Date: Monday, August 18, 1997
Time: 9:00 A.M. - 1:00 P.M.

Instructions

1. All questions are compulsory
2. Satisfactory performance on questions 1 - 4 on Paper α is necessary in addition to an overall pass.

1. Let T be a linear operator on a vector space V of finite dimension. Let W be a subspace of V invariant under T, i.e. $T(W) \subset W$. Let $T_W : W \to W$ be the restriction of T to W.

 (i) Show that the characteristic polynomial of T_W divides the characteristic polynomial of T.

 (ii) Show that the minimum polynomial of T_W divides the minimum polynomial of T.

2. Suppose the characteristic polynomial of $T : V \to V$ is $\Delta(t) = f_1(t)^{n_1} f_2(t)^{n_2} \ldots f_r(t)^{n_r}$ where the $f_i(t)$ are distinct monic irreducible polynomials. Let $V = W_1 \oplus \ldots \oplus W_r$ be the primary decomposition of V into T-invariant subspaces. Show that $f_i(t)^{n_i}$ is the characteristic polynomial of the restriction of T to W_i.

3. Prove, or disprove by counter example, each of the following statements about a sequence (a_k) of real numbers:

 (i) If $\lim_{n \to \infty} n \left(\frac{a_{n+1}}{a_n} - 1 \right) = \ell < 1$, then $\sum_{1}^{\infty} a_n$ diverges;

 (ii) If $\sum_{1}^{\infty} a_n$ is a convergent series of positive numbers then $\lim_{n \to \infty} n a_n = 0$;

 (iii) If $\sum_{1}^{\infty} a_n$ is a divergent series of positive numbers, then $\sum_{1}^{\infty} \frac{a_n}{1 + a_n}$ is divergent.
4. Let \(f \) be a continuously differentiable function on \([0, 1]\).

 (i) If \(M_k, m_k \) are the least upper and greatest lower bounds of \(f' \) in \(\left[\frac{k}{n}, \frac{k+1}{n} \right] \),

 \(k = 0, 1, 2, \ldots, n - 1 \), show that for \(x \in \left[\frac{k}{n}, \frac{k+1}{n} \right] \)

 \[m_k \left(x - \frac{k}{n} \right) \leq f(x) - f \left(\frac{k}{n} \right) \leq M_k \left(x - \frac{k}{n} \right). \]

 (ii) Obtain the limit as \(n \to \infty \) of the expression

 \[n \left\{ \int_{0}^{1} f(x) - \frac{1}{n} \sum_{k=0}^{n-1} f \left(\frac{k}{n} \right) \right\}. \]

5. Using the divergence theorem or otherwise, find

 \[\iint_{\partial D} (x^2 + x, y^2, z^2 + z) \cdot \vec{n}ds \]

 where \(\partial D \) is the boundary of the region \(D \) in \(\mathbb{R}^3 \),

 \[D = \{(x, y, z) : 0 \leq z \leq 3/2, z^2/3 \leq x^2 + y^2 \leq 2z - z^2\}, \]

 \(ds \) is surface area, and \(\vec{n} \) is the outward normal on \(\partial D \).

6. Find the general solution of

 \[y'' + 6y' + 9y = \frac{1}{2} e^{-3x} + \sin x. \]

7. (a) For \(f(z) = \frac{1}{z^2 + z - 2} \), how many distinct series expansions are possible in integer powers of \((z - 2) \), i.e. Taylor's or Laurent series?

 (b) Obtain in each case the general term, and state the region of convergence in each case.

8. Evaluate

 \[\oint_{C} \frac{-1 + \cos z}{z^2 \sin z} dz \]

 where \(C \) is the circle \(|z - 3| = 4\) in the complex plane.