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The propensity score with
continuous treatments

Keisuke Hirano and Guido W. Imbens1

7.1 Introduction
Much of the work on propensity score analysis has focused on the case in which the
treatment is binary. In this chapter, we examine an extension to the propensity score
method, in a setting with a continuous treatment. Following Rosenbaum and Rubin
(1983a) and most of the other literature on propensity score analysis, we make an
unconfoundedness or ignorability assumption, that adjusting for differences in a set
of covariates removes all biases in comparisons by treatment status. Then, building
on Imbens (2000) we define a generalization of the binary treatment propensity
score, which we label the generalized propensity score (GPS). We demonstrate that
the GPS has many of the attractive properties of the binary treatment propensity
score. Just as in the binary treatment case, adjusting for this scalar function of the
covariates removes all biases associated with differences in the covariates. The GPS
also has certain balancing properties that can be used to assess the adequacy of par-
ticular specifications of the score. We discuss estimation and inference in a paramet-
ric version of this procedure, although more flexible approaches are also possible.

We apply this methodology to a data set collected by Imbens, Rubin, and
Sacerdote (2001). The population consists of individuals winning the Megabucks
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lottery in Massachusetts in the mid-1980s. We are interested in the effect of the
amount of the prize on subsequent labor earnings. Although the assignment of
the prize is obviously random, substantial item and unit nonresponse led to a
selected sample in which the amount of the prize is no longer independent of
background characteristics. We estimate the average effect of the prize adjusting for
differences in background characteristics using the propensity score methodology,
and compare the results to conventional regression estimates. The results suggest
that the propensity score methodology leads to credible estimates that can be more
robust than simple regression estimates.

7.2 The basic framework
We have a random sample of units, indexed by i = 1, . . . , N . For each unit i, we
postulate the existence of a set of potential outcomes, Yi(t), for t ∈ T , referred
to as the unit-level dose–response function. In the binary treatment case, T =
{0, 1}. Here we allow T to be an interval [t0, t1]. We are interested in the average
dose–response function, µ(t) = E[Yi(t)]. For each unit i, there is also a vector of
covariates Xi , and the level of the treatment received, Ti ∈ [t0, t1]. We observe the
vector Xi , the treatment received Ti , and the potential outcome corresponding to
the level of the treatment received, Yi = Yi(Ti).

To simplify the notation, we will drop the i subscript in the sequel. We assume
that {Y(t)}t∈T , T , X are defined on a common probability space, that T is con-
tinuously distributed with respect to Lebesgue measure on T , and that Y = Y(T )

is a well-defined random variable (this requires that the random function Y(·) be
suitably measurable).

Our key assumption generalizes the unconfoundedness assumption for binary
treatments made by Rosenbaum and Rubin (1983), to the multivalued case:

Assumption 1 (Weak Unconfoundedness) Y(t) ⊥ T |X for all t ∈ T .

We refer to this as weak unconfoundedness, as we do not require joint inde-
pendence of all potential outcomes, {Y(t)}t∈[t0,t1]. Instead, we require conditional
independence to hold for each value of the treatment.

Next, we define the generalized propensity score.

Definition 1 (Generalized Propensity Score) Let r(t, x) be the conditional den-
sity of the treatment given the covariates:

r(t, x) = fT |X(t |x).

Then the generalized propensity score is R = r(T , X).

This definition follows Imbens (2000). For alternative approaches to the case with
multivalued treatments, see Joffe and Rosenbaum (1999a, 1999b), Lechner (2001),
and Imai and van Dyk (2004).

The function r is defined up to equivalence almost everywhere. By standard
results on conditional probability distributions, we can choose r such that R =
r(T , X) and r(t, X) are well-defined random variables for every t .
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The GPS has a balancing property similar to that of the standard propensity
score. Within strata with the same value of r(t, X), the probability that T = t does
not depend on the value of X. Loosely speaking, the GPS has the property that

X ⊥ 1{T = t}|r(t, X).

This is a mechanical implication of the definition of the GPS, and does not require
unconfoundedness. In combination with unconfoundedness, this implies that assign-
ment to treatment is unconfounded given the generalized propensity score.

Theorem 1 (Weak Unconfoundedness Given The Generalized Propensity
Score) Suppose that assignment to the treatment is weakly unconfounded given
pretreatment variables X. Then, for every t ,

fT (t |r(t, X), Y (t)) = fT (t |r(t, X)). (7.1)

Proof. Throughout the proof, equality is taken as a.e. equality. Since r(t, X)

is a well-defined random variable, for each t we can define a joint law for
(Y (t), T , X, r(t, X)). We use FX(x|·) to denote various conditional probability
distributions for X, and we use fT (t |·) to denote conditional densities of T . Note
that r(t, X) is measurable with respect to the sigma-algebra generated by X. This
implies, for example, that fT (t |X, r(t, X)) = fT (t |X).

Using standard results on iterated integrals, we can write

fT (t |r(t, X)) =
∫

fT (t |x, r(t, X)) dFX(x|r(t, X))

=
∫

fT (t |x) dFX(x|r(t, X))

=
∫

r(t, x) dFX(x|r(t, X)) = r(t, X).

The left side of equation (7.1) can be written as:

fT (t |r(t, X), Y (t)) =
∫

fT (t |x, r(t, X), Y (t)) dFX(x|Y(t), r(t, X)).

By weak unconfoundedness, fT (t |x, r(t, X), Y (t)) = fT (t |x), so

fT (t |r(t, X), Y (t)) =
∫

r(t, x) dFX(x|Y(t), r(t, X))

= r(t, X).

Therefore, for each t , fT (t |r(t, X), Y (t)) = fT (t |r(t, X)). �
When we consider the conditional density of the treatment level at t , we evalu-

ate the generalized propensity score at the corresponding level of the treatment. In
that sense, we use as many propensity scores as there are levels of the treatment.
Nevertheless, we never use more than a single score at one time.
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7.3 Bias removal using the GPS
In this section, we show that the GPS can be used to eliminate any biases associated
with differences in the covariates. The approach consists of two steps. First, we
estimate the conditional expectation of the outcome as a function of two scalar
variables, the treatment level T and the GPS R, β(t, r) = E[Y |T = t, R = r].
Second, to estimate the dose–response function at a particular level of the treatment
we average this conditional expectation over the GPS at that particular level of the
treatment, µ(t) = E[β(t, r(t, X))]. We do not average over the GPS R = r(T , X);
rather we average over the score evaluated at the treatment level of interest, r(t, X).

Theorem 2 (Bias Removal with Generalized Propensity Score) Suppose that
assignment to the treatment is weakly unconfounded given pretreatment variables
X. Then
(i) β(t, r) = E[Y(t)|r(t, X) = r] = E[Y |T = t, R = r].
(ii) µ(t) = E[β(t, r(t, X)].

Proof. Let fY(t)|T ,r(t,X)(·|t, r) denote the conditional density (with respect to
some measure) of Y(t) given T = t and r(t, X) = r . Then, using Bayes rule and
Theorem 1,

fY(t)|T ,r(t,X)(y|t, r) = fT (t |Y(t) = y, r(t, X) = r)fY(t)|r(t,X)(y|r)
fT (t |r(t, X) = r)

= fY(t)|r(t,X)(y|r)
Hence,

E[Y(t)|T = t, r(t, X) = r] = E[Y(t)|r(t, X) = r].

But we also have

E[Y(t)|T = t, R = r] = E[Y(t)|T = t, r(T , X) = r]

= E[Y(t)|T = t, r(t, X) = r]

= E[Y(t)|r(t, X) = r] = β(t, r)

Hence, E[Y(t)|r(t, X) = r] = β(t, r), which proves part (i). For the second part,
by iterated expectations, E[β(t, r(t, X))] = E[E[Y(t)|r(t, X)]] = E[Y(t)]. �

It should be stressed that the regression function β(t, r) does not have a causal
interpretation. In particular, the derivative with respect to the treatment level t

does not represent an average effect of changing the level of the treatment for any
particular subpopulation.

Robins (1998, 1999) and Robins, Hernan, and Brumback (2000) use a related
approach. They parameterize or restrict the form of the Y(t) process (and hence the
form of µ(t)), and call this a marginal structural model (MSM). The parameters
of the MSM are estimated using a weighting scheme based on the GPS. When
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the treatment is continuous these weights must be “stabilized” by the marginal
probabilities of treatment. In the approach we take here, we would typically employ
parametric assumptions about the form of β(t, r) instead of µ(t), and do not need
to reweight the observations.

Two artificial examples

Example 1: Suppose that the conditional distribution of Y(t) given X is

Y(t)|X ∼ N(t + X exp(−tX), 1).

The conditional mean of Y(t) given X is t + X exp(−tX). Suppose also that
the marginal distribution of X is unit exponential. The marginal mean of Y(t)

is obtained by integrating out the covariate to get

µ(t) = E[t + X exp(−tX)] = t + 1

(t + 1)2
.

Now consider estimating the dose–response function using the GPS approach. We
assume that the assignment to treatment is weakly unconfounded. For illustrative
purposes, we also assume that the conditional distribution of the treatment T given
X is exponential with hazard rate X. This implies that the conditional density of
T given X is

fT |X(t, x) = x exp(−tx).

Hence the generalized propensity score is R = X exp(−T X).
Next, we consider the conditional expectation of Y given the treatment T and

the score R. By weak unconfoundedness, the conditional expectation of Y given
T and X is

E[Y |T = t, X = x] = E[Y(t)|X = x].

Then by iterated expectations

E[Y |T = t, R = r] = E [E[Y |T = t, X]| T = t, R = r]

= E[E[Y(t)|X]|T = t, R = r]

= E[t + X exp(−tX)|T = t, R = r] = t + r.

As stressed before, this conditional expectation does not have a causal interpretation
as a function of t . For the final step, we average this conditional expectation over
the marginal distribution of r(t, X):

E[Y(t)] = E[t + r(t, X)] = t + 1

(1 + t)2
= µ(t).

This gives us the dose–response function at treatment level t .
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Example 2: Suppose that the dose–response function is E[Y(t)] = µ(t). Also sup-
pose that X is independent of the level of the treatment so that we do not actually
need to adjust for the covariates. Independence of the covariates and the treatment
implies that the GPS r(t, x) = fT |X(t |x) = fT (t) is a function only of t . This
creates a lack of uniqueness in the regression of the outcome on the level of the
treatment and the GPS. Formally, there is no unique function β(t, r) such that
E[Y |T = t, R = r] = β(t, r) for all (t, r) in the support of (T , r(T )). In practice,
this means that the GPS will not be a statistically significant determinant of the
average value of the outcome, and in the limit we will have perfect collinearity in
the regression of the outcome on the treatment level and the GPS. However, this
does not create problems for estimating the dose–response function. To see this,
note that any solution β(t, r) must satisfy

β(t, r(t)) = E[Y |T = t, r(T ) = r(t)] = E[Y |T = t] = µ(t).

Hence, the implied estimate of the dose–response function is
∫

x

β(t, r(t, x))fX(x) dx = β(t, r(t)) = µ(t),

equal to the dose–response function.

7.4 Estimation and inference

In this section, we consider the practical implementation of the generalized propen-
sity score methodology outlined in the previous section. We use a flexible para-
metric approach. In the first stage, we use a normal distribution for the treatment
given the covariates:

Ti |Xi ∼ N(β0 + β ′
1Xi, σ 2).

We may consider more general models such as mixtures of normals, or het-
eroskedastic normal distributions with the variance being a parametric function
of the covariates. In the simple normal model, we can estimate β0, β1, and σ 2 by
maximum likelihood. The estimated GPS is

R̂i = 1√
2πσ̂ 2

exp

(
− 1

2σ̂ 2
(Ti − β̂0 − β̂ ′

1Xi)
2
)

.

In the second stage, we model the conditional expectation of Yi given Ti and Ri

as a flexible function of its two arguments. In the application in the next section,
we use a quadratic approximation:

E[Yi |Ti, Ri] = α0 + α1Ti + α2T
2
i + α3Ri + α4R

2
i + α5TiRi.

We estimate these parameters by ordinary least squares using the estimated GPS R̂i .
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Given the estimated parameter in the second stage, we estimate the average
potential outcome at treatment level t as

Ê[Y(t)] = 1

N

N∑
i=1

(
α̂0 + α̂1t + α̂2t

2 + α̂3r̂(t, Xi) + α̂4r̂(t, Xi)
2 + α̂5t r̂(t, Xi)

)
.

We do this for each level of the treatment we are interested in, to obtain an estimate
of the entire dose–response function.

Given the parametric model we use for the GPS and the regression function
one can demonstrate root-N consistency and asymptotic normality for the estima-
tor. Asymptotic standard errors can be calculated using expansions based on the
estimating equations; these should take into account estimation of the GPS as well
as the α parameters. In practice, however, it is convenient to use bootstrap methods
to form standard errors and confidence intervals.

7.5 Application: the Imbens–Rubin–Sacerdote
lottery sample

The data

The data we use to illustrate the methods discussed in the previous section come
from the survey of Massachusetts lottery winners, which is described in fur-
ther detail in the chapter by Sacerdote in this volume, and in Imbens, Rubin,
and Sacerdote (2001). Here we analyze the effect of the prize amount on sub-
sequent labor earnings (from social security records), without discretizing the
prize variable.

Although the lottery prize is obviously randomly assigned, there is substantial
correlation between some of the background variables and the lottery prize in our
sample. The main source of potential bias is the unit and item nonresponse. In
the survey unit, nonresponse was about 50%. In fact, it was possible to directly
demonstrate that this nonresponse was nonrandom, since for all units the lottery
prize was observed. It was shown that the higher the lottery prize, the lower the
probability of responding to the survey. The missing data imply that the amount
of the prize is potentially correlated with background characteristics and potential
outcomes. In order to remove such biases, we make the weak unconfoundedness
assumption that conditional on the covariates the lottery prize is independent of
the potential outcomes.

The sample we use in this analysis is the “winners” sample of 237 individuals
who won a major prize in the lottery. In Table 7.1, we present means and standard
deviations for this sample. To demonstrate the effects of nonresponse, we also
report the correlation coefficients between each of the covariates and the prize,
with the t-statistic for the test that the correlation is equal to zero. We see that
many of the covariates have substantial and significant correlations with the prize.
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Variable Mean S.D. Corr. t-stat GPS Est. GPS SE
w/Prize

Intercept 2.32 (0.48)
Age 47.0 13.8 0.2 2.4 0.02 (0.01)
Years high school 3.6 1.1 −0.1 −1.4 0.02 (0.06)
Years college 1.4 1.6 0.0 0.5 0.04 (0.04)
Male 0.6 0.5 0.3 4.1 0.44 (0.14)
Tickets bought 4.6 3.3 0.1 1.6 0.00 (0.02)
Working then 0.8 0.4 0.1 1.4 0.13 (0.17)
Year won 1986.1 1.3 −0.0 −0.4 −0.00 (0.05)
Earnings year–1 14.5 13.6 0.1 1.7 0.01 (0.01)
Earnings year–2 13.5 13.0 0.1 2.1 −0.01 (0.02)
Earnings year–3 12.8 12.7 0.2 2.3 0.01 (0.02)
Earnings year–4 12.0 12.1 0.1 2.0 0.02 (0.02)
Earnings year–5 12.2 12.4 0.1 1.1 −0.02 (0.02)
Earnings year–6 12.1 12.4 0.1 1.1 −0.01 (0.01)

Table 7.1 Summary statistics and parameter estimates of generalized propensity
score.

Modeling the conditional distribution of the prize given
covariates

The first step is to estimate the conditional distribution of the prize given the
covariates. The distribution of the prize is highly skewed, with a skewness of 2.9
and a kurtosis of 15.0. We therefore first transform the prize by taking logarithms.
The logarithm of the prize has a skewness of −0.02 and a kurtosis of 3.4. We then
use a normal linear model for the logarithm of the prize:

log Ti |Xi ∼ N(β0 + β ′
1Xi, σ 2).

The estimated coefficients from this model are presented in Table 7.1.
To see whether this specification of the propensity score is adequate, we inves-

tigate how it affects the balance of the covariates. This idea is again borrowed from
the analysis of binary treatment cases, in which Rosenbaum and Rubin (1983) stress
the balancing properties of the propensity score. We divide the range of prizes into
three treatment intervals, [0, 23], [23, 80], and [80, 485], with 79 observations in
the first group, 106 in the second, and 52 in the last treatment group. For each of
the thirteen covariates, we investigate the balance by testing whether the mean in
one of the three treatment groups was different from the mean in the other two
treatment groups combined. (Alternatively, we could carry out various joint tests
to assess the covariate balance.) In Table 7.2, we report the t-tests for each of the
thirteen covariates and each of the three groups. The results show a clear lack of
balance, with 14 (17) of 39 t-statistics greater than 1.96 (1.645) in absolute value.
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Variable Unadjusted Adjusted for the GPS

[0, 23] [23, 80] [80, 485] [0, 23] [23, 80] [80, 485]

Age −1.7 −0.1 2.0 0.1 0.3 1.7
Years high school −0.9 1.7 −0.7 −0.5 0.8 −1.0
Years college −1.2 0.7 0.5 −0.5 0.7 −0.7
Male −3.6 0.5 4.0 −0.4 0.2 0.1
Tickets bought −1.1 0.5 0.6 −0.7 0.7 −0.2
Working then −1.1 −0.3 2.0 −0.0 −0.2 0.3
Year won −0.6 2.0 −1.6 −0.1 1.1 −1.0
Earnings year–1 −1.8 −0.5 2.3 −0.3 −0.7 0.5
Earnings year–2 −2.3 −0.4 2.6 −1.0 −0.4 0.5
Earnings year–3 −2.7 −0.6 3.1 −1.4 −0.6 1.2
Earnings year–4 −2.7 −0.7 3.1 −0.9 −0.6 1.7
Earnings year–5 −2.2 −0.3 2.4 −1.1 −0.0 2.1
Earnings year–6 −2.1 −0.1 2.3 −1.5 0.4 2.2

Table 7.2 Balance given the generalized propensity score: t-statistics for equality
of means.

Next, we report GPS-adjusted versions of these statistics. Take the first covariate
(age), and the test whether the adjusted mean in the first group (with prizes less
than 23 K) is different from the mean in the other two groups. Recall that we
should have

Xi ⊥ 1{Ti = t}|r(t, Xi).

We implement this by discretizing both the level of the treatment and the GPS.
First, we check independence of Xi and the indicator that 0 ≤ Ti ≤ 23, conditional
on r(t, Xi). To implement this we approximate r(t, Xi) by evaluating the GPS at
the median of the prize in this group, which is 14. Thus, we test

Xi ⊥ 1{0 ≤ Ti ≤ 23} | r(14, Xi).

We test this by blocking on the score r(14, Xi). We use five blocks, defined
by quintiles of r(14, Xi) in the group with 1{0 ≤ Ti ≤ 23}. The five groups are
defined by the GPS values for r(14, Xi) in the intervals [0.06, 0.21], [0.21, 0.28],
[0.28, 0.34], [0.34, 0.39], and [0.39, 0.45]. (The full range of values for the GPS
r(T , X) evaluated at received treatment and covariates is [0.00, 0.45], but the
range of r(14, X) is [0.06, 0.45].) For example, the first of these five groups, with
r(14, Xi) ∈ [0.06, 0.21] has a total of 84 observations (16 with Ti ∈ [0, 23] and
68 with Ti /∈ [0, 23]). Testing for equality of the average age in the first versus the
other two prize groups in this GPS group gives a mean difference of −5.5 with a
standard error of 2.2. In the second GPS group, with r(14, Xi) ∈ [0.21, 0.28] there
are 39 observations (16 with Ti ∈ [0, 23] and 23 with Ti /∈ [0, 23]), leading to
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a mean difference of −3.2 (SE 5.3). In the third GPS group, with r(14, Xi) ∈
[0.28, 0.34] there are 53 observations (15 with Ti ∈ [0, 23] and 38 with Ti /∈
[0, 23]), leading to a mean difference of 8.2 (SE 4.4). In the fourth GPS group,
with r(14, Xi) ∈ [0.34, 0.39] there are 36 observations (16 with Ti ∈ [0, 23] and
20 with Ti /∈ [0, 23]), leading to a mean difference of 4.7 (SE 3.0). In the fifth GPS
group, with r(14, Xi) ∈ [0.39, 0.45] there are 25 observations (16 with Ti ∈ [0, 23]
and 9 with Ti /∈ [0, 23]), leading to a mean difference of 0.4 (SE 4.0). Combining
these five differences in means, weighted by the number of observations in each
GPS group, leads to a mean difference of 0.1 (SE 0.9), and thus a t-statistic of 0.1,
compared to an unadjusted mean of −3.1 (SE 1.8) and t-statistic of −1.7.

The adjustment for the GPS improves the balance. After the adjustment for the
GPS, only 2 t-statistics are larger than 1.96 (compared to 16 prior to adjustment)
and 4 out of 39 are larger than 1.645 (compared to 17 prior to adjustment). These
lower t-statistics are not merely the result of increased variances. For example, for
earnings in year −1, the mean difference between treatment group [0, 23] and the
other two is −3.1 (SE 1.7). After adjusting for the GPS, this is reduced to −0.3
(SE 0.9).

Estimating the conditional expectation of outcome given prize
and generalized propensity score

Next, we regress the outcome, earnings six years after winning the lottery, on the
prize Ti , and the logarithm of the score Ri . We include all second-order moments
of prize and log score. The estimated coefficients are presented in Table 7.3. Again,
it should be stressed that there is no direct meaning to the estimated coefficients
in this model, except that testing whether all coefficients involving the GPS are
equal to zero can be interpreted as a test of whether the covariates introduce any
bias.

Estimating the dose-response function
The last step consists of averaging the estimated regression function over the
score function evaluated at the desired level of the prize. Rather than report the
dose–response function, we report the derivative of the dose–response function.

Variable Est. SE

Intercept 9.68 3.34
Prize −0.03 0.03
Prize-squared/1,000 0.40 0.20
Log(score) −3.33 3.41
Log(score)-squared −0.28 0.46
Log(score) × prize 0.05 0.02

Table 7.3 Parameter estimates of conditional distribution of prize given covariates.
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Figure 7.1 Estimated derivatives and 95% confidence bands.

In economic terminology, this is the marginal propensity to earn out of unearned
income. (The yearly prize money is viewed as unearned income, and the derivative
of average labor income with respect to this is the marginal propensity to earn out of
unearned income.) We report the value of the derivative at $10,000 increments for
all values of the yearly lottery prize between $10,000 and $100,000. The results are
shown in Figure 7.1, along with pointwise 95% confidence bands. The bands are
based on 1,000 bootstrap replications, taking into account estimation of the GPS.

The GPS-based estimates are compared to linear regression estimates based
on a regression function that is quadratic in the prize, either without additional
covariates (“unadjusted”) or with the additional covariates included linearly (“LS
adjusted”).

The GPS estimates imply that the absolute value of the propensity to earn out
of unearned income goes down sharply with the level of unearned income, from
−0.10 at $10,000 to −0.02 at $100,000, suggesting that those with lower earnings
are much more sensitive to income changes than those with higher earnings. The
linear regression estimates suggest a much smaller change, with the derivative at
a prize of $100,000 equal to −0.04, compared to −0.05 at $10,000.

7.6 Conclusion
Propensity score methods have become one of the most important tools for analyzing
causal effects in observational studies. Although the original work of Rosenbaum
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and Rubin (1983) considered applications with binary treatments, many of the ideas
readily extend to multivalued and continuous treatments. We have discussed some
of the issues involved in handling continuous treatments, and emphasized how the
propensity score methodology can be extended to this case. We applied these ideas
to a data set previously studied by Imbens, Rubin, and Sacerdote (2001). We expect
that coming years will see further work applying the Rubin causal model approach
to a range of settings.


