1. All questions in Paper α are compulsory.

2. Satisfactory performance on questions 1-4 on Paper α is necessary in addition to an overall pass.

1. (a) Suppose that S and T are commuting linear operators on a finite dimensional complex vector space V and that S is diagonalizable. Show that there is a basis that diagonalizes S and reduces T to Jordan canonical form.

 (b) Show that if S and T are linear operators on a finite dimensional complex vector space, then ST and TS have the same characteristic polynomial.

2. (a) Let T be a linear operator on the finite dimensional vector space V and let $f(t)$ be a polynomial such that $f(T) = 0$. Suppose that $f(t) = g(t)h(t)$ with $g(t)$ and $h(t)$ having no common divisor. Show that $V = \text{Ker}(g(T)) \oplus \text{Ker}(h(T))$.

 (b) Let T be a linear operator on an n dimensional vector space. Show that $\text{Ker}(T^n) \cap \text{Im}(T^n) = \{0\}$.

3. Let f be a bounded real valued function on $[a, b]$.

 (a) Define the upper (and lower) Darboux sums $U(f; P)$ (resp. $L(f; P)$) of f corresponding to a partition P of $[a, b]$.

 (b) Suppose $f^+(x) = \max(f(x), 0)$. Show that $U(f^+; P) - L(f^+; P) \leq U(f; P) - L(f; P)$.

 (c) Show that if f is Riemann integrable so is f^+.
(d) If \(f \) and \(g \) are Riemann integrable on \([a, b]\), prove that \(F \) and \(G \) are Riemann integrable where \(\forall x, F(x) = \max(f(x), g(x)) \) and \(G(x) = \min(f(x), g(x)) \).

4. Suppose \(\{f_n\} \) is a pointwise decreasing sequence of real valued continuous functions on a closed bounded interval \([a, b]\) such that \(\forall x, \lim_{n \to \infty} f_n(x) = 0 \). Prove that the sequence \(\{f_n\} \) tends to 0 uniformly on \([a, b]\). Give an example of an open interval \(I \) and a decreasing sequence \(\{g_n\} \) of continuous functions on \(I \) so that \(g_n(x) \) decreases to 0 for each \(x \in I \), BUT NOT UNIFORMLY.

5. Obtain the general solution of the differential equation
\[
x^2y'' - xy' + y = 2x
\]

6. Obtain the general solution of the differential equation
\[
3xy'' + y' - y = 0
\]

7. A non-zero scalar field \(\psi \) is such that \(\| \nabla \psi \|^2 = 3\psi \) and \(\nabla \cdot (\psi \nabla \psi) = 10\psi \). Evaluate
\[
\oiint_S \nabla \psi \cdot \hat{n} dS
\]
where \(S \) is the surface of the region in the first octant bounded by
\[
z = \sqrt{x^2 + y^2}, \quad z = \sqrt{1 - x^2 - y^2}, \quad y = x \quad \text{and} \quad y = \sqrt{3}x.
\]
Do this problem using both cylindrical and spherical coordinates.
Hint: \(\nabla \cdot (\psi \overline{F}) = \nabla \psi \cdot \overline{F} + \psi \nabla \cdot \overline{F} \).

8. Evaluate
\[
\oint_C \frac{-1 + \cos z}{z^2 \sin z} \, dz,
\]
where \(C \) is the circle |z - 3| = 4.