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The central causal question

In many research domains, the objective of an investigation is to
quantify the effect on a measurable outcome of changing one of
the conditions under which the outcome is measured.

I in a health research setting, we may wish to discover the
benefits of a new therapy compared to standard care;

I in economics, we may wish to study the impact of a
training programme on the wages of unskilled workers;

I in transportation, we may attempt to understand the effect
of embarking upon road building schemes on traffic flow or
density in a metropolitan area.

The central statistical challenge is that, unless the condition of
interest is changed independently, the inferred effect may be sub-
ject to the influence of other variables.
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The central causal question

Example: The effect of nutrition on health

In a large cohort, the relationship between diet and health status
is to be investigated. Study participants are queried on the nu-
tritional quality of their diets, and their health status in relation
to key indicators is assessed via questionnaires.

For a specific outcome condition of interest, incidence of cardio-
vascular disease (CVD), the relation to a specific dietary compo-
nent, vitamin E intake, is to be assessed.

In the study, both incidence of disease and vitamin E intake were
dichotomized

I Exposure: Normal/Low intake of vitamin E.

I Outcome: No incidence/Incidence of CVD in five years
from study initiation.
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The central causal question

Example: The effect of nutrition on health

Outcome
CVD No CVD

Exposure
Normal 27 8020
Low 86 1879

Question: does a diet lower in vitamin E lead to higher chance
of developing CVD ? More specifically, is this a causal link ?

I that is, if we were to intervene to change an individual’s
exposure status, by how much would their risk of CVD
change ?
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The language of causal inference

We seek to quantify the effect on an outcome of changes in the
value of an exposure or treatment.

I Outcome: could be
I binary;
I integer-valued;
I continuous-valued.

I Exposure: could be
I binary;
I integer-valued;
I continuous-valued.

I Study: could be

I cross-sectional (single time point);
I longitudinal (multiple time points), with single or multiple

exposures.

We consider an intervention to change exposure status.
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Notation

We adopt the following notation: let

I i index individuals included in the study;

I Yi denote the outcome for individual i;

I Zi denote the exposure for individual i;

I Xi denote the values of other predictors or covariates.

For a cross-sectional study, Yi and Zi will be scalar-valued; for
the longitudinal case, Yi and Zi may be vector valued. Xi is
typically vector-valued at each measurement time point.

We will treat these variables as random quantities, and regard
them as samples from an infinite population, rather than a finite
population.
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Counterfactual or Potential Outcomes

In order to phrase causal questions of interest, it is useful to
consider certain hypothetical outcome quantities that represent
the possible outcomes under different exposure alternatives.

We denote by
Yi(z)

the hypothetical outcome for individual i if we intervene to set
exposure to z.

Yi(z) is termed a counterfactual or potential outcome.

1.2: Notation 13



Counterfactual or Potential Outcomes

If exposure is binary, the pair of potential outcomes

{Yi(0), Yi(1)}

represent the outcomes that would result for individual i if that
subject was not exposed, or exposed, respectively.

The observed outcome, Yi, may be written in terms of the po-
tential outcomes and the observed exposure, Zi, as

Yi = (1− Zi)Yi(0) + ZiYi(1).
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Counterfactual or Potential Outcomes

If exposure is multi-valued, the potential outcomes

{Yi(z1), Yi(z2), . . . , Yi(zd)}

represent the outcomes that would result for individual i if that
subject exposed to exposure level z1, z2, . . . , zd respectively.

The observed outcome, Yi, may then be written in terms of the
potential outcomes and the observed exposure, Zi, as

Yi =

d∑
j=1

1zj (Zi)Yi(zj).

where 1A(Z) is the indicator random variable for the set A, with
1A(Z) = 1 if Z ∈ A, and zero otherwise.
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Counterfactual or Potential Outcomes

If exposure is continuous-valued, the potential outcomes

{Yi(z), z ∈ Z}

represent the outcomes that would result for individual i if that
subject exposed to exposure level z which varies in the set Z.
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Counterfactual or Potential Outcomes

Note 1.

It is rare that we can ever observe more than one of the potential
outcomes for a given subject in a given study, that is, for binary
exposures it is rare that we will be able to observe both

Yi(0) and Yi(1)

in the same study.

In the previous example, we cannot observe the CVD outcome
under both the assumption that the subject did and simultane-
ously did not have a low vitamin E diet.

This is the first fundamental challenge of causal inference.
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Causal Estimands

The central question of causal inference relates to comparing the
(expected) values of different potential outcomes.

We consider the causal effect of exposure to be defined by differences
in potential outcomes corresponding to different exposure levels.

Note 2.

This is a statistical, rather than necessarily mechanistic, defini-
tion of causality.
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Binary Exposures

For a binary exposure, we define the causal effect of exposure by
considering contrasts between Yi(0) and Yi(1); for example, we
might consider

I Additive contrasts
Yi(1)− Yi(0)

I Multiplicative contrasts

Yi(1)/Yi(0)
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Continuous Exposures

For a continuous exposure, we might consider the path tracing
how Yi(z) changes as z changes across some relevant set of values.

This leads to a causal dose-response function.

Example: Occlusion Therapy for Amblyopia

We might seek to study the effect of occlusion therapy (patching)
on vision improvement of amblyopic children. Patching ‘doses’
are measured in terms of time for which the fellow (normal func-
tioning) eye is patched.

As time is measured continuously, we may consider how vision
improvement changes for any relevant dose of occlusion.
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Expected counterfactuals

In general, we are interested in population or subgroup, rather
than individual level causal effects. The potential outcomes are
random quantities. Therefore, we more typically consider expected
potential outcomes

E[Yi(z)]

or contrasts of these quantities.

We might also consider subgroup conditional expected quantities

E[Yi(z)|i ∈ S]

where S is some stratum of interest in the general population.

We typically assume that subject i is randomly sampled from the
population or stratum, so that these individual-level expectations
are representative of the population.
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Expected counterfactuals: binary exposure

For a binary exposure, we might consider the average effect of
exposure (or average treatment effect, ATE) defined as

E[Yi(1)− Yi(0)] = E[Yi(1)]−E[Yi(0)]

If the outcome is also binary, we note that

E[Yi(z)] ≡ Pr[Yi(z) = 1]

so may also consider odds or odds ratios quantities

Pr[Yi(z) = 1]

Pr[Yi(z) = 0]

Pr[Yi(1) = 1]/Pr[Yi(1) = 0]

Pr[Yi(0) = 1]/Pr[Yi(0) = 0]
.
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Expected counterfactuals: binary exposure

We may also consider quantities such as the

average treatment effect on the treated, ATT

defined as
E[Yi(1)− Yi(0)|Zi = 1]

although such quantities can be harder to interpret.

The utility of the potential outcomes formulation is evident in
this definition.

1.3: Causal estimands 23



Example: antidepressants and autism

Antidepressants are quite widely prescribed and for a variety of
mental health concerns. However, patients can be reluctant to
embark on a course of antidepressants during pregnancy. We
might wish to investigate, in a population of users (and poten-
tials users) of antidepressants, the incidence of autism-spectrum
disorder in early childhood and to assess the causal influence of
antidepressant use on this incidence.

I Outcome: binary, recording the a diagnosis of
autism-spectrum disorder in the child by age 5;

I Exposure: antidepressant use during 2nd or 3rd trimester
of pregnancy.

Then we may wish to quantity

E[Yi(antidepressant)−Yi(no antidepressant)|Antidep. actually used].
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Estimation of average potential outcomes

We wish to obtain estimates of causal quantities of interest based
on the available data, which typically constitute a random sample
from the target population.

We may apply to standard statistical principles to achieve the
estimation. Typically, we will use sample mean type quantities:
for a random sample of size n, the sample mean

1

n

n∑
i=1

Yi

is an estimator of the population mean and so on.

1.4: Basics of estimation 25



Estimation of average potential outcomes

In a typical causal setting, we wish to perform estimation of
average potential outcome (APO) values.

Consider first the situation where all subjects in a random sample
receive a given exposure z; we wish to estimate E[Y (z)].

In terms of a formal probability calculation, we write this as

E[Y (z)] =

∫
y fY (z)(y) dy

=

∫
y fY (z),X(y, x) dy dx

where the second line recognizes that in the population, the val-
ues of the predictors X vary randomly according to some proba-
bility distribution
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Estimation of average potential outcomes

I fY (z)(y) is the marginal distribution of the potential
outcome when we set the exposure to z.

I fY (z),X(y, x) is the joint distribution of (Y (z), X) in the
population where we set the exposure to z.

Note that we may also write

E[Y (z)] =

∫
y1z(z) fY (z),X(y, x) dy dz dx

that is, imagining an exposure distribution degenerate at z = z.
Our random sample is from the population with density

1z(z) fY (z),X(y, x) ≡ 1z(z) fY |Z,X(y|z, x)fX(x).
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Estimation of average potential outcomes

Then we may estimate the relevant APO E[Y (z)] by

Ê[Y (z)] =
1

n

n∑
i=1

Yi = Y .

Note 3.

To estimate functions of the sample mean, we may use simple
transformations of the estimator; for example, if the outcome is
binary, we estimate the odds

Pr[Yi(z) = 1]

Pr[Yi(z) = 0]
by

Y

1− Y
.
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Monte Carlo methods

Causal quantities are typically average measures across a given
population, hence we often need to consider integrals with respect
to probability distributions.

Recall a simplified version of the calculation above: for any func-
tion g(.), we have

E[g(Y )] =

∫
g(y) fY (y) dy

=

∫
g(y) fY,X(y, x) dy dx

Rather than performing this calculation analytically using in-
tegration, we may consider approximating it numerically using
Monte Carlo.
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Monte Carlo methods

Monte Carlo integration proceeds as follows:

I generate a sample of size n from the density

fY (y)

to yield y1, . . . , yn; there are standard techniques to achieve
this.

I approximate E[g(Y )] by

Ê[g(Y )] =
1

n

n∑
i=1

g(yi).

I if n is large enough, Ê[g(Y )] provides a good
approximation to E[g(Y )]

1.5: The Monte Carlo paradigm 30



Monte Carlo methods

Note 4.

This calculation is at the heart of frequentist methods in statis-
tics:

I we collect a random sample of data of size n, and then
form estimates based on this sample which often
correspond to sample averages.

I if our sample is large enough, we are confident in our
results.
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Importance sampling

A variation on standard Monte Carlo is importance sampling: by
noting that

E[g(Y )] =

∫
g(y) fY (y) dy

=

∫
g(y)

fY (y)

f∗Y (y)
f∗Y (y) dy

we have that

EfY [g(Y )] ≡ Ef∗Y

[
g(Y )

fY (Y )

f∗Y (Y )

]
.

Here f∗Y (y) is some other density from we are able to sample.
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Importance sampling

Thus importance sampling proceeds as follows:

I generate a sample of size n from the density

f∗Y (y)

to yield y1, . . . , yn;

I approximate E[g(Y )] by

Ê[g(Y )] =
1

n

n∑
i=1

g(yi)
fY (yi)

f∗Y (yi)
.

1.5: The Monte Carlo paradigm 33



Importance sampling

This means that even if we do not have a sample from the distri-
bution of interest, fY , we can still compute averages with respect
to fY if we have access to a sample from a related distribution,
f∗Y .

Clearly, for the importance sampling computation to work, we
need that

fY (yi)

f∗Y (yi)

is finite for the required range of Y , which means that we must
have

f∗Y (y) > 0 whenever fY (y) > 0.
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Marginal and conditional measures of effect

Many of the causal measures described above are marginal mea-
sures, that is, they involve averaging over the distribution of pre-
dictors: for example

E[Y (z)] =

∫
y fY (z),X(y, x) dy dx

=

∫
y fY (z)|X(y|x)fX(x) dy dx

=

∫
y fY |Z,X(y|z, x)fX(x) dy dx

1.6: Collapsibility 35



Marginal and conditional measures of effect

Marginal measures are not typically the same as the equivalent
measure defined for the conditional model

fY |Z,X(y|z, x)

Marginal measures that do not have the same interpretation in
the conditional model are termed non-collapsible.

1.6: Collapsibility 36



Example: logistic regression

Consider the binary response, binary exposure regression model,
where

Pr[Y = 1|Z = z,X = x] =
exp{β0 + β1z + β2x}

1 + exp{β0 + β1z + β2x}
= µ(z, x;β)

say. We then have that in this conditional (on x) model, the
parameter

β1 = log

(
Pr[Y = 1|Z = 1, X = x]/Pr[Y = 0|Z = 1, X = x]

Pr[Y = 1|Z = 0, X = x]/Pr[Y = 0|Z = 0, X = x]

)
is the log odds ratio comparing outcome probabilities with for
Z = 1 and Z = 0 respectively.
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Example: logistic regression

In the marginal model, we wish to consider

Pr[Y = 1|Z = z]

directly, and from the specified conditional model we have

Pr[Y = 1|Z = z] =

∫
Pr[Y = 1|Z = z,X = x]fX(x) dx

assuming, for the moment, that Z and X are independent. Ex-
plicitly,

Pr[Y = 1|Z = z] =

∫
µ(z, x;β)fX(x) dx
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Example: logistic regression

Typically, the integral that defines Pr[Y = 1|Z = z] in this way
is not tractable. However, as, Y is binary, we may still consider
a logistic regression model in the marginal distribution, say pa-
rameterized as

Pr[Y = 1|Z = z] =
exp{θ0 + θ1z}

1 + exp{θ0 + θ1z}

where θ1 is the marginal log odds ratio.

In general, β1 6= θ1.
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The randomized study

The approach that intervenes to set exposure equal to z for all
subjects, however, does not facilitate comparison of APOs for
different values of z.

Therefore consider a study design based on randomization; con-
sider from simplicity the binary exposure case. Suppose that a
random sample of size 2n is obtained, and split into two equal
parts.

I the first group of n are assigned the exposure and form the
‘treated’ sample,

I the second half are left ‘untreated’.

1.7: The randomized study 40



The randomized study

For both the treated and untreated groups we may use the pre-
vious logic, and estimate the ATE

E[Yi(1)− Yi(0)] = E[Yi(1)]−E[Yi(0)]

by the difference in means in the two groups, that is

1

n

n∑
i=1

Yi −
1

n

2n∑
i=n+1

Yi.

The key idea here is that the two halves of the original sample are
exchangeable with respect to their properties; the only systematic
difference between them is due to exposure assignment.

1.7: The randomized study 41



The randomized study

In a slightly modified design, suppose that we obtain a random
sample of size n from the study population, but then assign ex-
posure randomly to subjects in the sample: subject i receives
treatment with probability p.

I if p = 1/2, then there is an equal chance of receiving
treatment or not;

I we may choose any value of 0 < p < 1.

In the final sample, the number treated, n1, is a realization of a
random variable N1 where

N1 ∼ Binomial(n, p).

1.7: The randomized study 42



The randomized study

This suggests the estimators

Ê[Y (z)] =

n∑
i=1

1z(Zi)Yi

n∑
i=1

1z(Zi)

z = 0, 1 (1)

where the indicators 1z(Zi) identify those individuals that re-
ceived treatment z.
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The randomized study

Note that for the denominator,

n∑
i=1

11(Zi) ∼ Binomial(n, p)

so we may consider replacing the denominators by their expected
values

np and n(1− p)

respectively for z = 0, 1. This yields the estimators

Ê[Y (1)] =
1

np

n∑
i=1

11(Zi)Yi Ê[Y (0)] =
1

n(1− p)

n∑
i=1

10(Zi)Yi.

(2)
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The randomized study

Note 5.

The estimators in (1) are more efficient than the estimators in
(2), that is, they have lower variances.

It is more efficient to use an estimated value of p

p̂ =
N1

n

than p itself.
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The randomized study

We have that

E[Y (z)] =

∫
y 1z(z) fY |Z,X(y|z, x)fX(x)fZ(z) dy dz dx∫

1z(z)fZ(z) dz

and we have taken the random sample from the joint density

fY |Z,X(y|z, x)fX(x)fZ(z)

which demonstrates that the estimators in (1) are akin to Monte Carlo
estimators.
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The challenge of confounding

The second main challenge of causal inference is that for non-
randomized (or observational, or non-experimental) studies, ex-
posure is not necessarily assigned according to a mechanism in-
dependent of other variables.

For example, it may be that exposure is assigned dependent on
one or more of the measured predictors. If these predictors also
predict outcome, then there is the possibility of confounding of
the causal effect of exposure by those other variables.

1.8: Confounding 47



The challenge of confounding

Specifically, in terms of densities, if predictor(s) X

I predicts outcome Y in the presence of Z:

fY |Z,X(y|z, x) 6= fY |Z(y|z)

and

I predicts exposure Z:

fZ|X(z|x) 6= fZ(z)

then X is a confounder.

1.8: Confounding 48



Confounding: example

Example: The effect of nutrition on health: revisited

The relationship between low vitamin E diet and CVD incidence
may be confounded by socio-economic status (SES); poorer indi-
viduals may have worse diets, and also may have higher risk of
cardiovascular incidents via mechanisms other than those deter-
mined by diet:

I smoking;

I pollution;

I access to preventive measures/health advice.

1.8: Confounding 49



Confounding

Confounding is a central challenge as it renders the observed
sample unsuitable for causal comparisons unless adjustments are
made:

I in the binary case, if confounding is present, the treated
and untreated groups are not directly comparable;

I the effect of confounder X on outcome is potentially
different in the treated and untreated groups.

I direct comparison of sample means does not yield valid
insight into average treatment effects;

Causal inference is fundamentally about comparing exposure sub-
groups on an equal footing, where there is no residual influence
of the other predictors. This is possible in the randomized study
as randomization breaks the association between Z and X.

1.8: Confounding 50



Confounding and collapsibility

Note 6.

Confounding is not the same as non-collapsibility.

I Non-collapsibility concerns the measures of effect being
reported, and the parameters being estimated; parameters
in a marginal model do not in general correspond to
parameters in a conditional model.

Non-collapsibility is a property of the model, not the study
design. It may be present even for a randomized study.

I Confounding concerns the inter-relationship between
outcome, exposure and confounder. It is not
model-dependent, and does depend on the study design.
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Simple confounding example

Suppose that Y,Z and X are all binary variables. Suppose that
the true (structural) relationship between Y and (Z,X) is given
by

E[Y |Z = z,X = x] = Pr[Y = 1|Z = z,X = x] = 0.2+0.2z−0.1x

with Pr[X = 1] = q. Then, by iterated expectation

E[Y (z)] = 0.2 + 0.2 z − 0.1q

and
E[Y (1)− Y (0)] = 0.2.
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Simple confounding example

Suppose also that in the population from which the data are
drawn

Pr[Z = 1|X = x] =

{
p0 x = 0

p1 x = 1
= (1− x)p0 + xp1.

in which case
Pr[Z = 1] = (1− q)p0 + qp1.
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Simple confounding example

If we consider the estimators in (2)

Ê[Y (1)] =
1

np

n∑
i=1

11(Zi)Yi Ê[Y (0)] =
1

n(1− p)

n∑
i=1

10(Zi)Yi

and set p = (1− q)p0 + qp1, we see that for the first term

EY,Z,X [11(Z)Y ] = EZ,X [11(Z)EY |Z,X [Y |Z,X]]

= EZ,X [11(Z)(0.2 + 0.2Z − 0.1X)]

= 0.2EX [EZ|X [11(Z)|X]]

+ 0.2EX [EZ|X [11(Z)Z|X]]

− 0.1EX [XEZ|X [11(Z)|X])]
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Simple confounding example

Now

EZ|X [11(Z)|X] = EZ|X [11(Z)Z|X]

≡ Pr[Z = 1|X] = (1−X)p0 +Xp1

and

EX [EZ|X [11(Z)|X]] = (1− q)p0 + qp1 = p

EX [EZ|X [11(Z)Z|X]] = (1− q)p0 + qp1 = p

EX [XEZ|X [11(Z)|X])] = qp1

and therefore

EY,Z,X [11(Z)Y ] = 0.4p− 0.1qp1.
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Simple confounding example

∴ E

[
1

np

n∑
i=1

11(Zi)Yi

]
=

0.4p− 0.1p1
p

By a similar calculation, as 10(Z) = 1− 11(Z),

EX [EZ|X [10(Z)|X]] = 1− p

EX [EZ|X [10(Z)Z|X]] = 0

EX [XEZ|X [10(Z)|X])] = q(1− p1)

so

E

[
1

n(1− p)

n∑
i=1

10(Zi)Yi

]
=

0.2(1− p)− 0.1q(1− p1)
1− p
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Simple confounding example

Finally, therefore ATE estimator

Ê[Y (1)]− Ê[Y (0)]

has expectation

0.4p− 0.1qp1
p

− 0.2(1− p)− 0.1q(1− p1)
1− p

which equals

0.2− 0.1q

{
p1
p
− 1− p1

1− p

}
and therefore the unadjusted estimator based on (2) is biased.
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Simple confounding example

The bias is caused by the fact that the two subsamples with

Z = 0 and Z = 1

are not directly comparable - they have a different profile in terms
of X; by Bayes theorem

Pr[X = 1|Z = 1] =
p1q

p
Pr[X = 1|Z = 0] =

(1− p1)q
1− p

so, here, conditioning on Z = 1 and Z = 0 in turn in the compu-
tation of (2), leads to a different composition of X values in the
two subsamples.

As X structurally influences Y , this renders the resulting Y val-
ues not directly comparable.
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Instruments

If predictor Z̃ predicts Z, but does not predict Y in the presence
of Z, then Z̃ is termed an instrument.

Example: Non-compliance

In a randomized study of a binary treatment, if Zi records the
treatment actually received by individual i, suppose that there
is non-compliance with respect to the treatment; that is, if Z̃i
records the treatment assigned by the experimenter, then possi-
bly

z̃i 6= zi.

Then Z̃i predicts Zi, but is not associated with outcome Yi given
Zi.
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Instruments

Instruments are not confounders as they do not predict outcome
once the influence of the exposure has been accounted for.

Suppose in the previous confounding example, we had

E[Y |Z = z,X = 0] = Pr[Y = 1|Z = z,X = 1] = 0.2 + 0.2z

for the structural model, but

Pr[Z = 1|X] = (1−X)p0 +Xp1.

Then X influences Z, and there is still an imbalance in the two
subgroups indexed by Z with respect to the X values, but as X
does not influence Y , there is no bias if the ATE estimator based
on (2) is used.
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Critical Assumption

An important assumption that is commonly made is that of

No unmeasured confounding

that is, the measured predictors X include (possibly as a subset)
all variables that confound the effect of Z on Y .

We must assume that all variables that simultaneously influence
exposure and outcome have been measured in the study.

This is a strong (and possibly unrealistic) assumption in practical
applications. It may be relaxed and the influence of unmeasured
confounders studied in sensitivity analyses.
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Model-based analysis

So far, estimation based on the data via (1) and (2) has proceeded
in a nonparametric or model-free fashion.

I models such as
fY (z),X(y, x)

have been considered, but not modelled parametrically.

We now consider semiparametric specifications, specifically mod-
els where parametric models for example for

E[Y (z)|X]

are considered.
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Correct model specification

Suppose we posit an outcome conditional mean model

E[Y |Z,X] = µ(Z,X)

that may be parametric in nature, say

E[Y |Z,X;β] = µ(Z,X;β)

which perhaps might be linear in β, or a monotone transform of
a linear function of β.
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The importance of ‘no unmeasured confounders’

An important consequence of the no unmeasured confounders
assumption is that we have the equivalence of the conditional
mean structural and observed-data outcome models, that is

E[Y (z)|X] and E[Y |X,Z = z]

when this model is correctly specified.
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Inference under correct specification

We might (optimistically) assume that the model E[Y |Z,X] is
correctly specified, and captures the true relationship.

If this is, in fact, the case, then

No special (causal) techniques are needed to estimate
the causal effect.

That is, we may simply use regression of Y on (Z,X) using mean
model E[Y |Z,X].
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Inference under correct specification

To estimate the APO, we simply set

Ê[Y (z)] =
1

n

n∑
i=1

µ(z, Xi) (3)

and derive other estimates from this: if µ(z, x) correctly captures
the relationship of the outcome to the exposure and confounders,
then the estimator in (3) is consistent.
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Inference under correct specification

The third challenge of causal inference is that

correct specification cannot be guaranteed.

I we may not capture the relationship between Y and (Z,X)
correctly.
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Part 2

The Propensity Score

68



Constructing a balanced sample

Recall the randomized trial setting in the case of a binary expo-
sure.

I we obtain a random sample of size n of individuals from
the target population, and measure their X values;

I according to some random assignment procedure, we
intervene to assign treatment Z to individuals, and
measure their outcome Y ;

I the link between X and Z is broken by the random
allocation.
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Constructing a balanced sample

Recall that this procedure led to the valid use of the estimators
of the ATE based on (1) and (2).

The important feature of the randomized study is that we have,
for confounders X (indeed all predictors)

fX|Z(x|1) ≡ fX|Z(x|0) for all x,

or equivalently, in the case of a binary confounder,

Pr[X = 1|Z = 1] = Pr[X = 1|Z = 0].
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Constructing a balanced sample

The distribution of X is balanced across the two exposure groups;
this renders direct comparison of the outcomes possible. Proba-
bilistically, X and Z are independent.

In a non-randomized study, there is a possibility that the two
exposure groups are not balanced

fX|Z(x|1) 6= fX|Z(x|0) for some x,

or in the binary case

Pr[X = 1|Z = 1] 6= Pr[X = 1|Z = 0].

If X influences Y also, then this imbalance renders direct com-
parison of outcomes in the two groups impossible.
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Constructing a balanced sample

Whilst global balance may not be present, it may be that ‘local’
balance, within certain strata within the sample, may be present.

That is, for x ∈ S say, we might have balance; within S, X is
independent of Z.

fX|Z:S(x|1 : x ∈ S) = fX|Z(x|0 : x ∈ S)

Then, for individuals who have X values in S, there is the possi-
bility of direct comparison of the treated and untreated groups.

We might then restrict attention to causal statements relating to
stratum S.
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Constructing a balanced sample

For discrete confounders, we might consider defining strata where
the X values are precisely matched, and then comparing treated
and untreated within those strata.

Consider matching strata S1, . . . ,SK . We would then be able to
compute the ATE by noting that

E[Y (1)− Y (0)] =

K∑
k=1

E[Y (1)− Y (0)|X ∈ Sk] Pr[X ∈ Sk]

I E[Y (1)− Y (0)|X ∈ Sk] may be estimated
nonparametrically from the data by using (1) or (2) for
data restricted to have x ∈ Sk.

I Pr[X ∈ Sk] may be estimated using the empirical
proportion of x that lie in Sk.
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Constructing a balanced sample

For continuous confounders, we might consider the same strategy:
consider matching strata S1, . . . ,SK . Then the formula

E[Y (1)− Y (0)] =

K∑
k=1

E[Y (1)− Y (0)|X ∈ Sk] Pr[X ∈ Sk]

still holds. However

I we must assume a model for how E[Y (1)− Y (0)|X ∈ Sk]
varies with x for x ∈ Sk.

In both cases, inference is restricted to the set of X space con-
tained in

K⋃
k=1

Sk.
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Constructing a balanced sample

In the continuous case, the above calculations depend on the
assumption that the treatment effect is similar for x values that
lie ‘close together’ in predictor (confounder) space. However

I. Unless we can achieve exact matching, then the term ‘close
together’ needs careful consideration.

II. If X is moderate or high-dimensional, there may be
insufficient data to achieve adequate matching to facilitate
the estimation of the terms

E[Y (1)− Y (0)|X ∈ Sk];

recall that we need a large enough sample of treated and
untreated subjects in stratum Sk.

Nevertheless, matching in this fashion is an important tool in
causal comparison.
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Balance via the propensity score

We now introduce the important concept of the propensity score
that facilitates causal comparison via a balancing approach.

Recall that our goal is to mimic the construction of the random-
ized study that facilitates direct comparison between treated and
untreated groups. We may not be able to achieve this globally,
but possibly can achieve it locally in strata of X space.

The question is how to define these strata.
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Balance via the propensity score

Recall that in the binary exposure case, balance corresponds to
being able to state that within S, X is independent of Z:

fX|Z:S(x|1 : x ∈ S) = fX|Z(x|0 : x ∈ S)

This can be achieved if S is defined in terms of a statistic, e(X)
say. That is, we consider the conditional distribution

fX|Z,e(X)(x|z, e)

and attempt to ensure that, given e(X) = e, Z is independent
of X, so that within strata of e(X), the treated and untreated
groups are directly comparable.
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Balance via the propensity score

By Bayes theorem, for z = 0, 1, we have that

fX|Z,e(X)(x|z, e) =
fZ|X,e(X)(z|x, e)fX|e(X)(x|e)

fZ|e(X)(z|e)
(4)

Now, as Z is binary, we must be able to write the density in the
denominator as

fZ|e(X)(z|e) = p(e)z(1− p(e))1−z z ∈ 0, 1

where p(e) is a probability, a function of the fixed value e, and
where p(e) > 0.
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Balance via the propensity score

Therefore, in order to make the density fX|Z,e(X)(x|z, e) function-
ally independent of z, and achieve the necessary independence,
we must have that

fZ|X,e(X)(z|x, e) = p(e)z(1− p(e))1−z z ∈ 0, 1

also. But e(X) is a function of X, so automatically we have that

fZ|X,e(X)(z|x, e) ≡ fZ|X(z|x).

Therefore, we require that

fZ|X(z|x) = fZ|X(z|x, e) = p(e)z(1− p(e))1−z ≡ fZ|e(X)(z|e)

for all relevant z, x.
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Balance via the propensity score

This can be achieved by choosing the statistic

e(x) = fZ|X(1|x) = PrZ|X [Z = 1|x]

and setting p(.) to be the identity function, so that

fZ|X(z|x) = ez(1− e)1−z z = 0, 1.

More generally, choosing e(x) to be some monotone transform of
fZ|X(1|x) would also achieve the same balance.

The corresponding random variable e(X) defines the strata via
which the causal calculation can be considered.
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Balance via the propensity score

The function e(x) defined in this way is the propensity score1. It
has the following important properties

(i) as seen above, it is a balancing score; conditional on e(X),
X and Z are independent.

(ii) it is a scalar quantity, irrespective of the dimension of X.

(iii) in noting that for balance we require that

fZ|X(z|x) ≡ fZ|e(X)(z|e),

the above construction demonstrates that if ẽ(X) is
another balancing score, then e(X) is a function of ẽ(X);

I that is, e(X) is the ‘coarsest’ balancing score.

1 see Rosenbaum & Rubin (1983), Biometrika
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Evaluating the propensity score

To achieve balance we must have

e(X) = Pr[Z = 1|X]

correctly specified; that is, for confounders X, we must precisely
specify the model Pr[Z = 1|X].

I If X comprises entirely discrete components, then we may
be able to estimate Pr[Z = 1|X] entirely nonparametrically,
and satisfactorily if the sample size is large enough.

I If X has continuous components, it is common to use
parametric modelling, with

e(X;α) = Pr[Z = 1|X;α].

Balance then depends on correct specification of this
model.
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Unconfoundedness given the propensity score

The assumption of ‘no unmeasured confounders’ amounts to as-
suming that the potential outcomes are jointly independent of
exposure assignment given the confounders, that is

{Y (0), Y (1)} ⊥ Z |X

that is, in terms of densities

fY (z),Z|X(y, z|x) = fY (z)|X(y|x)fZ|X(z|x)

= fY |Z,X(y|z, x)fZ|X(z|x).
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Unconfoundedness given the propensity score

Now consider conditioning on propensity score e(X) instead of
X: we have by factorization that

fY (z),Z|e(X)(y, z|e) =
1

fe(X)(e)

∫
Se
fY (z),Z,X(y, z, x) dx

where Se is the set of x values

Se ≡ {x : e(x) = e}

that yield a propensity score value equal to the value e.
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Unconfoundedness given the propensity score

Now we have by unconfoundness given X that

fY (z),Z,X(y, z, x) = fY (z)|X(y|x)fZ|X(z|x)fX(x)

and on the set Se, we have

fZ|X(z|x) = ez(1− e)1−z ≡ fZ|e(X)(z|e).
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Unconfoundedness given the propensity score

Therefore, recalling the Se is defined via the fixed constant e,∫
Se
fY (z),Z,X(y, z, x) dx =

∫
Se
fY (z)|X(y|x)ez(1− e)1−zfX(x) dx

= ez(1− e)1−z
∫
Se
fY (z)|X(y|x)fX(x) dx

= fZ|e(X)(z|e)fY (z)|e(X)(y|e).

Hence

fY (z),Z|e(X)(y, z|e) =
1

fe(X)(e)
fZ|e(X)(z|e)fY (z)|e(X)(y|e)

and so
Y (z) ⊥ Z | e(X) for all z.

2.2: The propensity score for binary exposures 86



Estimation using the propensity score

We now consider the same stratified estimation strategy as be-
fore, but using e(X) instead X to stratify.

Consider strata S1, . . . ,SK defined via e(X). In this case, recall
that

0 < e(X) < 1

so we might consider an equal quantile partition, say using quin-
tiles.

Then we have

E[Y (1)− Y (0)] =

K∑
k=1

E[Y (1)− Y (0)|e(X) ∈ Sk] Pr[e(X) ∈ Sk]

still holds approximately if the Sk are small enough.
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Estimation using the propensity score

This still requires us to be able to estimate

E[Y (1)− Y (0)|e(X) ∈ Sk]

which requires us to have a sufficient number of treated and un-
treated individuals with e(X) ∈ Sk to facilitate the ‘direct com-
parison’ within this stratum.

If the expected responses are constant across the stratum, the
formulae (1) and (2) may be used.
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Matching

The derivation of the propensity score indicates that it may be
used to construct matched individuals or groups that can be com-
pared directly.

I if two individuals have precisely the same value of e(x),
then they are exactly matched;

I if one of the pair is treated and the other untreated, then
their outcomes can be compared directly, as any imbalance
between their measured confounder values has been
removed by the fact that they are matched on e(x);

I this is conceptually identical to the standard procedure of
matching in two-group comparison.
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Matching

For an exactly matched pair (i1, i0), treated and untreated re-
spectively, the quantity

yi1 − yi0
is an unbiased estimate of the ATE

E[Y (1)− Y (0)];

more typically we might choose m such matched pairs, usually
with different e(x) values across pairs, and use the estimate

1

m

m∑
i=1

(yi1 − yi0)
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Matching

Exact matching is difficult to achieve, therefore we more com-
monly attempt to achieve approximate matching

I May match one treated to M untreated (1 : M matching)

I caliper matching;

I nearest neighbour/kernel matching;

I matching with replacement.

Most standard software packages have functions that provide au-
tomatic matching using a variety of methods.
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Beyond binary exposures

The theory developed above extends beyond the case of binary
exposures.

Recall that we require balance to proceed with causal compar-
isons; essentially, with strata defined using X or e(X), the dis-
tribution of X should not depend on Z.

We seek a scalar statistic such that, conditional on the value of
that statistic, X and Z are independent. In the case of general
exposures, we must consider balancing scores that are functions
of both Z and X.
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Beyond binary exposures

For a balancing score b(Z,X), we require that

X ⊥ Z | b(Z,X).

We denote B = b(Z,X) for convenience.

Consider the conditional distribution fZ|X,B(z|x, b): we wish to
demonstrate that

fZ|X,B(z|x, b) = fZ|B(z|b) for all z, x, b.

That is, we require that B completely characterizes the condi-
tional distribution of Z given X.
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Beyond binary exposures

This can be achieved by choosing the statistic

b(z, x) = fZ|X(z|x)

in line with the choice in the binary case.

The balancing score defined in this way is termed the

Generalized Propensity Score

which is a balancing score for general exposures.
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Beyond binary exposures

Note, however, that this choice that mimics the binary exposure
case is not the only one that we might make. The requirement

fZ|X,B(z|x, b) = fZ|B(z|b)

for all relevant z, x is met if we define b(Z,X) to be any sufficient
statistic that characterizes the conditional distribution of Z given
X.

It may be possible, for example, to choose functions purely of X.
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Beyond binary exposures

Example: Normally distributed exposures

Suppose that continuous valued exposure Z is distributed as

Z|X = x ∼ Normal(xα, σ2)

for row-vector confounder X. We have that

fZ|X(z|x) =
1√

2πσ2
exp

{
− 1

2σ2
(z − xα)2

}
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Beyond binary exposures

Example: Normally distributed exposures

We might therefore choose

b(Z,X) =
1√

2πσ2
exp

{
− 1

2σ2
(Z −Xα)2

}
.

However, the linear predictor

b(X;α) = Xα

also characterizes the conditional distribution of Z given X; if
we know that xα = b, then

Z|X = x ≡ Z|B = b ∼ Normal(b, σ2).

In both cases, parameters α are to be estimated.
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Beyond binary exposures

The generalized propensity score inherits all the properties of the
standard propensity score;

I it induces balance;

I if the potential outcomes and exposure are independent
given X under the unconfoundeness assumption, they are
also independent given b(Z,X).

However, how exactly to use the generalized propensity score in
causal adjustment for continuous exposures is not clear.
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Propensity Score Regression

Up to this point we have considered using the propensity score
for stratification, that is, to produce directly comparable groups
of treated and untreated individuals.

Causal comparison can also be carried out using regression tech-
niques: that is, we consider building an estimator of the APO
by regressing the outcome on a function of the exposure and the
propensity score.

Regressing on the propensity score is a means of controlling the
confounding.
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Propensity Score Regression

If we construct a model

E[Y |Z = z, b(Z,X) = b] = µ(z, b)

then because potential outcomes Y (z) and Z are independent
given b(Z,X), we have

E[Y (z)|b(Z,X) = b] = E[Y |Z = z, b(z, X) = b] = µ(z, b)

and therefore

E[Y (z)] = Eb(z,X)[E[Y |Z = z, b(z, X)] = Eb(z,X)[µ(z, b(z, X))].
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Propensity Score Regression

That is, to estimate the APO, we might

I fit the propensity score model b(Z,X) to the observed
exposure and confounder data by regressing Z on X;

I fit the conditional outcome model µ(z, b) using the fitted
b(Z,X) values, b̂(zi, xi);

I for each z of interest, estimate the APO by

1

n

n∑
i=1

µ̂(z, b̂(z, xi)).
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Propensity Score Regression

If the propensity function b(Z,X) ≡ b(X), we proceed similarly,
and construct a model

E[Y |Z = z, b(X) = b] = µ(z, b)

then

E[Y (z)|b(X) = b] = E[Y |Z = z, b(X) = b] = µ(z, b)

and therefore

E[Y (z)] = Eb(X)[E[Y |Z = z, b(X)] = Eb(X)[µ(z, b(X))].

2.5: Propensity score regression 102



Propensity Score Regression

To estimate the APO:

I fit the propensity score model b(X) to the observed
exposure and confounder data by regressing Z on X;

I fit the conditional outcome model µ(z, b) using the fitted
b(X) values, b̂(xi);

I for each z of interest, estimate the APO by

1

n

n∑
i=1

µ̂(z, b̂(xi)).
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Example: Binary Exposure

We specify

I e(X;α) = Pr[Z = 1|X,α] then regress Z on X to obtain α̂
and fitted values ê(X) ≡ e(X; α̂).

I E[Y |Z = z, e(X) = e;β] = µ(z, e;β) and estimate this
model by regressing yi on zi and ê(xi). For example, we
might have that

E[Y |Z = zi, e(Xi) = ei;β] = β0 + β1zi + β2ei.

This returns β̂.

We finally compute the predictions under this model, and average
them to obtain the APO estimate

Ê[Y (z)] =
1

n

n∑
i=1

µ(z, ê(xi); β̂).
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Example: Continuous Exposure

In the case of a continuous exposure, we have a parametric prob-
ability density for the exposure

b(Z,X;α) = fZ|X(Z|X;α)

for which we estimate α by regressing Z on X to obtain α̂ and
fitted values b̂(Z,X) ≡ b(Z,X; α̂).

Then we specify outcome model

E[Y |Z = z, b(X) = b;β] = µ(z, b;β)

and estimate this model by regressing yi on zi and b̂(zi, xi).
Again, we might have that

E[Y |Z = zi, b(Zi, Xi) = bi;β] = β0 + β1zi + β2bi.

This returns β̂.
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Example: Binary Exposure

We then compute the predictions under this model, and average
them to obtain the APO estimate

Ê[Y (z)] =
1

n

n∑
i=1

µ(z, b̂(z, xi); β̂).

Note that here the propensity terms that enter into µ are com-
puted at the target z values

not the observed exposure values.
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Propensity Score Regression

These procedures require us to make two modelling choices:

I the propensity model, b(Z,X) or b(X);

I the outcome mean model µ(z, b).

Unfortunately, both models must be correctly specified for con-
sistent inference.

Misspecification of the outcome mean model will lead to bias; this
model needs to capture the outcome to exposure and propensity
function relationship correctly.
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Weighting approaches

For a causal quantity of interest, we focus on he APO

E[Y (z)] =

∫
y fY (z),X(y, x) dy dx

that is, the average outcome, over the distribution of the con-
founders and predictors, if we hypothesize that the intervention
sets the exposure to z.

We now study methods that utilize the components already de-
scribed, including the propensity score, but in a different fashion;

I instead of accounting for confounding by balancing through
matching, we aim to achieve balance via weighting
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Average potential outcome

If we could intervene at the population level to set Z = z for all
individuals independently of their X value, we might rewrite this
as

E[Y (z)] =

∫
y1z(z) fY (z),X(y, x) dy dz dx

and take a random sample from the population with density

1z(z) fY (z),X(y, x) ≡ 1z(z) fY |Z,X(y|z, x)fX(x).

We could then construct the ‘Monte Carlo’ estimator

Ê[Y (z)] =
1

n

n∑
i=1

Yi

as Zi = z for all i.

2.6: Adjustment by weighting 109



Average potential outcome: Experimental study

In a randomized (experimental) study, suppose that exposure
Z = z is assigned with probability determined by fZ(z). Then

E[Y (z)] =

∫
y 1z(z) fY (z),X(y, x)fZ(z) dy dz dx∫
1z(z) fY (z),X(y, x)fZ(z) dy dz dx

=

∫
y 1z(z) fY |Z,X(y|z, x)fX(x)fZ(z) dy dz dx∫

1z(z)fZ(z) dz
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Average potential outcome: Experimental study

This suggests the Monte Carlo estimators

Ê[Y (z)] =

n∑
i=1

1z(Zi)Yi

n∑
i=1

1z(Zi)

or Ê[Y (z)] =
1

nfZ(z)

n∑
i=1

1z(Zi)Yi.
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Average potential outcome: Observational study

Denote by PE the probability measure for samples drawn under
the experimental measure corresponding to the density

fEY |Z,X(y|z, x)fEX(x)fEZ(z).

Now consider the case where the data arise from the observational
(non-experimental) measure PO( dy, dz, dx).

We have

E[Y (z)] =
1

fEZ(z)

∫
y1z(z) PE( dy, dz, dx)

=
1

fEZ(z)

∫
y1z(z)

PE( dy, dz, dx)

PO( dy, dz, dx)︸ ︷︷ ︸
1

PO( dy, dz, dx).
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Average potential outcome: Observational study

In terms of densities 1 becomes

fEY |Z,X(y|z, x)fEZ(z)fEX(x)

fOY |Z,X(y|z, x)fOZ|X(z|x)fOX (x)

=
fEY |Z,X(y|z, x)

fOY |Z,X(y|z, x)
×

fEZ(z)

fOZ|X(z|x)
×
fEX(x)

fOX (x)

I for the first term, we assume that

fEY |Z,X(y|z, x)

fOY |Z,X(y|z, x)
= 1 for all y, z, x;

this is essentially a no unmeasured confounders assumption.

I the third term equals 1 by assumption.
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Experimental vs observational sampling

The second term
fEZ(z)

fOZ|X(z|x)

constitutes a weight that appears in the integral that yields the
desired APO; the term

1

fOZ|X(z|x)

accounts for the imbalance that influences the confounding and
measures the difference between the observed sample and a hy-
pothetical idealized randomized sample.
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Estimation

This suggests the (nonparametric) estimators

Ê[Y (z)] =
1

n

n∑
i=1

1z(Zi)Yi

fOZ|X(Zi|Xi)
(IPW0)

which is unbiased, or

Ê[Y (z)] =

n∑
i=1

1z(Zi)Yi

fOZ|X(Zi|Xi)

n∑
i=1

1z(Zi)

fOZ|X(Zi|Xi)

(IPW)

which is consistent, each provided fOZ|X(.|.) correctly specifies the

conditional density of Z given X for all (z, x).
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Inverse weighting and the propensity score

Note 7.

Inverse weighting constructs a pseudo-population in which there
are no imbalances on confounders between the exposure groups.
The pseudo-population is balanced, as required for direct com-
parison of treated and untreated groups.

Note 8.

The term in the denominator of the components of the sum is
fOZ|X(Zi|Xi), that is, the probability model that captures the
conditional model for Zi given Xi. If Zi is binary, this essentially
reduces to

e(Xi)
Zi(1− e(Xi))

1−Zi

where e(.) is the propensity score as defined previously.
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Positivity

Note 9.

It is evident that we must have

fOZ|X(Zi|Xi) > 0

with probability 1 for this calculation to be valid.

This is commonly assumed, and is termed the positivity or

experimental treatment assignment

assumption.

Note 10.

The inverse weighting procedure can also be justified from a
weighted likelihood perspective.
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Estimation via Augmentation

We may write

E[Y (z)] = E[Y (z)− µ(z, X)] +E[µ(z, X)]

where µ(z, x) = E[Y |Z = z,X = x].

We have the alternate estimator

Ê[Y (z)] =
1

n

n∑
i=1

1z(Zi)(Yi − µ(Zi, Xi))

fOZ|X(Zi|Xi)
+

1

n

n∑
i=1

µ(z, Xi)

(AIPW)
and

VarAIPW ≤ VarIPW.

Furthermore, (AIPW) is doubly robust (i.e. consistent even if
one of fOZ|X(z|x) and µ(z, x) is misspecified).
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Properties under misspecification

Implementing (AIPW) relies on specification of the components

fOZ|X(z|x) µ(z, x).

Suppose that, in reality, the correct specifications are

f̃Z|X(z|x) µ̃(z, x).

Then the bias of (AIPW) is

E

[
(fOZ|X(z|X)− f̃Z|X(z|X))(µ(z, X)− µ̃(z, X))

fOZ|X(z|X)

]
(5)

which is zero if

fOZ|X ≡ f̃Z|X or µ(z, x) ≡ µ̃(z, x)

that is, (AIPW) is doubly robust.
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Properties under misspecification

Asymptotically, for estimators that are sample averages, the vari-
ance of the estimator converges to zero under standard condi-
tions.

Therefore in large samples it is the magnitude of the bias as given
by (5) that determines the quality of the estimator.

I equation (5) demonstrates that misspecification in the
functions µ(z, x) and fOZ|X play equal roles in the bias.
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Parametric modelling: two-stage approach

In the formulation, the nonparametric models

fOZ|X(z|x) µ(z, x)

are commonly replaced by parametric models

fOZ|X(z|x;α) µ(z, x;β) =

∫
y fOY |Z,X(y|z, x;β) dy.

Parameters (α, β) are estimated from the observed data by re-
gressing

I Stage I: Z on X using (zi, xi), i = 1, . . . , n,

I Stage II: Y on (Z,X) using (yi, zi, xi), i = 1, . . . , n

and using plug-in version of (IPW) and (AIPW).
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The estimated propensity score

Note 11.

It is possible to conceive of situations where the propensity-type
model

fOZ|X(z|x) or fOZ|X(z|x;α)

is known precisely and does not need to be estimated.

This is akin to the randomized study where the allocation proba-
bilities are fixed by the experimenter. It can be shown that using
estimated quantities

f̂OZ|X(z|x) or fOZ|X(z|x; α̂)

yields lower variances for the resulting estimators than if the
known quantities are used.
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Alternative view of augmentation

Scharfstein et al. (1999), Bang & Robins (2005) write the esti-
mating equation yielding (AIPW) as

n∑
i=1

1z(Zi)

fOZ|X(Zi|Xi)
(Yi − µ(Zi, Xi)) +

n∑
i=1

{µ(z, Xi)− µ(z)} = 0
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Alternative view of augmentation

The first summation is a component of the score obtained when
performing OLS regression for Y with mean function

µ(z, x) = µ0(z, x) + ε
1z(z)

fOZ|X(z|x)
.

and µ0(z, x) is a conditional mean model, and ε is a regression
coefficient associated with the derived predictor

1z(z)

fOZ|X(z|x)
.
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Alternative view of augmentation

Therefore, estimator (AIPW) can be obtained by regressing Y
on (X,Z) for fixed z using the mean specification µ(z, x), and
forming the estimator

1

n

n∑
i=1

{
µ0(Zi, Xi) + ε̂

1z(Zi)

fOZ|X(Zi|Xi)

}
.

In a parametric model setting, this becomes

1

n

n∑
i=1

{
µ0(Zi, Xi; β̂) + ε̂

1z(Zi)

fOZ|X(Zi|Xi; α̂)

}

where α is estimated from Stage (I), and β is estimated along
with ε in the secondary regression.
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Augmentation and contrasts

The equivalent to (AIPW) for estimating the ATE for binary
treatment

E[Y (1)]−E[Y (0)]

is merely Ê[Y (1)]− Ê[Y (0)] or

1

n

n∑
i=1

[
11(Zi)

fOZ|X(1|Xi)
− 10(Zi)

fOZ|X(0|Xi)

]
(Yi − µ(Zi, Xi))

+
1

n

n∑
i=1

{µ(1, Xi)− µ(0, Xi)} .
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Augmentation and contrasts

Therefore we can repeat the above argument and base the con-
trast estimator on the regression of Y on (X,Z) using the mean
specification

µ(z, x) = µ0(z, x) + ε

[
11(z)

fOZ|X(1|x)
− 10(z)

fOZ|X(0|x)

]
or

µ(z, x) = µ0(z, x) +

[
ε1

11(z)

fOZ|X(1|x)
− ε0

10(z)

fOZ|X(0|x)

]
.
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Statistical modelling tools

Causal inference typically relies on reasonably standard statisti-
cal tools:

1. Standard distributions:

I Normal;
I Binomial;
I Time-to-event distributions (Exponential, Weibull etc.)

2. Regression tools:

I linear model/ordinary least squares;
I generalized linear model, typically linear regression;
I survival models.
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Pooled logistic regression

For a survival outcome, pooled logistic regression is often used.

The usual continuous survival time outcome is replaced by a dis-
crete, binary outcome;

I this is achieved by partitioning the outcome space into
short intervals,

(0, t1], (t1, t2], . . .

and assuming that the failure density is approximately
constant in each interval.

I using a hazard parameterization, we have that

Pr[Failure in (tj−1, tj ]|No failure before tj−1] = qj

which converts each single failure time outcome into a
series of binary responses, with 0 recording ‘no failure’ and
1 recording ‘failure’.
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Semiparametric estimation

Semiparametric models based on estimating equations are typi-
cally used:

I such models make no parametric assumptions about the
distributions of the various quantities, but instead make
moment restrictions;

I resulting estimators inherit good asymptotic properties;

I variance of estimators typically estimated in a ‘robust’
fashion using the sandwich estimator of the asymptotic
variance.
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Key considerations

In light of the previous discussions, in order to facilitate causal
comparisons, there are several key considerations that practition-
ers must take into account.

1. The importance of no unmeasured confounding.

When considering the study design, it is essential for valid
conclusions to have measured and recorded all confounders.
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Key considerations

2. Model construction for the outcome regression.

I ideally, the model for the expected value of Y given Z and
X, µ(z, x), should be correctly specified, that is, correctly
capture the relationship between outcome and the other
variables.

I if this can be done, then no causal adjustments are
necessary.

I conventional model building techniques (variable selection)
can be used; this will prioritize predictors of outcome and
therefore will select all confounders;

I however, in finite sample, this method may omit weak
confounders that may lead to bias.
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Key considerations

3. Model construction for the propensity score.
Ideally, the model for the (generalized) propensity score,
e(x) or b(z, x), should be correctly specified, that is,
correctly capture the relationship between the exposure
and the confounders. We focus on

3.1 identifying the confounders;
3.2 ignoring the instruments: instruments do not predict the

outcome, therefore cannot be a source of bias (unless there
is unmeasured confounding) - however they can increase the
variability of the resulting propensity score estimators.

3.3 the need for the specified propensity model to induce
balance;

3.4 ensuring positivity, so that strata constructed from the
propensity score have sufficient data within them to
facilitate comparison;

3.5 effective model selection.
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Key considerations

Note 12.

Conventional model selection techniques (stepwise selection, se-
lection via information criteria, sparse selection) should not be used
when constructing the propensity score.

This is because such techniques prioritize the accurate prediction
of exposure conditional on the other predictors; however, this is
not the goal of the analysis.

These techniques may merely select strong instruments and omit
strong predictors of outcome that are only weakly associated with
exposure.
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Key considerations

Note 13.

An apparently conservative approach is to build rich (highly pa-
rameterized) models for both µ(z, x) and e(x).

This approach prioritizes bias elimination at the cost of

variance inflation.
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Key considerations

4. The required measure of effect.
Is the causal measure required

I a risk difference ?
I a risk ratio ?
I an odds ratio ?
I an ATT, ATE or APO ?
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Longitudinal studies

It is common for studies to involve multiple longitudinal mea-
surements of exposure, confounders and outcomes.

In this case, the possible effect of confounding of the exposure
effect by the confounders is more complicated.

Furthermore, we may be interested in different types of effect:

I the direct effect: the effect of exposure in any given interval
on the outcome in that interval, or the final observed
outcome;

I the total effect: the effect of exposure aggregated across
intervals final observed outcome;
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Illustration

Possible structure across five intervals:
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//

��

��

X2
//

��

��

X3
//

��

��

X4
//

��

��

X5

��

��

Z1
//

((

Z2
//

((

Z3
//

((

Z4
//

((

Z5

((
Y1 //

@@

Y2 //

@@

Y3 //

@@

Y4 //

@@

Y5

4.1: Longitudinal studies 140



Mediation and time-varying confounding

I The effect of exposure on later outcomes may be mediated
through variables measured at intermediate time points

I for example, the effect of exposure Z1 may have a direct
effect on Y1 that is confounded by X1; however, the effect of
Z1 on Y2 may also be non-negligible. This effect is mediated
via X2.

I There may be time-varying confounding;
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Multivariate versions of the propensity score

The propensity score may be generalized to the multivariate set-
ting. We consider longitudinal versions of the measured variables:
for j = 1, . . . ,m, consider

I exposure: Z̃ij = (Zi1, . . . , Zij);

I outcome: Ỹij = (Yi1, . . . , Yij);

I confounders: X̃ij = (Xi1, . . . , Xij).

Sometimes the notation

Z1:m = (Z1, . . . , Zm)

will be useful.
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Multivariate versions of the propensity score

We consider vectors of potential outcomes corresponding to these
observed quantities, that is, we consider a potential sequence of
interventions up to time j

z̃ij = (zi1, . . . , zij)

and then the corresponding sequence of potential outcomes

Ỹ (̃zij) = (Y (zi1), . . . , Y (zij)).
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Multivariate versions of the propensity score

We define the multivariate (generalized) propensity score by

bj(z, x) = f
Zj |Xj ,Z̃j−1,X̃j−1

(z|x, z̃j−1, x̃j−1)

that is, using the conditional distribution of exposure at interval
j, given the confounder at interval j, and the historical values of
exposures and confounders.

Under the sequential generalizations of the ‘no unmeasured con-
founders’ and positivity assumptions, this multivariate extension
of the propensity score provides the required balance, and pro-
vides a means of estimating the direct effect of exposure.
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The use of mixed models

The multivariate generalization above essentially builds a joint
model for the sequence of exposures, and embeds this in a full
joint distribution for all measured variables.

An alternative approach uses mixed (or random effect) models
to capture the joint structure.

I such an approach is common in longitudinal data analysis;

I here we consider building a model for the longitudinal
exposure data that encompasses a random effect.
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The use of mixed models

Suppose first we have a continuous exposure: we consider the
mixed effect model where for time point j

Zij = X̃ijα+ Z̃i,j−1ϑ+ ξi + εij

where

I X̃ijα captures the fixed effect contribution of past and
current confounders;

I Z̃i,j−1ϑ captures the fixed effect contribution of past
exposures;

I ξi is a subject specific random effect;

I εij is a residual error.

4.1: Longitudinal studies 146



The use of mixed models

The random effect ξi helps to capture unmeasured time-invariant
confounding.

The distributional assumption made about εij determine the pre-
cise form of a generalized propensity score that can again be used
to estimate the direct effect of exposure.
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The use of mixed models

For binary or other discrete exposures, the random effect model
is built on the linear predictor scale, with say

ηij = X̃ijα+ Z̃i,j−1ϑ+ ξi

determining the required conditional mean for the exposure at
interval j.

Full-likelihood based inference may be used, but also generalized
estimating approaches may be developed.
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Estimation of Total Effects

The estimation of the total effect of exposure in longitudinal stud-
ies is more complicated as the need to acknowledge mediation
and time-varying confounding renders standard likelihood-based
approaches inappropriate.

The Marginal Structural Model is a semiparametric inverse weight-
ing methodology designed to estimate total effects of functions of
aggregate exposures that generalizes conventional inverse weight-
ing.
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The Marginal Structural Model

We observe for each individual i a sequence of exposures

Zi1, Zi2, . . . , Zim

and confounders
Xi1, Xi2, . . . , Xim

along with outcome Yi ≡ Yim measured at the end of the study.

Intermediate outcomes Yi1, Yi2, . . . , Yi,m−1 also possibly available.

We might also consider individual level frailty variables {υi},
which are determinants of both the outcome and the interme-
diate variables, but can be assumed conditionally independent of
the exposure assignments.
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The Marginal Structural Model

For example, with m = 5:
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Common example: pooled logistic regression

I discrete time survival outcome

I outcome is binary, intermediate outcomes monotonic

I length of follow-up is random, or event time is censored.
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The Marginal Structural Model

We seek to quantify the causal effect of exposure pattern

z̃ = (z1, z2, · · · , zm)

on the outcome. If the outcome is binary, we might consider2

log

(
f(Yim = 1|z̃, θ)
f(Yim = 0|z̃, θ)

)
= θ0 + θ1

m∑
j=1

zj

as the true, structural model. Note that this is a marginal model.

To avoid complicated notation in what follows, all probability
distributions will be generically denoted p(.|.).

2 We might also consider structural models in which the influence of co-
variates/confounders is recognized.
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The Marginal Structural Model

However, this model is expressed for data presumed to be col-
lected under an experimental design, E .

In reality, it is necessary to adjust for the influence of

I time-varying confounding due to the observational nature
of exposure assignment

I mediation as past exposures may influence future values of
the confounders, exposures and outcome.

The adjustment can be achieved using inverse weighting via a
marginal structural model.
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The Marginal Structural Model

Causal parameter θ may be estimated via the weighted pseudo-
likelihood

q(θ; x̃, y, z̃, γ0, α0) ≡
n∏
i=1

f(yi | z̃i, θ)wi0 ,

where

wi0 =

m∏
j=1

f(zij | z̃i(j−1), α0j)

m∏
j=1

f(zij | z̃i(j−1), x̃ij , γ0j)

defines ‘stabilized’ case weights in which the true parameter val-
ues (γ0, α0) are (for now) taken to be known.
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The Marginal Structural Model: The logic

I Inference is required under target population E but a
sample from the population of interest is not directly
available

I Samples from observational design O relevant for learning
about this target population are available.

I In population E , the conditional independence
zij ⊥ x̃ij | z̃i(j−1) holds true.

I The weights wi0 convey information on how much O
resembles E : this information is contained in the
parameters γ.

I E has the same marginal exposure assignment distribution
as O, characterized by α.
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The Marginal Structural Model: Implementation

I Parameters α typically must (and should) be estimated
from the exposure and confounder data;

I The usual logic of the propensity score applies here: in
constructing the terms that enter the conditional models
that enter into the stabilized weights, we use confounders
but omit instruments.

I Inference using the weighted likelihood typically proceeds
using robust (sandwich) variance estimation, or the
bootstrap.
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Real Data Example : ART interruption in HIV/HCV co-infected individuals

Antiretroviral therapy (ART) has reduced morbidity and mortal-
ity due to nearly all HIV-related illnesses, apart from mortality
due to end-stage liver disease, which has increased since ART
treatment became widespread.

In part, this increase may be due to improved overall survival
combined with Hepatitis C virus (HCV) associated hepatic liver
fibrosis, the progress of which is accelerated by immune dysfunc-
tion related to HIV-infection.
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Real Data Example : ART interruption in HIV/HCV co-infected individuals

The Canadian Co-infection Cohort Study is one of the largest
projects set up to study the role of ART on the development of
end-stage liver disease in HIV-HCV co-infected individuals.

Given the importance of ART in improving HIV-related immuno-
suppression, it is hypothesized that liver fibrosis progression in
co-infected individuals may be partly related to adverse conse-
quences of ART interruptions.
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Real Data Example : ART interruption in HIV/HCV co-infected individuals

Study comprised N = 474 individuals with at least one follow-up
visit (scheduled at every six months) after the baseline visit, and
2066 follow-up visits in total (1592 excluding the baseline visits).
The number of follow-up visits mi ranged from 2 to 16 (median
4).
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Real Data Example : ART interruption in HIV/HCV co-infected individuals

We adopt a pooled logistic regression approach:

I a single binary outcome (death at study termination)

I longitudinal binary exposure (adherence to ART)

I possible confounders

I baseline covariates: female gender, hepatitis B surface
antigen (HBsAg) test and baseline APRI, as well as

I time-varying covariates: age, current intravenous drug use
(binary), current alcohol use (binary), duration of HCV
infection, HIV viral load, CD4 cell count, as well as ART
interruption status at the previous visit.

I need also a model for informative censoring.
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Real Data Example : ART interruption in HIV/HCV co-infected individuals

I We included co-infected adults who were not on HCV
treatment and did not have liver fibrosis at baseline.

I The outcome event was defined as
aminotransferase-to-platelet ratio index (APRI), a
surrogate marker for liver fibrosis, being at least 1.5 in any
subsequent visit

I We included visits where the individuals were either on
ART or had interrupted therapy (Zij = 1), based on
self-reported medication information, during the 6 months
before each follow-up visit.
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Real Data Example : ART interruption in HIV/HCV co-infected individuals

I Individuals suspected of having spontaneously cleared their
HCV infection (based on two consecutive negative HCV
viral load measurements) were excluded as they are not
considered at risk for fibrosis progression.

I To ensure correct temporal order in the analyses, in the
treatment assignment model all time-varying covariates
(xij), including the laboratory measurements (HIV viral
load and CD4 cell count), were lagged one visit.

I Follow-up was terminated at the outcome event (Yij = 1),
while individuals starting HCV medication during the
follow-up were censored.
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Real Data Example : ART interruption in HIV/HCV co-infected individuals

We considered the structural model

log

(
f(Yij = 1|̃zij , θ)
f(Yij = 0|̃zij , θ)

)
= θ0 + θ1zj

so that θ1 measures the total effect of exposure in an interval,
allowing for mediation.
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Real Data Example : ART interruption in HIV/HCV co-infected individuals

Results:

Estimator θ̂1 SE z

Naive 4.616 0.333 13.853

MSM 0.354 0.377 0.937
Bootstrap 0.308 0.395 0.780

After adjustment for confounding, the effect of exposure is non-
significant.
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New challenges

The main challenge for causal adjustments using the propensity
score is the nature of the observational data being recorded.

The data sets and databases being collected are increasingly com-
plex and typically originate from different sources. The benefits
of ‘Big Data’ come with the costs of more involved computation
and modelling.

There is always an important trade off between the sample size
n and the dimension of the confounder (and predictor) set.
Examples

I pharmacoepidemiology;

I electronic health records and primary care decision making;

I real-time health monitoring;
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Data synthesis and combination

For observational databases, the choice of inclusion/exclusion cri-
teria for analysis can have profound influence on the ultimate
results:

I different databases can lead to different conclusions for the
same effect of interest purely because of the methodology
used to construct the raw data, irrespective of modelling
choices.

I the key task of the statistician is to report uncertainty in a
coherent fashion, ensuring that all sources of uncertainty
are reflected. This should include uncertainty introduced
due to lack of compatibility of data sources.
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Classic challenges

Alongside the challenges of modern quantitative health research
are more conventional challenges:

I missing data: many causal adjustment procedures are
adapted forms of procedures developed for handling
informative missingness (especially inverse weighting);

I length-bias and left truncation in prevalent case studies:
selection of prevalent cases is also a form of ‘selection bias’
that causes bias in estimation if unadjusted;

I non-compliance: in randomized and observational studies
there is the possibility of non- or partial compliance which
is again a potential source of selection bias.
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The Bayesian version

The Bayesian paradigm provides a natural framework within
which decision-making under uncertainty can be undertaken.

Much of the reasoning on causal inference, and many of the
modelling choices we must make for causal comparison and ad-
justment, are identical under Bayesian and classical (frequentist,
semiparametric) reasoning.
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The advantages of Bayesian thinking

With increasingly complex data sets in high dimensions, Bayesian
methods can be useful as they

I provide a means of informed and coherent decision making
in the presence of uncertainty;

I yield interpretable variability estimates in finite sample at
the cost of interpretable modelling assumptions;

I allow the statistician to impose structure onto the inference
problem that is helpful when information is sparse;

I naturally handle prediction, hierarchical modelling, data
synthesis, and missing data problems.

Typically, these advantages come at the cost of more involved
computation.
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Bayesian causal inference: recent history

I D.B. Rubin formulated the modern foundations for causal
inference from a largely Bayesian (missing data)
perspective:

I revived potential outcome concept to define causal estimand
I inference through Bayesian (model-based) predictive

formulation
I focus on matching

I Semiparametric frequentist formulation pre-dominant from
mid 80s

I Recent Bayesian approaches largely mimic semiparametric
approach, but with explicit probability models.
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Bayesian inference for two-stage models

I Full Bayes: full likelihood in two parametric models

I needs correct specification;
I two component models are treated independently.

I Quasi-Bayes: use semiparametric estimating equation
approach for Stage II, with Stage I parameters treated in a
fully Bayesian fashion.

I possibly good frequentist performance;
I difficult to understand frequentist properties.

I Pseudo-Bayes: use amended likelihood to avoid feedback
between Stage I and Stage II

I not fully Bayesian, no proper probability model
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Five Considerations

1. The causal contrast

2. Do we really need potential outcomes ?

3. ‘Observables’ implies ‘Prediction’

4. The Fundamental Theory of Bayesian Inference.

5. The Bayesian Causal Specification
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Conclusions

I Causal inference methods provide answers to important
questions concerning the impact of hypothetical exposures;

I Standard statistical methods are used;

I Balance is the key to accounting for confounding;

I The propensity score is a tool for achieving balance;

I The propensity score can be used for
I matching,
I weighting, and
I as part of regression modelling.

I Bayesian methods are not widely used, but are generally
applicable.
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Key remaining challenges

I Model selection;

I Scale and complexity of observational data;
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Five Considerations

1. The causal contrast

2. Do we really need potential outcomes ?

3. ‘Observables’ implies ‘Prediction’

4. The Fundamental Theory of Bayesian Inference.

5. The Bayesian Causal Specification
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What is the causal contrast to work with ?

The causal effect of changing exposure from z1 to z2 is

δ(z1, z2) = E[Yi(z2)− Yi(z1)]

that is, an expected difference between potential outcomes for
the same individual, which is presumed to be the same for all i.

There is no meaningful inferential difference3– in most settings –
if we work instead with

δ(z1, z2) = E[Y (z2)]−E[Y (z1)]

imagining the exposures acting on the whole population.
3 In a randomized trial, we do not assign the same individual multiple

exposures, we compare different individuals who have been randomly
allocated to different, yet comparable, exposure groups.
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Do we really need potential outcomes ?

The introduction of the potential outcome random variables is
not strictly necessary for inference.

The notation and conceptualization is useful, but not necessary.

A joint distribution for potential outcomes {Yi(z) : z ∈ Z} is
imagined, but never utilized.
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‘Observables’ implies ‘Prediction’

The quantity

δ(z1, z2) = E[Y (z2)]−E[Y (z1)]

concerns the expected value of observable4 quantities.

In an inferential setting, we wish to make statements about µ in
light of observed data (yi, zi, xi), i = 1, . . . , n.

Hence, in a Bayesian setting we should be examining predictive
quantities5.

4 albeit hypothetical

5 this is Rubin’s argument
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Exchangeability and de Finetti’s Representation

Suppose that U1, . . . , Un, . . . are an infinite sequence of observable
random variables such that, for all n ≥ 1,

P (U1:n ∈ B1:n) = P (Uρ(1:n) ∈ B1:n)

where

I U1:n = (U1, . . . , Un),

I B1:n = B1 × . . .× Bn,

I ρ(.) is a permutation operator.

Then the {Un} are exchangeable.
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Exchangeability and de Finetti’s Representation

If {Un} are exchangeable, then there exists a measure π0 on the
space of probability measures such that

P (U1:n ∈ B1:n) =

∫ { n∏
i=1

Q(Ui ∈ Bi)

}
π0(dQ) (�)

I π0(.) is a distribution function for the limiting empirical
probability measure P, that is, P ∼ π0 and

P(B) = lim
n−→∞

n∑
i=1

Pn(B) = lim
n−→∞

1

n

n∑
i=1

1B(Ui)

I The term in brackets defines a ‘likelihood’

P (U1:n ∈ B1:n|P = Q) =

n∏
i=1

Q(Ui ∈ Bi).
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Exchangeability and de Finetti’s Representation

That is, we have a Bayesian model with ‘parameter’ P: to gen-
erate realizations from the model, we

I specify π0 as a ‘prior’ distribution for P,

I draw Q from π0,

I draw U1, U2, . . . , Un, . . . independently from Q.
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Exchangeability and de Finetti’s Representation

Prediction:

P (U(n+1):(n+m)|U1:n) =
P (U1:(n+m))

P (U1:n)
(�)

and use (�) in numerator and denominator.

Inference:

P (P|U1:n) = lim
m−→∞

Pm|n(U(n+1):(n+m)|U1:n) (F)
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The Bayesian Causal Specification

We treat Ui = (Yi, Zi, Xi), i = 1, . . . , n as a realization of an
exchangeable sequence, and obtain de Finetti representations for
experimental and observational measures PE(U1:n) and PO(U1:n)
which facilitate inference.

We might consider parametric versions, and denote by

ϑE = (θE , α, ψE) ϑO = (θO, γ, ψO)

the different parameters that appear in the ‘likelihood’ part of
(�)

fE(yi, xi, zi;ϑE) = fE(yi|xi, zi; θE)fE(zi;α)fE(xi;ψE)

fO(yi, xi, zi;ϑO) = fO(yi|xi, zi; θO)fO(zi|xi; γ)fO(xi;ψO)

under the two assumed design settings.
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The Bayesian Causal Solution

We can therefore adopt the fully Bayesian causal inference strat-
egy:

1. Propose models for observed data, presumed exchangeable,
under the experimental and observational assumptions;

2. Formulate the causal effect estimation problem as a
prediction problem, and resolve to examine posterior
predictive expectations under the experimental setting;

3. As data collected under the experimental setting are not
available, use the observational posterior and change of
measure/importance sampling ideas to re-express the
posterior predictive expectation of interest in terms of the
observational posterior measure;

4. Perform computations using Monte Carlo and MCMC.
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Point binary treatment/binary response

Suppose Y,Z, z ∈ {0, 1}. A natural estimand is

Pr[Y (z) = 1] = E[Y (z)] z = 0, 1.

We construct de Finetti representations for data

U1:n = {Y1:n, Z1:n, X1:n}

under the experimental and observation assumptions

PE(U1:n) PO(U1:n)

and define the estimand as

lim
n−→∞

E
E
n[Y ∗|Z∗ = z, u1:n]

where EEn[.] denotes expectation with respect to the posterior
predictive distribution computed under E , pEn(.).
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Point binary treatment/binary response

We justify the estimator

E
E
n[Y ∗|Z∗ = z, u1:n] (PPE)

via a maximum expected utility argument; we define utility U(., .)
for predictions as

U(y∗, g(u1:n)) = −(y∗ − g(u1:n))2.

for functions g(.) of the data, and solve

Ê
E
n[Y (z)] = arg max

g(.)

∫
U(y∗, g(y))pEn(y|z) dy (E)

This yields the posterior predictive expectation for Y ∗ under the
setting Z∗ = z, marginally over X∗, as in (PPE)

190



Point binary treatment/binary response

In principle, the integral in (E) could be approximated using
Monte Carlo using a sample from conditional posterior predictive
pEn(y|z), computed from

pEn(y, z, x).

However, we do not have access to data collected under E ; we
must rewrite the computation in terms of the posterior predictive
computed under O

pOn (y, z, x).

To do this we re-purpose the earlier frequentist calculation.
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Point binary treatment/binary response

E
E
n[Y (z)] =

∫
y1z(z) p

E
n( dy, dz, dx)

=

∫
y1z(z)

pEn( dy, dz, dx)

pOn ( dy, dz, dx)
pOn ( dy, dz, dx)

= · · ·

=

∫
y1z(z)

pOn (z|x)
pOn ( dy, dz, dx)
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Point binary treatment/binary response

We estimate the integral by Monte Carlo using a sample from
the posterior predictive

pOn (y, z, x)

obtained by

I bootstrap resampling from the original data: this
corresponds to a nonparametric posterior predictive
procedure; or

I MCMC sampling using a parametric model.
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Bayesian nonparametric procedure

The Bayesian nonparametric approximation is

p̂On (y, z, x) =

n∑
i=1

ωiδxi,yi,zi(x, y, z)

where
(ω1, . . . , ωn) ∼ Dirichlet(1, . . . , 1)

The non-parametric posterior predictive distribution is thus a
discrete random measure with support equal to the original data.
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Bayesian nonparametric procedure

To produce a sample from this distribution, we first sample the
ω from the Dirichlet, and then (x∗, y∗, z∗) from the Multinomial
distribution on the original data with probabilities ω.

We then repeat this N times to get a sample of size N from the
posterior predictive.
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Bayesian nonparametric procedure

Now the expression

p̂On (y, z, x) =

n∑
i=1

ωiδxi,yi,zi(x, y, z)

implies an expression for the conditional p̂On (z|x) of

p̂On (z|x) =

n∑
i=1

ωiδxi,zi(x, z)

n∑
i=1

ωiδxi(x)

where this expression may be evaluated for x = xi i = 1, . . . , n,
for each z.

196



Bayesian nonparametric procedure

This can be rewritten

p̂On (z|x) =

n∑
i=1

 ωiδxi(x)
n∑
j=1

ωjδxj (x)

 δzi(z)

This is also a random measure, and it will vary with each draw
of ω.
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Parametric version

In the parametric version

pOn (y, z, x) =

∫
fO(y, x, z|β, α)πOn (β, α) dβ dα

=

{∫
fO(y|x, z, β)πOn (β) dβ

}{∫
fO(z|x, α)πOn (α) dα

}
pOn (x)

= pOn (y|z, x)pOn (z|x)pOn (x)

In the calculation, the posterior predictive density

pOn (z|x) =

∫
fOZ|X(z|x, α)πOn (α) dα

is typically computed using MCMC.
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Real Data Example : ART interruption in HIV/HCV co-infected individuals

The following table shows the results for alternative estimators
for the interruption effect in a marginal model

fE(Yij = 1 | z, θ) = expit{θ0 + θ1z},

and the corresponding standard errors.

I The weights in the multiple imputation type estimator, as
well as in the two Bayesian estimators were calculated from
samples of size 2500 from the posterior distributions

I Flat improper priors were used for all parameters.

I Multinomial, Dirichlet and bootstrap estimates were
calculated from 2500 replications.
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Real Data Example : ART interruption in HIV/HCV co-infected individuals

Estimator θ̂1 SE z

Naive 4.616 0.333 13.853

MSM 0.354 0.377 0.937
Quasi-Bayes MI 0.316 0.529 0.597
Bootstrap 0.308 0.395 0.780

Dirichlet 0.366 0.375 0.976
Multinomial 0.361 0.400 0.902
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Real Data Example : ART interruption in HIV/HCV co-infected individuals

The five alternative estimates are similar, with the exception of
the MI-type estimator, which appears to inflate the standard
error. This indicates that sampling from a quasi-posterior in the
two-step approach introduces excess variability to the estimation.

In contrast, the Multinomial and Dirichlet sampling standard
errors are close to the bootstrap standard error, without involving
re-estimation of the treatment assignment and censoring models
in each replication.
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