McGILL UNIVERSITY
DEPARTMENT OF MATHEMATICS & STATISTICS
PART A – PAPER ALPHA

INSTRUCTIONS

Date: Monday, August 17, 1998
Time: 9:00 A.M. - 1:00 P.M.
Room: BURN 1120

Students in Pure and Applied Mathematics do the following questions: Analysis, Linear Algebra, Complex Variables, Calculus and Differential Equations (8 questions).
Students in Statistics do the following questions: Analysis, Linear Algebra and Probability (8 questions).
Students writing the Extended Alpha do the following questions: Analysis, Linear Algebra and Extended Alpha Questions (8 questions).

ANALYSIS

1. State the mean value theorem of the differential calculus. Let f be a function continuous on the closed interval $[0, 1]$ and differentiable on the open interval $(0, 1)$. If $f(0) = 0$ and f' is decreasing on $(0, 1)$ prove that

(a) $\frac{f(x)}{x} \geq f'(x)$, for $0 < x < 1$;

(b) the function $g = (0, 1) \rightarrow \mathbb{R}$ defined by $g(x) = \frac{f(x)}{x}$ is decreasing on $(0, 1)$.

2. (a) If $0 \leq a_{n-1} \leq a_n$ for all $n \in \mathbb{N}$, and $\sum_{n=1}^{\infty} a_n$ converges prove that $\lim_{n \to \infty} na_n = 0$.

(b) Let $\sum_{n=1}^{\infty} a_n$ be a convergent series and $\sum_{n=1}^{\infty} b_n$ an absolutely convergent series. Prove that $\sum_{n=1}^{\infty} a_n b_n$ is absolutely convergent.

(c) If $a_n > 0$ for all $n \in \mathbb{N}$, prove that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} \frac{a_n}{1 + a_n}$ converge or diverge together.

LINEAR ALGEBRA

1. Consider the space V of all 2×2 real matrices with the usual addition and scalar multiplication. Consider the linear transformation $T : V \rightarrow V$ defined, for fixed matrices

$$A = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} \text{ and } B = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

by $T(X) = AXA + XB$. Describe the kernel and the range space of T. (Find bases of these subspaces.)
2. Consider the real inner product space $P_1(t)$ of algebraic polynomials of degree at most 1, with the inner product

$$(x, y) = \int_{-1}^{1} x(t)y(t)dt.$$

In this space consider the linear transformation T defined by

$$T(x) = \frac{dx}{dt} + 2x.$$

(a) Using the Cayley-Hamilton theorem express T^{-1} in terms of T.

(b) Find $T^*(2 + t)$, where T^* denotes the adjoint of T.

COMPLEX VARIABLES

1. Evaluate

$$\int_{\gamma} \frac{dz}{(z - 4)(z^3 - 1)}$$

where γ is the circle $|z| = 2$ traversed counterclockwise. Simplify your answer to the form $a + bi$, a, b real.

2. Find the number of zeros of the polynomial $z^3 + z^2 + 3z + 16$ in the right half plane \{ $z : \text{Re} z > 0$ \}. Hint: Consider the boundary of a large half-disc $|z| \leq R$, Re $z \geq 0$.

CALCULUS

1. Compute $\int \int \exp \left(\frac{y - x}{y + x} \right) dxdy$ over the triangle with vertices $(0, 0), (1, 0), (0, 1)$.

DIFFERENTIAL EQUATIONS

1. Let f and g be real valued functions defined on an interval $[a, b]$. Suppose that f is continuous, g is differentiable, and

$$g'(x) \leq f(x)g(x) \text{ for all } x \in [a, b].$$

Prove that

$$g(x) \leq g(a) \exp \left(\int_{a}^{x} f(t)dt \right)$$

for all $x \in [a, b]$.
PROBABILITY

1. Let $(\Omega, \mathcal{F}, \mu)$ be a measure space.

 (a) Show that μ is σ-finite if and only if for each $A \in \mathcal{F}$, there exists $f \in L^1_+(\mu)$ such that $\{f > 0\} = A$.

 (b) Suppose that μ is σ-finite. A set $A \in \mathcal{F}$ is an atom of μ if $\mu(A) > 0$ and if $\mu(B) = 0$ or $\mu(A)$ whenever $B \in \mathcal{F}$ and $B \subset A$. Show that there can be only countable many atoms of μ, provided we identify atoms A and B for which $\mu(A \Delta B) = 0$.

2. Let X_1, X_2, X_3, \ldots be i.i.d. exponentially distributed random variables, with mean $1/\lambda$. Let

 $S_n = \begin{cases} X_1 + \cdots + X_n & \text{if } n \geq 1, \\ 0 & \text{if } n = 0, \end{cases}$

 and define $N_t = \max\{n \geq 0 | S_n \leq t\}$, $t \geq 0$.

 (a) Show that for each $t > 0$, N_t has a Poisson distribution with mean λt.

 (b) Let $U_t = S_{N_t+1} - t$ and $V_t = t - S_{N_t}$ for $t \geq 0$. Show that U_t and V_t are independent for each $t \geq 0$, that $U_t \sim X_1$, and that $V_t \sim \min\{X_1, t\}$. (\sim means "equivalent in distribution"). You may assume $\{N_t, t \geq 0\}$ has been shown to have stationary independent increments.

3. Let $\{X_n, n \geq 1\}$ be a sequence of random variables on a probability space (Ω, \mathcal{F}, P), let X be a r.v. on (Ω, \mathcal{F}, P), and let $p \geq 1$.

 (a) Define what is meant by saying $\{X_n, n \geq 1\}$ is uniformly integrable.

 (b) Suppose that $\{|X_n|^p, n \geq 1\}$ is uniformly integrable, and that $X_n \to X$ in probability. Show that $X \in L^p(P)$ and that $X_n \to X$ in $L^p(P)$.

 (c) Suppose that $\{X_n, n \geq 1\} \subset L^1(P)$ are such that $X_n \geq 0$ a.s. for all n, that $X \in L^1(P)$, that $X_n \to X$ in probability, and that $EX_n \to EX$. Show that $X_n \to X$ in $L^1(P)$.

4. For each case, give an example of a sequence $\{X_n, n \geq 0\}$ of random variables and a random variable X (defined on the same probability space) such that

 (a) $X_n \to 0$ in L^p, but $X_n \not\to 0$ a.s.

 (b) $X_n \to 0$ a.s., but $X_n \not\to 0$ in L^p.

 (c) $X_n \to X$ in distribution but $X_n \not\to X$ in probability,

 where $p \geq 1$. In each case, justify your statement.
EXTENDED ALPHA QUESTIONS

1. Let \(f \) be a bounded function on a closed interval \([a, b]\). Define carefully but concisely what is meant by the statement "\(f \) is Riemann integrable on \([a, b]\)."

A function \(g \) on \([a, b]\) is called a "step function if there exists a partition \(a = s_0 < s_1 < s_2 \cdots < s_n = b \), and \(\alpha_j \in \mathbb{R} \), s.t. \(g(x) = \alpha_j \) if \(x \in [s_{j-1}, s_j] \), \(j = 1, \cdots, n \), \(g(a) = \alpha_1 \). Show that a step function is Riemann integrable.

Show that if \(f \) is Riemann integrable on \([a, b]\), then given \(\varepsilon > 0 \), there exists a step function \(g \) on \([a, b]\) such that

\[
\int_a^b |f(x) - g(x)| \, dx < \varepsilon.
\]

2. (a) Prove that the series \(\sum_{n=1}^{\infty} (-1)^n \frac{x^2 + n}{n^2} \) converges uniformly on every bounded interval, but does not converge absolutely for any \(x \in \mathbb{R} \).

(b) If \(a_n = 1 \) when \(n = m^2 \) for some \(m \in \mathbb{N} \), and \(a_n = 0 \) otherwise find the radius of convergence of \(\sum_{n=1}^{\infty} a_n x^n \).

3. Let \(A \) be an arbitrary complex \(n \times n \) matrix. Suppose that there is a positive definite Hermitian matrix \(K \) such that \(A^* K = K A \). Prove that \(A \) has only real eigenvalues and \(n \) linearly independent eigenvectors. (Here \(A^* \) denotes the complex conjugate of the transpose of the matrix \(A \).)

4. (a) State a definition of the cross product \(A \times B \) of two vectors \(A, B \in \mathbb{R}^3 \).

(b) If \(\{e_1, e_2, e_3\} \) is any positively oriented orthonormal basis of \(\mathbb{R}^3 \) and \(A_i = A \cdot e_i, \ B_i = B \cdot e_i \) for \(i = 1, 2, 3 \), show that

\[
A \times B = \begin{vmatrix} e_1 & e_2 & e_3 \\ A_1 & A_2 & A_3 \\ B_1 & B_2 & B_3 \end{vmatrix}.
\]

(c) If \(\{v_1, v_2, v_3\} \) is any basis of \(\mathbb{R}^3 \) and \(\alpha_i = A \cdot v_i, \ \beta_i = B \cdot v_i, \ i = 1, 2, 3 \), show that

\[
A \times B = \frac{1}{V} \begin{vmatrix} v_1 & v_2 & v_3 \\ \alpha_1 & \alpha_2 & \alpha_3 \\ \beta_1 & \beta_2 & \beta_3 \end{vmatrix}.
\]

where \(V = \det(v_1, v_2, v_3) \) is the determinant of the \(3 \times 3 \) matrix whose rows are \(v_1, v_2, v_3 \).