McGill University
Department of Mathematics and Statistics
Part A Examination
Pure and Applied Mathematics α

Date: Monday, May 11, 1998
Time: 9:00 A.M. - 1:00 P.M.
Room: BURN 1120

Instructions

1. All questions are compulsory
2. Satisfactory performance on questions 1 - 4 on Paper α is necessary in addition to an overall pass.

1. Prove or disprove by counterexample each of the following statements about a sequence of positive real numbers:

 (a) If $\sum_{n=1}^{\infty} a_n$ is convergent, then $\lim_{n \to \infty} a_n = 0$.

 (b) If $\sum_{n=1}^{\infty} a_n$ is convergent, then $\sum_{n=1}^{\infty} na_n^2$ is convergent.

 (c) If $\frac{a_{n+1}}{a_n} \leq 1 - \frac{2}{n}$ for $n > 10$, then $\sum_{n=1}^{\infty} a_n$ is convergent.

2. (a) What does it mean for a real-valued function f to be Riemann integrable on $[0, 1]$?
(b) Show that every real-valued continuous function on $[0, 1]$ is Riemann integrable on $[0, 1]$.
(c) Let f be a real-valued continuous function on $[0, 1]$ such that

$$\int_{0}^{1} f(x)h(x)dx = 0$$

for all real-valued continuous functions h on $[0, 1]$. Show that f is identically zero.

3. (a) Define the terms removable singularity, pole, essential singularity.
(b) Let $f(z) = \exp\left(\frac{a}{z} + \frac{b}{z^2}\right)$ for $z \in \mathbb{C} \setminus \{0\}$, where $a, b \in \mathbb{C}$ and $b \neq 0$. What type of singularity does $f(z)$ have at the point $z = 0$? Prove your assertion.
4. (a) State the Residue Theorem.
(b) Using the Residue Theorem determine the integral
\[
\int_{-\infty}^{\infty} \frac{x^2}{x^4 + 1} \, dx,
\]
justifying your answer in detail.

5. Use the Divergence Theorem to evaluate
\[
\int_{\partial \Omega} (xy, yz, zx) \cdot \tilde{n} \, d\sigma
\]
where \(\Omega \) is the region given by \(x^2 + y^2 \leq z^2, 0 \leq z \leq 1 \) and where \(\tilde{n} \) and \(\sigma \) are respectively the outward normal and surface area measure on \(\partial \Omega \).

6. Let \(A, B \) be \(n \times n \) matrices and suppose that \(A, B \) are diagonalizable. Show that there is an invertible matrix \(P \) such that \(P^{-1}AP \) and \(P^{-1}BP \) are both diagonal matrices if and only if \(AB = BA \).

7. If \(A, B \) are respectively \(m \times n \) and \(n \times p \) matrices, show that the dimension of the null space of \(AB \) is at most the sum of the dimensions of the null spaces of \(A \) and \(B \). When do we have equality?

8. (a) State an existence and uniqueness theorem for the initial value problem of the form
\[
\frac{dx}{dt} = f(x, t); \quad x(t_0) = x_0.
\]
(b) Consider the initial value problem
\[
t^2 \frac{dx}{dt} = x; \quad x(t_0) = x_0
\]
for \(t_0 \) in an open interval \(I \).
Show that
i. there is a unique solution if \(t_0 \neq 0 \) and find the maximal interval on which the solution is valid;
ii. there is no solution for \(t_0 = 0, \ x_0 \neq 0 \);
iii. there are infinitely many solutions for \(t_0 = 0 \) and \(x_0 = 0 \), and these solutions can each be extended to all of \(\mathbb{R} \).