable on $I = [0, 1]$. Suppose that

$$f_n(x) \rightarrow f(x) \text{ a.e., } x \in I,$$

and

$$\int_{I} |f_n(x)|^2 dx \leq M < \infty \text{ for all } n.$$

(a) Show that $\int_{I} |f(x)|^2 dx \leq M$.
4. (b) Given \(\varepsilon > 0 \), show that, for \(A \) and \(N \) large enough, there is a Lebesgue measurable \(E \subseteq I \) with \(\text{meas.}(I \sim E) < \varepsilon \) and \(|f_n(x)| \leq A \) for all \(n \geq N \) when \(x \in E \).
 (Hint: You need first to look at \(f \).)

 (c) Hence show that \(\int_I |f(x) - f_n(x)| \, dx \to 0 \). (Hint: If \(E \) is the set from (b), how large can \(\int_{I \sim E} |f(x) - f_n(x)| \, dx \) be?)

5. Let the simply connected domain \(D \subseteq \mathbb{C} \) have more than one boundary point, and suppose that \(0 \in D \). Consider the family \(F \) of all functions \(f(z) \) analytic in \(D \), with \(f(0) = 0 \) and \(|f(z)| < 1 \), \(z \in D \).

 (a) Show that there are non-constant functions \(f \) in \(F \).

 (b) Given \(z \neq 0 \), \(z \in D \), for which functions \(f \in F \) is \(|f(z)| \) as large as possible? Justify your answer.

6. Let \(\nu \) be a finite complex regular Borel measure on the unit circle (circumference) \(T \), and suppose that

 \[
 \int_T \zeta^n d\nu(\zeta) \to c \quad \text{for } n \to \infty.
 \]

 (a) Show that \(\int_T \zeta^n \phi(\zeta) d\nu(\zeta) \to c \phi(1) \) as \(n \to \infty \) for functions \(\phi \in C(T) \). (Hint: First consider functions \(\phi(\zeta) \) of the special form \(\sum_{n=-N}^{N} A_n \zeta^n \).)

 (b) Assume henceforth that \(c = 0 \). Show that then \(\int_T \zeta^n f(\zeta) d\nu(\zeta) \to 0 \) as \(n \to \infty \) for each \(f \in L_1(T, |\nu|) \), where \(|\nu| \) designates the total variation of \(\nu \).

 (c) Hence show that \(\int_T \zeta^n d|\nu|(\zeta) \to 0 \) as \(n \to \infty \). (Hint: Recall how \(\nu \) is related to \(|\nu| \).)

 (d) Show finally that \(\int_T \zeta^n d\nu(\zeta) \to 0 \) as \(n \to -\infty \) (sic!). (Hint: From (c) we first get, trivially, \(\int_T \zeta^{-n} d|\nu|(\zeta) \) for \(n \to \infty \). See again (b) and the hint to (c).)
7. Let S^n be the unit sphere in \mathbb{R}^{n+1}.

(a) Divide the maps

$$\varphi_1, \varphi_2, \varphi_3, \varphi_4 : S^1 \to S^1$$

$$\varphi_1(x_1, x_2) = (x_1, x_2), \quad \varphi_2(x_1, x_2) = (x_2, x_1),$$

$$\varphi_3(x_1, x_2) = (-x_1, -x_2), \quad \varphi_4(x_1, x_2) = (x_1, -x_2),$$

into homotopy classes. Justify your answer.

(b) Show that any continuous map $\varphi : S^n \to S^1$, $n > 1$, is homotopic to a constant map.

(c) Show that any continuous map $\varphi : S^n \to S^m$, $0 \leq n < m$, is homotopic to a constant map.

8. Let $M = \{(x, y) \in \mathbb{R}^3 \times \mathbb{R}^3 | x \cdot x = 1, \ x \cdot y = 0, \ y \cdot y = 1\}$.

(a) Show that M is a regular (imbedded) submanifold of $\mathbb{R}^3 \times \mathbb{R}^3 = \mathbb{R}^6$. What is the dimension of M?

(b) It is clear that the first projection on $\mathbb{R}^3 \times \mathbb{R}^3$ induces a smooth map $p : M \to S^2$. Show that each $q \in S^2$ has an open neighbourhood U admitting a smooth map $\sigma_u : U \to M$ such that $p \circ \sigma_u = 1_u$. Does there exist a smooth map $r : S^2 \to M$ such that $p \circ r = 1_{S^2}$? Justify your answer.

(c) M is a familiar manifold. Can you identify it?