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Estimating Exposure Effects by Modelling the Expectation of 
Exposure Conditional on Confounders 
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Harvard School of Public Health, 665 Huntington Avenue, 

Boston, Massachusetts 02115, U.S.A. 
and 

Whitney K. Newey 
Department of Economics, Massachusetts Institute of Technology, 

Cambridge, Massachusetts 02139, U.S.A. 

SUMMARY 

In order to estimate the causal effects of one or more exposures or treatments on an outcome of 
interest, one has to account for the effect of "confounding factors" which both ovary with the 
exposures or treatments and are independent predictors of the outcome. In this paper we present 
regression methods which, in contrast to standard methods, adjust for the confounding effect of 
multiple continuous or discrete covariates by modelling the conditional expectation of the exposures 
or treatments given the confounders. In the special case of a univariate dichotomous exposure or 
treatment, this conditional expectation is identical to what Rosenbaum and Rubin have called the 
propensity score. They have also proposed methods to estimate causal effects by modelling the 
propensity score. Our methods generalize those of Rosenbaum and Rubin in several ways. First, our 
approach straightforwardly allows for multivariate exposures or treatments, each of which may be 
continuous, ordinal, or discrete. Second, even in the case of a single dichotomous exposure, our 
approach does not require subclassification or matching on the propensity score so that the potential 
for "residual confounding," i.e., bias, due to incomplete matching is avoided. Third, our approach 
allows a rather general formalization of the idea that it is better to use the "estimated propensity 
score" than the true propensity score even when the true score is known. The additional power of 
our approach derives from the fact that we assume the causal effects of the exposures or treatments 
can be described by the parametric component of a semiparametric regression model. To illustrate 
our methods, we reanalyze the effect of current cigarette smoking on the level of forced expiratory 
volume in one second in a cohort of 2,713 adult white males. We compare the results with those 
obtained using standard methods. 

1. Introduction 

1. 1 The Problem 

In order to estimate the causal effect of one or more exposures or treatments on an outcome 
of interest, one has to account for the effect of "confounding factors" which both ovary 
with the exposures or treatments and are independent predictors of the outcome. If few in 
number, categorical confounding factors are commonly dealt with by stratification. When 
there are many confounding factors or when some of the factors are continuous, regression 
methods are used. In this paper we present regression methods which, in contrast to 
standard methods, adjust for confounding by modelling aspects of the marginal association 
of the exposures of interest with the confounders rather than by modelling the independent 

Key' words. Causal inference; Covariance adjustment; Epidemiologic methods; Propensity score; 
Semiparametric efficiency; Semiparametric regression. 
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association of the confounders with the outcome. Specifically, we will model the conditional 
expectation of the exposures given the confounders. These methods of estimation will be 
particularly useful when prior knowledge regarding the association of the confounders with 
exposure status is more precise than knowledge regarding their association with the 
outcome. 

For concreteness, we shall attempt to estimate the effect of being a current cigarette 
smoker on the level of forced expiratory volume in one second (FEV 1) in a cohort of 2,713 
adult white male former and current cigarette smokers from the initial cross-sectional data 
collected in the Harvard Six Cities Study (Dockery et al., 1988). We shall estimate this 
effect while adjusting for the presence of the 22 potential confounding factors listed in 
Table 1 that include past smoking history, past respiratory symptoms, age, height, and 
coexistent heart disease. In this example the exposure of interest is dichotomous and we 
assume that there is no interaction between that exposure and the confounders. That is, we 
assume that the absolute effect of current smoking on FEV 1 does not depend on a subject's 
age, weight, previous smoking history, etc. In this setting the most common approach to 
estimating the effect of current smoking on FEV 1 would be to postulate a linear regression 
model 

K 

Yi = /31 + [S, + E IkXki + el, E[ei I Si, XJ] = 0, (1) 
k=2 

where Yi, Si, Xi = (XX, i, . . ., XK, i) are respectively random variables representing subject 
i's FEV 1 level, current smoking status (Si = 1 if a current smoker and Si = 0 otherwise), 
and values on a vector Xi of potential confounding factors. Note that the parameter of 
interest, 3, is distinguished from the "nuisance" parameters (d3, ... ., OK) by the absence of 
a subscript. For notational simplicity, we shall assume that (Yi, Si, Xi) are independent and 
identically distributed random vectors, although, with minor modifications, our results will 
hold if the Xi are fixed constants and the (el, Si) are independent across subjects. 

Define o-(S X) = var[ei I S, X]. We write o-2(S, X) = u2 if the errors c, are homoscedastic. 
Unless stated otherwise, we shall assume homoscedastic errors, although we do not assume 
that this fact is known to the data analyst. The cl are not assumed to be independent of 
the (Si, Xi). 

Suppose we are unwilling to assume that the independent association of the confounders 
Xi with the outcome Yi has a known functional form. In that case, we would generalize 
model (1) to 

Y = S, + h(Xi) + ci, E[eiISX1] = 0, (2) 

where h(Xi) is an unknown real-valued function of the vector Xi. Model (2) has a 

Table 1 
Twenty-two potential confounders of the effect of current smoking on FEV 1 

Age History of emphysema 
Age-squared Past history of asthma 
Height Current asthma 
Body mass index Former cigar smoker 
Chronic cough Current cigar smoker level = hi 
Recurrent bouts of coughing Current cigar smoker level = medium 
History of treatment for Current cigar smoker level = lo 

heart disease Former pipe smoker 
Chronic phlegm production Current pipe smoker level = hi 
Chronic wheeze Current pipe smoker level = medium 
Total years of cigarette smoking Current pipe smoker level = lo 
Lifetime pack-years smoked 
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semiparametric regression function with parametric component 3Sj and nonparametric 
component h(Xi). This paper is concerned with the estimation of d from model (2). 
Robinson ( 1988) has provided an asymptotically normal and unbiased estimator of d under 
a large-sample limiting model in which the number of confounding factors remains fixed 
as the sample size grows. His estimator relies on the fact that, under such a limiting model, 
the unknown function h(Xi) can be consistently estimated by nonparametric regression 
techniques. In epidemiologic research, the number of confounding variables can be quite 
large. In these instances, the more appropriate limiting model would be one in which we 
allowed the number of confounding factors contained in Xi to increase with the sample 
size (Huber, 198 1). 

It is difficult to generalize Robinson's approach based on nonparametric estimation of 
h(Xi) when the dimension of Xi is large. As a consequence, to obtain consistent estimators 
of 3, we shall consider making additional a priori assumptions beyond those specified by 
model (2). The standard approach would be to assume that h(Xi) is known a priori except 
for a finite number of unknown parameters. As an example, the linear regression model 
(1) assumes that 

K 

h(Xi) = d 1 + X OkXk, i 
k=2 

In contrast to the standard approach, in this paper we shall suppose that prior information 
concerning the marginal association of Si with Xi is sharper than that concerning the form 
of h(X1). Thus we shall leave h(Xi) completely unspecified and instead specify parametric 
models for the marginal association of Si and Xi. Specifically, we shall consider parametric 
models for E(S I X) = p(S= 1 I Xi) such as the logistic regression model 

[S I Xi; o] = 1 E exp(ai + 2 akXki) P1 Ii ~~ +exp(a I + Xk=2 akXk-, )(3 

where a = (a1, ..., aK). We shall show that we can obtain asymptotically normal and 
unbiased estimators of d in model (2) provided our model (3) for p(S = 1 I Xi) is correctly 
specified. 

Although correctly specified parametric models for either h(Xi) or p(S = 1 I Xi) will 
provide asymptotically normal and unbiased estimates of A, nonetheless, as discussed in 
the next paragraph, least squares estimators of d based on models for h(Xi) will always be 
at least as efficient as any estimator of d based on models for p(S = 1 I Xi). This suggests 
that, for reasons of efficiency, it is always preferable to model h(Xi) rather than p(S = 
1 I Xi). But if, as we assume in this paper, our prior information concerning h(Xi) is less 
sharp than that concerning p(S = 1 I Xi), we would choose not to model h(Xi) in order to 
protect against specification bias. 

In order to explain why the ordinary least squares estimator of / based on a correctly 
specified model for h(Xi) is always at least as efficient as any estimator of / based on models 
for E[S I X], we need to review some results from the theory of semiparametric efficiency 
bounds derived by Chamberlain (1987; and Discussion Paper 1494, Harvard Institute of 
Economic Research, 1990) and exposited by Newey (1990). For the moment suppose again 
that, as in equation (1), we were able to correctly specify a parametric model, say, q(Xi; 0) 
for h(Xi) depending on a parameter vector 0. In equation (1), 0 = (1, . . ., /3K). Chamberlain 
(1987) showed that the estimator of / obtained by fitting the model Y1 = /S1 + q(Xi; 0) + 
ei by unweighted, possibly nonlinear, least squares is the most efficient possible estimator 
of /3 that is guaranteed to be asymptotically normal and unbiased under the sole prior 
restrictions that E[c1I S1, Xi] = 0 and h(Xi) = q(X1; 0). [If, as in equation (1), q(X1; 0) is 
linear in 0, we fit using ordinary least squares. Otherwise, we fit using nonlinear least 
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squares.] Therefore if, as in model (2), we are unwilling to specify a parametric form for 
h(X,) and yet want our estimator of d to be asymptotically normal and unbiased whatever 
be h(Xi), the asymptotic variance of any such estimator clearly cannot be less than the 
supremum of the asymptotic variances of the least squares estimators of d taken over the 
set of all possible parametric models for h(X1). This supremum is called the semiparametric 
efficiency bound for an estimator of d under model (2) (Bickel et al., 1992) and was shown 
by Chamberlain (discussion paper cited previously) to equal n-'O-2/E[var(SI X)], where n is 
the sample size. 

Thus, if we are able to correctly specify a parametric model for h(Xi), the least squares 
estimator of d always has variance no greater than the efficiency bound n-'o-2/E[var(SI X)]. 
In contrast, if under model (2), we are unable to specify a parametric model for h(Xi), but 
instead correctly specify a model for E[S I X], no estimator that is asymptotically unbiased 
for d for all h(Xi) can have variance less than the bound n'o-2/E[var(SIX)]. This is a 
consequence of the fact that {(Si, Xi), i E (1, . . . , n)} is ancillary for d under model (2) 
(Cox and Hinkley, 1974) and, as discussed by Newey (1990), knowledge concerning the 
marginal distribution of an ancillary statistic does not affect the semiparametric efficiency 
bound for the estimation of d. 

It needs to be stressed that, even when we can obtain a consistent estimator of d in model 
(2), it does not follow that the parameter d can be interpreted as the causal effect of current 
cigarette smoking on FEV 1. We now describe conditions under which d does have a causal 
interpretation. 

1.2 A Cauisal Model 

Following Rubin (1978), let Ys= 1,i be subject i's FEV I had subject i been a current smoker. 
If subject i is a current smoker in the actual study, then Ys=ii equals his observed 
FEVI Yi. If subject i is not a current smoker, Ys=ii is missing. Similarly, Ys=oi 
is subject i's FEVI if subject i were, possibly contrary to fact, a current nonsmoker. 
Rubin defined the average causal effect of current smoking among subjects with observed 
covariates level Xi to be E[Ys=lXi] - E[Ys=olXi]. Now, under our model (2), we 
know that E[YIXi, S = 1]- E[YJXi, S = 0] = d since E[YJXi, S = 1] = I + h(Xi) and 
E[YIXi, S= 0] = h(Xi). 

Thus a sufficient condition for d to equal the average causal effect of current smoking at 
each level Xi is that, for each Xi, 

E[Ys=sIX1] = E[YIX1, S = s], s E {0, 1}. (4a) 
Under Rubin's causal model, equation (4a) is equivalent to 

E[ Ys=s I X] = E[ Ys=s Xi, S = s]. (4b) 

We shall assume that equation (4b) holds and thus d has a causal interpretation when Xi 
is the vector of 22 potential confounding variables described above. The assumption that 
equation (4b) holds is nonidentifiable in the sense that it is compatible with any joint 
distribution for the observable random variables (Si, Xi, Yi). When equation (4b) holds, we 
shall call model (2) a semiparametric causal regression model. Equation (4b) says that, 
conditional on the joint level of the 22 potential independent risk factors Xi, the mean of 
Ys=s among subjects who actually receive treatment S = 1 equals that among subjects who 
actually receive treatment S = 0. We do not assume that equation (4b) holds when Xi is a 
proper subset of the 22 potential confounding variables. 

The mathematical results in this paper are concerned only with the estimation of d in 
model (2) and do not depend on whether equation (4b) holds. Of course, in general, we are 
interested in the estimation of /3 only when we believe it has a causal interpretation. 
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1.3 Relationship to the Propensity Score 

Rosenbaum and Rubin (1983, 1984, 1985) and Rosenbaum (1984, 1987, 1988) have also 
considered estimating the causal effect of a dichotomous treatment such as Si on an 
outcome Yi by modelling p(S = 1I Xi) when equation (4) holds. These authors call 
p[S = 1 I Xi] the propensity score. In contrast to their approach, our approach straightfor- 
wardly allows the treatment or exposure Si to be continuous or ordinal rather than simply 
dichotomous. Furthermore, as discussed in the Appendix, our approach allows Si to be 
multivariate so that we can, say, estimate the independent effects of current cigarette 
smoking and past cigarette smoking. In addition, our "regression" approach does not 
require subclassification or matching on the propensity score p[S = 1I XJ] even when Xi 
has continuous components so that the potential for "residual" confounding, i.e., bias, due 
to the fact that one has not precisely matched on p[S = I XJ] is avoided. The additional 
power of our approach derives from the fact that we assume the causal effect of exposure 
can be described by the parametric component of a semiparametric causal regression model 
such as model (2). 

Rosenbaum (1984, 1988) also considered specifying causal models to avoid the need to 
match or subclassify on the propensity score. In general, Rosenbaum is concerned with 
small-sample (exact) rather than large-sample (asymptotic) inference. As a consequence, 
his causal models tend to be even more restrictive than model (2). Specifically, he assumes 
a constant treatment effect model-that is, Ys=, i = d + Ys=oi for all subjects i-although 
his results would still hold under the weaker assumption that the distributions of Ys= li and 
Ys=oi differed by a "shift" parameter d. Furthermore, as he points out, his "exact" methods 
do not allow one to adjust for the confounding effects of continuous covariates. 

Finally, as discussed in Section 2, our approach allows a rather general formalization of 
the idea that it is better to use the "estimated" propensity score than the "true" propensity 
score even when the true score is known (Rosenbaum, 1987). 

2. Estimators Based on Models for the Conditional Expectation of Exposure 
Given Confounders 

2.1 An Infeasible Estimator 

In this section, we consider estimators of d under model (2) when we can specify accurate 
models for E(SI Xi). Note that when Si is dichotomous, models for E(SI Xi) are models for 
p(S = 1 I Xi). Initially, for pedagogic purposes, we shall assume that we know E(S I Xi) 
exactly. That is, we assume exact prior knowledge of the expected value of S for every 
combination of the confounders Xi. Subsequently we make the more tenable assumption 
that we know E(S I Xi) up to a finite vector of unknown parameters. We allow o-2(S, X) to 
depend on (S, X).. Henceforth, we adopt the following notational convention: d will refer 
to the true but unknown value of the coefficient of Si in model (2); ft will refer to any 
hypothesized, possibly incorrect, value for d. 

The estimator we shall consider, which we call the E-estimator, 

d =L=1 Yi[Si - E(SIXi)] 
- 

i= Si[Si - E(SIXi)] (5) 

is based on a suggestion by Newey (1990). 
It is shown in Theorem A. 1 in the Appendix that 3E has a limiting normal distribution 

with mean d. 
The consistency of I3E is based on the fact that model (2) implies that 

E[zj lXi, Si] = E[zI Xi], (6) 
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where zi = Yi - S43. In the proof of Theorem A. 1 in the Appendix, it is shown that equation 
(6) implies the identity 

E[U(O] = 0, (7) 

where, for any f t, U(f t) = AI (Y1 - Si ft)(Si - E(S I Xi)). The E-estimator fE is the solution 
1t to the unbiased estimating equation U(ft) = 0. 

2.2 A Feasible Estimator 

Of course, the estimator fE is not feasible since, in practice, E(S I Xi) is unknown. We can 
overcome this difficulty if we assume a priori that the logistic regression model equation 
(3) holds. We then estimate E(S I Xi) by logistic regression and subsequently estimate d by 

- X=in Yi[Si - E(SIXi)] 
- i=1 SI [Si - E(S I Xi)] (8) 

where E(S I Xi) is the fitted value Pi- p[S = 1 I Xi; a'] of p[S = 1 I Xi], and a' is the maximum 
likelihood estimator of a from the logistic regression. Note that we use the symbol fE rather 
than fE to represent the feasible estimator of equation (8). 

As shown in Theorem A. 1 in the Appendix, it follows from Pierce (1982) and Newey 
(1990) that when the logistic model of equation (3) is true, 3E is asymptotically normal and 
unbiased and its asymptotic covariance matrix can be consistently estimated by 

varest(&E)= vares(s3E)- Q[varest()]QT (9) 

where 

varest(E) = [on z1(S - ) (10) 

[7I 
Si(Si 

1 

2 

2i Yi IESi, QT is the K-vector with jth component 

7_ =i Zi~A(1 - p1)Xji 
Has- , S1(S -Pi) 

(where we define Xj, i = 1 when j = 1), and varest(&) is the estimated covariance matrix (i.e., 
the inverse of the observed information matrix) from the fit of the logistic model equation 
(3). The observed information matrix has (j, k) entry -y]=, AI(1 - Ii)XjiXki. The estimator 
varest(fE) is not guaranteed to be positive-definite. A positive-definite consistent variance 
estimator is obtained by replacing A( 1 - Aj) by (Si - Aj)2 both in the numerator of Qj and 
in the observed information matrix. 

Even though &iE is infeasible when p[S = 1 I X] is unknown, vare~s(fE) is still a feasible 
consistent estimator of its asymptotic variance. Therefore it follows from equation (9) that 
one generates a more precise estimate of d by estimating the propensity score E(S I Xi) than 
by using the true population value of the propensity score even were the latter known. That 
is, varest(fE) is always less than or equal to varest(AE). As discussed in the Appendix, this 
result depends on the fact that a' is an efficient estimator of a. The preference for fE 
compared to fE when the parameter a of model (3) is known can also be viewed in terms 
of conditional bias. Specifically, it can be shown that, conditional on the ancillary statistic 
[varest(av]Io a- a), fE becomes asymptotically biased while fE remains asymptotically 
unbiased (Robins and Morgenstern, 1987; Rosenbaum, 1987; Efron and Hinkley, 1978). 

In Table 2 we present four different estimates I3E of d3 based on specifying four different 
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Table 2 
Estimates HE under four different specifications for p[S = 1 I Xj] 

Covariates Xk,,i included 
in logistic model of 
equation (3) for var(stf3E) vartt(fE) 

Analysis p[S= 1 I Xi] E X 10-4 X 10-4 

(1) Constant term only -.0580 9.49 159.0 
(2) Constant, chronic cough (Yes, No) .0429 9.36 167.0 
(3) Constant, pack-years of smoking .0520 7.45 157.9 
(4) Constant, 22 covariates in Table 1 -.1133 8.82 332.6 

logistic regression models for p[S = 1 I Xj]. In the first analysis in Table 2, we assume no 
confounding. That is, we fit only a constant term a, in equation (3). In the second analysis 
Xi in equation (3) is the single binary covariate-history of chronic cough. In the third 
analysis Xi is the single continuous covariate-lifetime number of pack-years. In the fourth 
analysis Xi in equation (3) is the 22-vector of potential confounders. The striking efficiency 
advantage attributable to estimating the propensity score p[S = 1 I Xi] can be obtained by 
comparing varest0(E) to varest(f3E) in Table 2. 

Under the assumptions that (a) the coefficient / in equation (2) has a causal interpretation 
[i.e., equation (4b) holds] when Xi is the 22-vector of confounders and (b) the model for 
p[S = 1 I Xi] used in analysis (4) is true, analysis (4) provides a consistent estimator of this 
causal /. Therefore, we estimate that current smoking causes a decrease of .1 133 liter in 
FEV1. A 95% confidence interval for d is -.113 ? (1.96)(.00088)1/2 = (-.170, -.056). 

Under assumptions (a) and (b), we now provide sufficient conditions for the simpler 
analyses (1)-(3) also to provide consistent estimators of the "causal" / associated with 
model (2) with Xi the 22-vector of covariates. 

We shall restrict attention to analysis (3) since the conditions for analyses (1) and (2) are 
similar. Let Xk* be the covariate "lifetime number of pack-years" used in analysis (3). /E 

from analysis (3) will be consistent for the causal d if either of the following is true: 

Sufficient condition (1): With Xi the 22-vector of covariates, ak = 0 for the 2 1 covariates 
Xk in the logistic model (3) other than Xk* (i.e., lifetime pack-years is the only predictor of 
current smoking among the 22 potential confounding factors). 

Sufficient condition (2): The unknown function h(Xi) = h(X2,i, ..., XKj), K = 22, is 
actually only a function of Xk*,i (i.e., lifetime pack-years is the only independent risk factor 
among the 22 potential confounding factors) and p[S = 1 I Xk*,j] follows a linear logistic 
model. 

In general it would be unlikely that an investigator would be willing to assume that either 
of the above sufficient conditions held, and thus would tend to rely on analysis (4). 

Suppose equation (4b) holds and consider the test of the null hypothesis d = 0 that 
rejects if /E ? 1 .96[varest(E)] 1/2 fails to include 0. Then except for the assumption that the 
model (3) for p[S = 1 I Xi] is correctly specified, this test is an "otherwise asymptotically 
distribution-free" .05 a-level test of the sharp null hypothesis of no causal effect of exposure, 
i.e., of the hypothesis Ys=1,i = Ys=o,i = Y1 for all subjects i. 

Rosenbaum (1984, ?4.2) proposes a test of this null hypothesis that will be "otherwise 
asymptotically distribution-free" under the condition that (Ys== I Ys=i,) and S are con- 
ditionally independent given Xi. 
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3. Relationship of E-Estimators to Ordinary Least Squares 

The ordinary least squares (OLS) estimator of d in equation (1) can be written 

~OLS = Yi(Si - P(S I X)) 

E [Si - P(SIXT)] (11) 

where summation signs without indexes will refer to sums over individuals and where 
P(S I Xi) is the fitted value from the OLS regression of S on Xi and the constant one. Now 
the right-hand side of equation ( 11) can be written as 

~OLS Yi=(Si 
- F(S I X)) 

I 
E (Si - P(S IXi)) 

using the fact that, for OLS, the empirical correlation of the fitted values and the residuals 
is zero. Now suppose we had modelled E(SI Xi) = p[S = I I X] by the linear probability 
model p[S = 1 I Xi; a] = a1 + Ek=2 akXki rather than by a logistic model, and we fit the 
linear probability model by least squares. Then E(S I Xi) = P(S I Xi). Therefore, from its 
definition &E = /OLS- In the previous section we showed that /E is consistent if our 
model for E(SI Xi) is true. It follows, as pointed out by Newey (1990), that if, in truth, 
E(SIXi) = a? + k=2 akXki [i.e., E(SIX,) is linear in Xj], then /OLS is consistent for d 
even if h(Xi) is nonlinear and thus equation (1) is false. Nonetheless if h(Xi) is nonlinear, 
the estimate of the variance of /OLS provided by standard software packages is inconsistent, 
and equation (9) must be used. If E(S I Xi) is not linear in Xi, the ordinary least squares 
estimate of d would, in general, be inconsistent if the unknown function h(X1) is, in truth, 
nonlinear in Xi. 

Table 3 shows /OLS from the fit of equation (1) for the four choices of Xi as in Table 2. 
Note that /OLS = fE in analysis (2). This reflects the fact that when Xi is a single dichotomous 
covariate, E(S I Xi) is simultaneously linear and linear logistic, and E(S I Xi) = P(S I Xi). For 
similar reasons /OLS = fE in analysis (1). fE from analysis (3) using the continuous variable 
"pack-years" is not identical to the OLS estimate since E(S I Xi) # P(S I Xi). The fact that 
iBE and /3OLS are close can be explained by the near linearity of E(S I Xi) in our data, which 
can be checked by plotting E(S I Xi) versus Xi. 

We now discuss a modification of the estimator /3 that has an even closer connection to 
OLS than does fi. Define 

Em 
E Yi(Si - E(SIAXi)) 
= [Si - E(S I X)] (12) 

When E(S I Xi) is nonlinear (e.g., logistic), &Em will not in general equal fi. Nonetheless, 

Table 3 
Estimates IDOLS underfour different specifications for covariates included in O3 + 2/3-Xk.i in model 

equation (1) 
Covariates XAi varest(OOLs)a 

Analysis included in equation (1) IDOLS X 10-4 

(1) Constant term only -.0580 9.50 
(2) Constant, chronic cough (Yes, No) .0429 9.39 
(3) Constant, pack-years of smoking .0492 7.64 
(4) Constant, 22 cvariates in Table 1 -.1 199 8.68 

a Using White's ( 1980) heteroscedastic consistent variance estimator. 
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/Em and /E have the same asymptotic distribution. One obtains /Em by regressing Y, versus 
"the residuals" Si - E(S I Xi) using OLS regression with no intercept. 

4. Two-Stage E-Estimators 

Throughout this section we assume that the logistic model equation (3) is correctly specified 
with Xi the vector of 22 covariates. Then /E is a consistent estimator of / in equation (2) 
without making any assumptions about the form of h(Xi). Suppose now that we have an 
a priori guess as to the shape of h(Xi). For concreteness, suppose we believed that h(Xi) 
was linear or at least nearly linear in Xi, i.e., h(Xi) = /1 + Xkk=2 OkXki. We can now consider 
how to develop an estimator, say /3*, that may be much more efficient than /E if our guess 
concerning the shape of h(Xi) is correct or nearly correct, and will remain consistent, 
asymptotically normal no matter how wrong our guess may be. To construct /*, we proceed 
in two steps. First we compute E(S I Xi) and /E as before. We then regress that 2i = Yj - 
/ESi on Xi. We then define /* to be the solution /t to the estimating equation 

K 

0 = U*(/t) Z - fits - OkXki)(SI - E(SIX1)), 
k=2 / 

where (f1, . . ., ,K) are the OLS estimates from the regression of 2i on Xi. Therefore, 

- = ( Y - h- ~=2 kXk-,i)[Si - E(SIXi)] 
Z Si(Si -E(S I Xi)) 

In Theorems A. 1 and A.3 in the Appendix we show that 3* is asymptotically normal 
and unbiased even if the proposed linear model for h(Xi) is incorrect. 

A consistent estimator of varA(f*) is 

[ S,(S;- _i)]2 - (Q*)varet(&)(Q*) (13) 

where [i& = k- 3*k - >k=2 /kXki - /1 and (Q*)T has components 

=* -E [ A(lip'1 -Pi)xii 
Qj* Si (Si P i) 

In our example 03* is -.117 with var't(f*) = 8.79 x 10-4 when Xi is the 22-vector of 
covariates. 

In the final paragraph of the Appendix we show that, if the linear model postulated for 
h(Xi) were correct, then (1) Q* converges to zero in probability so the correction term 
could be ignored; and (2) if a2(S, X) = U2, then varA(f*) = n-'U2/E[var(SIX)]. 

When h(X1) is linear, /OLS will be consistent asymptotically normal and varA(OOLs) will 
be less than or equal to varA(03*), with equality when E(S I Xi) is linear in Xi. Of course, if 
neither h(Xi) nor E(S I Xi) is linear, 3* but not fOLS remains consistent [provided the 
nonlinear model for E(S I Xi) is correctly specified]. When a2(S, X) = U2 and h(Xi) is, in 
truth, linear, 3* has the smallest asymptotic variance among all estimators that remain 
asymptotically unbiased even were h(Xi) nonlinear (Chamberlain, discussion paper cited 
previously). That is, it attains the semiparametric efficiency bound for model (2). 

5. Discussion 
Suppose again that F3 in model (2) is causal [i.e., equation (4b) holds] when AZ1 is the 
22-vector of covariates. Then the validity of our B-estimators of the causal effect of current 
smoking on FEV 1 requires that the semiparametric regression model (2) and logistic 
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regression (3) be correctly specified. Specification of (3) can be checked using the techniques 
described by Landwehr, Pregibon, and Shoemaker (1984). The no-interaction assumption 
of model (2) can be checked by nesting (2) in the more general semiparametric regression 
model of the Appendix that includes interactions between current smoking Si and the 
covariates in Xi, and then testing whether the interaction coefficients are nonzero. 

We note that, rather than simply modelling p[S = 1 I X] by the linear no-interaction 
logistic model equation (3), we could continue to add to equation (3) additional terms such 
as powers of the Xk, i (e.g., X2 i, X3 i) for continuous covariates and all orders of interaction 
between the various covariates and their powers (e.g., X 4,i . X3,i). This will greatly 
increase the number of free coefficients in our model for p[S = 1 I Xi]. As we add these 
additional terms, we derive two benefits. First, we decrease any asymptotic bias in /E (or 
d3*) due to possible misspecification of the linear no-interaction model for p[S = 1 I Xi]. 
Second, when the linear no-interaction logistic model is correctly specified and thus the 
additional terms are not necessary to make oE unbiased, the asymptotic variance of AE (or 
0*) is nonincreasing and will usually decrease as the number of free parameters in the 
model for p[S = I I X] increases [see Pierce (1982) and Corollary A. 1 of the Appendix]. 
Thus, rather than having the usual tradeoff between efficiency and bias, we find that 
increasing the number of free parameters can lead to improvements in both bias and 
efficiency. This apparent "free lunch" must be tempered by two facts. First, no matter how 
many terms we add, varA(fE) and varA(f*) will always exceed n-l 2/E[var(S IX)] (with 
homoscedastic errors) (Chamberlain, 1987). Second, the results we have derived require 
that the estimates of the free parameters in the model for p[S = 1 I Xi] are n' /2-consistent. 
[Newey (1990) suggests that n' /4-consistency is sufficient.] This limits the number of free 
parameters we may have in our model for p[S = 1 I X] as a function of sample size. For 
example, we could not allow the number of free parameters to equal the total sample size. 
Cross-validation techniques for model selection should be useful in choosing a proper ratio 
of sample size to parameters. Moderate and small-sample simulation studies are needed as 
a guide to practice. 

We note that when the linear no-interaction logistic model (3) is misspecified, the 
asymptotic variance of the (now potentially biased) estimator FE based on a misspecified 
model for p[S = 1 I Xi] can be less than the asymptotic variance of the estimator FE based 
on a more richly parameterized, correctly specified model in which the misspecified model 
is nested. This phenomenon is evident in a comparison of analyses (3) and (4) in Table 2. 
The estimated variance of OE in analysis (3) is less than that in analysis (4), because 
covariates other than "pack-years of smoking" are also important predictors of current 
smoking. 

The results described in the preceding three paragraphs help to clarify both when 
E-estimation will and will not be preferable to standard covariance adjustment by least 
squares. Consider first the case in which the sample size is quite large and the dimension 
of Xi is small, so that richly parameterized models for either h(Xi) or p[S = 1 I Xi] can be 
used. Then, as discussed above and in technical detail by Newey (1990), as one adds power 
and interaction terms to the model (3) for p[S = 1 I Xi], any bias in /d* and OE would tend 
to zero and the asymptotic variance of d*, and even OE, will approach the semiparametric 
efficiency bound of n- l2/E[var I S(X)]. Similarly, in this setting, if we expanded the linear 
regression model (1) by adding additional terms such as powers of Xki and interactions 
between the Xki and their powers, the bias of /OLS from the least squares fit of (1) would 
tend to zero, and the variance of OOLS would approach the efficiency bound 
n-'2/E[var(SIX)]. Thus, in this setting, the use of highly parameterized models for 
h(Xn ) fit by least squares or the use of highly parameterized models forp[S = 1 IXi] fit by 
B-estimation leads to estimators of d3 with similar properties. 
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Now, consider the case in which the dimension of Xi is large and/or the sample size is 
moderate. One is then restricted to choosing parsimonious parametric models for h(Xi) 
and/or p[S = 1 I XJ. Further, since the ratio of the sample size to the dimension of Xi is 
small, the power to discriminate between correct and incorrectly specified models for h(Xi) 
and/or p[S = 1 I XJ] will be poor. If, as is often the case in an etiologic study, our primary 
interest is in obtaining valid inferences concerning / (e.g., confidence intervals that cover 
at their nominal rate), it is essential to try to obtain asymptotically unbiased estimators of 
3. Since, in general, unbiased estimation of / requires that the model used in the analysis 
be correct, we would prefer E-estimation over least squares estimation if we believed that 
our ability to specify nearly correct parsimonious models for p[S = 1 I X] exceeded our 
ability to specify such models for h(Xi). This would be the case when the investigator 
thinks, based on substantive considerations, that his or her knowledge of the shape of the 
regression surface p[S = 1 I Xi] is sharper than knowledge of the shape of the function h(Xi). 
In the special case, represented by our example in Section 3, in which the fitted regression 
surface J[S = 1 I X] is nearly linear in the Xi, E-estimation and standard covariance 
adjustment by least squares will provide similar estimates irrespective of whether h(Xi) is 
or is not linear. 

We next consider whether it might be possible to develop robust E-estimators. Even if 
the linear model (1) were true, the efficiency of fOLS would be poor if the errors ei have 
heavy-tailed distributions (Huber, 1981). If we are willing to assume that, in addition to 
(1), the errors were independent of the (Si, Xi), efficient robust estimation based on M, L, 
or R estimators is possible (Huber, 1981). If ei is independent of (Si, Xi) but model (1) 
were not true, robust E-estimation of model (2) could be based on solving an unbiased 
estimating equation of the form Eim(Yi - 3tSi, Xi)(Si - E[SIX ]) = 0, where the function 
m(Yi - StSi, Xi) would be chosen to downweight observations for which Yi - fSi differs 
greatly from its expected value given Xi. (Such observations will be associated with large 
values of the residuals.) How to choose the function m(Yi - dtSi, Xi) in this setting is 
outside the scope of this paper. 

If a2(S, X) depends on X alone or on S and X, it is possible to develop "weighted" 
E-estimators that will be more efficient than the E-estimators 3E or 3* (Chamberlain, 
1987). 

Suppose next that the outcome of interest is a dichotomous disease variable. Then Y4 
will be a Bernoulli random variable. In that case, one might no longer wish to specify the 
semiparametric model (2), i.e., 

E[YiIXi, Si] = h(Xi) + fSi, 

since the model does not naturally obey the restriction that probabilities must lie in the 
interval [0, 1]. Therefore one might specify a semiparametric logistic model 

E[YiIXi, Si] = 1 + exp[h(Xi) + OSi] (14) 

Unfortunately, the approach developed in this paper will not allow us to consistently 
estimate the d of equation ( 14) even though Bickel et al. ( 1992) and Chamberlain (discussion 
paper cited previously) show that, in principle, there should exist an n' /2-consistent estimator 
of d based on data (Xi, Si, Yi) [at least when the dimension of Xi is fixed as the sample size 
increases]. Our approach fails because it is fundamentally based on the fact that, for model 
(2), d is identified from the "pseudo-data" (Si, Vi, YJ), where Vi = E(SI Xi). We call Vi 
"pseudo-data." For example, if Vi were known, our estimator 3E does not require data on 
Xi. It can be shown that /3 in equation (14) is not identified from pseudo-data (Se, Vi, Y1) 
due to the "noncollapsibility" of the logistic parameter /3 when we collapse from the "raw 
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data" Xi to Vi. Indeed, Gail, Wieand, and Piantadosi (1984) essentially prove this noniden- 
tifiability result in the special case for which Vi = 2 for all subjects. In fact, suppose Xi were 
dichotomous and thus e: was the common exposure (S)-disease (Y) odds ratio in the two 
2 x 2 tables indexed by the levels of X. In this special case, the nonidentifiability of d when 
Vi is a fixed constant for all subjects i is simply a restatement of the following well-known 
fact. Even when S and X are (marginally) independent, the common odds ratio e: is not 
identified from data (Si, Yi) since the marginal exposure-disease odds ratio (ignoring X) 
may differ from e: and the magnitude of the difference depends on the distribution of X 
(Gail et al., 1984). However, in contrast to our nonidentifiability results for the 3 of model 
(14), if equation (4b) holds, the average causal effect of S on disease Y, i.e., E[Ys=1] - 
E[ Ys=o], is identified from (Si, Vi, Yi) (Rosenbaum and Rubin, 1983). 

Suppose next that Yi has a Poisson or overdispersed Poisson distribution. We might then 
wish to specify semiparametric log-linear models, e.g., 

E[YilXi, Si] = exp[h(Xi) + /Sij. (15) 

For log-linear models, a simple modification of our approach can be used to consistently 
estimate d from pseudo-data (Si, Vi, Yi). Specifically, since, under model (15), E[U()] = 
0, where 

n 

U(/t) _ E Yie-Otsi(Si - E(SIXi)), (16) 
1=1 

the solution fE to U(/t) = 0 will be consistent, asymptotically normal. A feasible consistent 
estimator &E can be obtained from data (Si, Xi, Yi) by specifying a (correct) model for 
E[S I XJ. 

The methods of E-estimation can be extended to estimate the causal effect of a time- 
varying treatment. Specifically, Robins (1989a, 1992a, 1992b, 1992c, 1992d) and Robins 
et al. (1992) use an extension of E-estimation, which they call G-estimation, to estimate, 
from observational data, the causal effect of a time-varying treatment both on a survival 
time outcome and on the evolution of the mean of a continuous outcome variable measured 
repeatedly over time in the presence of time-dependent confounding factors. Robins (1 989a, 
1992b, 1992d) uses G-estimation to correct for noncompliance in randomized trials 
studying the effect of a time-varying treatment both on survival time outcomes and on the 
evolution of the mean of a continuous outcome variable when noncompliance depends on 
time-dependent prognostic factors. G-estimation is of particular importance in estimating 
the causal effect of a time-varying treatment in the presence of time-varying prognostic 
factors because standard covariance adjustment based on time-dependent Cox proportional 
hazard models for survival time outcomes or generalized estimating equations (Liang and 
Zeger, 1986) for repeated measures outcomes cannot consistently estimate the treatment 
effect (Robins, 1986, 1989a, 1989b, 1992a, 1992b, 1992c). 
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RE~SUME~ 

Pour estimer 1'influence d'un ou plusieurs facteurs sur une variable d'interet, il faut prendre en 
compte les effets des covariables qui d'une part varient avec les dits facteurs, et d'autre part aident ai 
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predire la variable d'inter6t, ind6pendamment de ces facteurs. Dans cet article, nous presentons des 
methodes de regression qui, a la difference des m6thodes usuelles, ajustent 1'effet confondant de 
plusieurs covariables (continues ou discr&tes) par modelisation de 1'esperance conditionnelle des 
diff6rents facteurs en fonction des covariables. Dans le cas particulier d'un seul facteur a deux niveaux, 
cette esperance conditionnelle est identique a ce que Rosenbaum et Rubin ont appeal le score de 
propension. Ces auteurs, d'ailleurs, ont aussi propose des methodes d'estimation passant par la 
modelisation de ce score de propension. Nos methodes generalisent celles de Rosenbaum et Rubin 
de plusieurs mani&res. Tout d'abord, notre approche s'etend d'embl6e a tous les cas de figure possibles 
pour les facteurs, chacun d'entre eux pouvant etre continu, ordinal ou discret. Ensuite, m6me dans 
le cas d'un seul facteur a deux niveaux, notre approche ne necessite pas de classification ou 
d'appariement d'apr&s le score de propension, de telle sorte que le risque de "confusion residuelle" 
(c'est-a-dire de biais) li6 a ces methodes est evite. Enfin, notre approche permet de comforter l'id'e 
qu'il vaut mieux utiliser le score de propension estime que le vrai score de propension, m6me lorsque 
ce vrai score est connu. Le surcroit de puissance de notre approche- provient du fait que nous 
supposons que l'influence des facteurs peut 6tre d6crite par la composante parametrique d'un module 
de regression semi-parametrique. A titre d'illustration, nous reanalysons, sur une cohorte de 2,713 
adultes blancs de sexe masculin, l'effet du tabac sur la valeur du volume expiratoire maximal seconde, 
et nous comparons les resultats obtenus avec ceux des methodes classiques. 
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APPENDIX 

In this Appendix, we prove the results stated in the text. We assume that 

Y, = f(Si, X, 13) + h(X1) + -s, E[.i I Si, Xi] = 0, (A.0) 

wheref(Si, Xi, 3) is a linear function of a V-dimensional parameter vector d that takes the value zero 
when Si = 0. [Extension of our results to nonlinear functions of d is straightforward.] Model (2) in 
the text is the special case in which f(Si, Xi, 53) = 3Si for univariate d and dichotomous Si. (A.0) 
generalizes (2) by allowing for multivariate exposures, each component of which may be categorical, 
ordinal, or continuous. For example, we might suppose Si = (Sl, ..., Sari) and f(Si, Xi, 3) = 
Y-m=I OmSmi + /M+I SiX4i with V = M + 1. If equation (4b) holds when s is any value of Si, then 
f(Si, Xi, ,3) is the average effect of joint exposure level Si compared to the baseline level Si = 0 
among subjects with covariate level Xi. If f(Si, Xi, 3) depends on Xi, we say there is an exposure- 
covariate interaction. 

Define fo(Si, Xi) to be the V-vector of partial derivatives of f(Si, Xi, f) with respect to the 
components of d and let 

E[fo (Si, Xi) I X] = r(Xi; a), (A. 1) 

where r(.; *) is a known function and a is an unknown parameter. Define R(Si, Xi; a) =f(Si, Xi) - 
r(Xi; a). Note that E[R(Si, Xi; a) I Xi] = 0. If, as in the text, f (Si, Xi) = Si is a Bernoulli random 
variable, (A. 1) is a fully parametric model for Si given Xi; otherwise, (A. 1) is a semiparametric model 
for the density f,,(Si I Xi), since the distribution of R(Si, Xi; a) is completely unrestricted except for 
having mean zero given Xi. 

Now for any nonrandom function g(x), define 

n-'/2U(/t, g, ) - n-1/2 E [Y, - f(Si, X,, At) - g(Xi)]R(Si, Xi; &) 

-n-l 1E iUi(OI, g5,&o), (A.2) 

where & is asymptotically equivalent to an n'12-consistent solution to 0 = iM_(at) =-im(Si, Xi, at) 
for some Mi(at) satisfying E[Mi(a)] = 0. That is, when Mi(a) is continuously differentiable, 
n /(& - a) = -{E[8Mi(a)/aa']}n-1n-2Mi(a) + op(l), and we say that -{E[8Mi(a)/8a']}'M1(a) 
is the influence function of &. Chamberlain (1987) proves that & is semiparametric efficient for a 
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under the sole restriction (A. 1) on the conditional distribution of Si given Xi only if Mi(a) equals 

ar(Xi; a) 

That is, & is semiparametric efficient only if it is asymptotically equivalent to the optimal weighted 
(possibly nonlinear) least squares estimator of a. Henceforth, we shall say that & is semiparametric 
efficient under (A. 1) if & has influence function -{E[8Mqff(a)/8a']}-'M~ff(a). If fo(Si, Xi) = Si is 
Bernoulli, semiparametric efficiency under (A. 1) is just ordinary parametric efficiency. Our main 
result is given as Theorem A. 1. 

Theorem A. 1 Under regularity conditions given in Corollary 1, Chapter 8 of Manski (1988), there 
exists a solution 3E(g) -39(g, &) to n- /2U(3t, g, &) = 0 such that nlM2(/E(g) - 3) is asymptotically 
normal with mean 0 and variance that can be consistently estimated by 

I- l A~~~g)(I t )- I, ~(A. 3a) 

where 

I'-n-' E i8Ui(3, g, &)'/1a = ni' Xif,(Si, Xi)R(Si, Xi; &)', 

A(g) = iF' >i Ki(3, g, &)K'(/, g, &), 

Ki(3, g, ) = U(, g, )-(g)-Mi() 

B(g) n-' Z, 8Ui(3, g, &)/Oa' = n-' X[Yi -f(Si, X,, / - g(Xi)] aR(Sa Xi; &) 

C= n-i' > Mi(&)/8c'. 

If & is semiparametric efficient under (A. 1), the asymptotic variance of nl'/2(E(g) - 3) can be 
consistently estimated by 

I- l (g)(I' ) - Q(g)WQ'W(g), (A.3b) 

where Q(g) B-'B(g), i(g) = n-'yLiUi0(E(g), g, &)Ui(0E(g) g, &)', and Q is a consistent estimator of 
varA[nl/2(& - ao)]. 

Except when ffl(Si, Xi) equals a dichotomous Si (as in the text), var[R(Si, Xi; a) IXJ] may be an 
unknown function of a and Xi. Hence, if one chooses to estimate a by the unweighted (possibly 
nonlinear) least squares regression offf(Si, Xi) on Xi, it is necessary to use formula (A.3a) rather than 
(A.3b), since a will then be efficient only if the (unknown) variance of R(Si, Xi; a) does not depend 
on Xi. 

However, if one has a correctly specified model var[R(Si, Xi; a) I XJ] = 4(Xi; 0), where W(Xi; Ot) is 
a known function and 0 is an unknown parameter, then it is well known that the estimate & that 
solves 0 = yi{8r(Xi; a)/8aa}{4(Xi; q)}-'R(Si, Xi; a) has influence function -{E[M~ff(a)/8a' ]}-'Mqff(a) 
and (A.3b) can be used. Here 0 is the (possibly nonlinear) multivariate least squares regression 
estimate of 0 obtained by regressing R(Si, Xi; &)R'(Si, Xi; &) on Xi, where a is obtained from a 
preliminary unweighted least squares regression off,(Si, Xi) on Xi. 

Application of Theorem A. 1 Consider equation (9) in the text. In that setting, g(Xi) 0; 
f(Si, Xi, 53) = 3S1;.f(Si, Xi) = Si; R(Si, Xi; &) = Si - Pi, where Pi = e" -Xi/(I + eaI Xi); 

OR (Si8 Xi; aa [e(-t)'xi/(1 + e(t)yxi)] I t= pi3 1 - pi)Xi; 

Yi- f(S, Xi, ME(g)) - g(X) = 2i; U0(3E(g), g, &) = 2i(Si Pii); I = n-'iSi(Si -ii); 
j(g) = n-'1i2~(Si - _ i)2; Q(g) = Lifii(l - fii)X'//yiSi(Si - Pi). Substituting into equation (A.3b), we 
obtain equation (9). 

The reader can check that substituting in (A.3b) also gives equation (13) if we set g(Xi) = 
_3 + &:_ Xk.i above. [As we shall see in Theorem (A.3) below, the fact that g(Xi) is based on 
estimates /3k does not affect the asymptotic variance (A.3b).] 
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Proof of Theorem A. 1 For pedagogic purposes we first sketch a proof. We then show how Corol- 
lary 1 of Manski's Chapter 8 can be used to formally prove the theorem. Since 

E[ Uj(3, g, a)] = 0 (A.4) 

by (A.O), we have that, under the regularity conditions discussed below, a Taylor expansion and the 
weak law of large numbers (WLLN) gives 

0 = n-1/2 (OE(g), g, a) = n-"2U(g) + I[n"12(ME(g) - )] + B(g)[n"12(& - a)] + o0(1), 

where nn-2nU(g) = iF1-2U(3, g, a), I E[8Uj(3, g, a)/1a'], which does not depend 
on g. 

B(g) B (8Uj 9, g,a) 

Thus 

nl/2(E(g) - ) =-I-a[B(g)n /2(o&- a) + n-w"2U(g)] + o'(1). (A.5) 
By assumption, n"2(&- a) = -C-'n-"2 yLM + o,(l), where C= E[8Mj(a)/8a], Mi Mi(a). Hence 

nlE/2(W(g) - 3) =-I-'n- _j U,(g) - B(g)CMj] + oJ(1). Thus n"/2(/E(g) - 3) is asymptotically 
normal with mean zero and variance B'A(g)(I')', where A(g) = var[Ui(g) - B(g)C-'Mj] since 
nl1/2(E(g) - 3) is a sum of independent mean-zero random variables plus a term of o,(l). 
Formula (A.3a) follows by the WLLN. 

We next establish (A.3b) for a semiparametric efficient & under (A. 1) using arguments similar to 
those in Pierce (1982) and Newey (1990). Let Li(at, N7t) -f(SiI Xi; at, -t) be any (regular) parametric 
submodel with true values a, X for the density of Si given Xi consistent with the restriction (A. 1). Let 
Sai = a In Li(a, -)/lat. Let 

T = {a(Si, Xi); a(S;, Xi) = a In Li(a, -)/&iit for some parametric submodel}. 
Note T = {a(S,, Xi); E[a(Si, X,)IXj] = 0 and E[R(Si, Xi; a)a(S1, Xi)' I Xi] = 0} since the 
scores a(Si, Xi) are restricted only by having a conditional mean of zero and by being condi- 
tionally uncorrelated with R(Si, Xi; a). It follows from Chamberlain (1987), Begun et al. (1983), 
and Newey (1990) that (a) Sj - M~' E T and E[M~'a(Sj, Xi)'] = 0 for all a(S,, Xi) E T and 
(b) varA[n'/2( - a)] = {E[Meff(M f)']}-'. Mq' is called the efficient score in the semiparametric 
model (A. 1) for the law of Si given Xi. 

Now by differentiating the identity Ej3 at,,t[ U1(3, g, at)] = 0 with respect to at using the chain rule 
and evaluating at the true values (a, -), we obtain B(g) = -E[Uj(g)S',], where Eg(t, t refers 
to expectation with respect to a density that differs from the truth only in that the law of Si given 
Xi is f(Si l Xi; at, at). Similarly differentiating this identity with respect to qt, we obtain 
E[Uj(g)a'(Sj, Xi)] = 0 for all a(Si, Xi) E T. Thus, by (a) in the last paragraph, we conclude B(g) = 
-E[Uj(g)(Meff)']. Similarly, the identity E:, at, t[Mj(at)] = 0 implies C = -E[Mj(M~ff)']. Hence 
Ki(g) Us(g) - B(g)C-'Mi = Us(g) - E[Ui(g)(Mql)']{E[Mi(M~f)']}'-Mi. In the special case in 
which M1 = Mqff, Ki(g) is the residual from the (population) least squares regression of Uj(g) on 
M,, and a standard calculation gives var[Ki(g)] = var[Ui(g)] - B(g)C-'B'(g). (A3.b) then follows 
by (b) in the last paragraph and the WLLN. 

Theorem A. 1 is formally proved by noting that it is an immediate consequence of Corollary 1 in 
Manski's Chapter 8 and the above variance calculations when we set Manski's function g(z, b) equal 
to (Uw(/3t, g, al)', Mi(at)')' and Manski's function r(x) equal to x'x, where x is a vector. 

Corollary A. 1 If &ut) is semiparametric efficient under the jth of J nested correctly specified models 
E[fg(Sj, Xi)IXj] = r(X1; oak), (j = 1, . J. , J), with the dimension of a0t increasing with j, then the 
asymptotic variance of OE(J)(g) -Mp(g, 5')) is nonincreasing with j. 

Proof Correct specification implies that, for I > 1*, Mie't is the first j* components of Ms'f , the 
efficient score for the jth model. But, by standard least squares theory, the variance of the residual 
KjJ)(g) based on the jth model must be less than or equal to that based on model 1*. 

The following theorem will be used in proving the claims made in the paragraph following 
equation (13). 

Theoremn A.2 
(a) varA[fl/2(/3E(g) - p3)] 3 varA[nh/2(/3 (h) -p3)]. 
(b) varA[nh/2(/3E(h) - p)] = var'fn"/2(f3E(h) - p)], where /3E(h) /3E(h, ae) and /3E(h) /3E(h, &e). 
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Proof of (a) (a) is an immediate consequence of the following two lemmas. 

Lemma A.1 The function g minimizing varA[nlh/2(&(g) - p)] also minimizes varA[n-l/2U(o, g, &)]. 
Proof By a Taylor expansion, we have 

= n-'2U(NE(g), , &) - n-"2U(3, g ) + n-1 U(3,g' &) [n1/2 OEW - 0)] + Op(0) (A.6) 

A further Taylor expansion of n-'8U(3, g, &)/If3' around ao and the WLLN proves 
n-'OU(3, g, &)/1f3' = I + op(l), proving the lemma. 

Lemma A.2 The function h minimizes varA[n-l/2U(f, g, a)]. 

Proof n"-2U(3, g, &) = n- '2DeiR(Si, Xi; () + n-2 >2[h(Xi) - g(X)]R(Sj, Xi; &) Al + A2(g), 
say where we have used (A.0) to substitute ej + h(Xi) for Yj - f(Si, Xi, p3). If we can show 
covA(Ai, A,(g)) = 0, then varA[n-l/2U(O, g, &)] = varA(A,) + varA[A2(g)], which is minimized at 
g = h since varA[A2(h)] = 0. Now AI and A2(g) have zero covariance since (a) E[A I (S, X)] = 0 
and (b) A2(g) is fixed given (S, X) {(Si, Xi); i = 1, ..., n}. (a) and (b) follow from the fact that 
E[e I (S, X)] = 0 and & depends on the data only through (S, X). 

Proof of (b) (b) follows from the fact that B(h) = 0 by (A.0). 

In general, we do not know h(Xi). Therefore, as in Section 4, we shall hypothesize a model 
h(X,) = g(Xi; 0) where g(*, -) is a known function and 0 is a vector of parameters to be estimated. 
We estimate 0 by (possibly nonlinear) least squares regression of Yj - f(Si, Xi, M3E) on Xi, where &3E is 
[3E(g) for g(Xi) 0 O. Let 0 be the (possibly nonlinear) least squares estimator of 0. It is clear that since 
O3E is an n'12-consistent estimator of 3, if the model for h(Xi) were correctly specified, n"2(O - 0) 
would have a nondegenerate limiting distribution with mean 0. If the model for h(Xi) were misspe- 
cified, there still exists 0* such that n112(O - 0*) has a nondegenerate limiting distribution with mean 
0. The following theorem shows that we can then use 0 to construct an adaptive estimator of 3 that 
(1) has the same limiting distribution as 1E(h) if our model h(Xi) is correctly specified and (2) remains 
consistent, asymptotically normal even if our model is misspecified. 

Theorem A.3 If n112(O - 0*) has a nondegenerate limiting distribution with mean 0, then 
&E[g(X5, 0)] has the same limiting distribution as OE[g(Xi, 0*)]. In particular, it will be consistent and 
asymptotically normal whether or not the hypothesized model for h(Xi) is correct, and it will have 
the same limiting distribution as fE(h) if the model for h(Xi) is correct. 

Proof For notational convenience, assume that 0 is one-dimensional. It will be sufficient to show 
that 

n-l/2U(o3t 5& g(O)) = n-1/2(U(1t5 &, g(fl*)) + op(1) (A.7) 
for 11 - 1= 0 - O(n-"/2). By a Taylor series expansion 

n-l/2U(/3t, & g(Q)) = n- 1/2(U(/3t &, g(0l*)) + 

n1/2(- 0*)[n-lU[ft, &, g'(fl*)] (A.8) 

n. /2( -f 0*)2[nWlU[ft, oj, g"(f*)]] (A.9) 

for some 0* between 0 and 0*. Now, if Ot = 3, by Theorem A.1 and Pierce (1982), [n-7U[ft, &, 
g'(0*)]] converges to 0 in probability since it has mean 0 to op(n-"/2) with variance converging to 0 
as n -* oo. Further, under regularity conditions, this remains true if ot - 0 1 = O(n-"/2). It then 
follows from Slutsky's theorem that expression (A.8) converges in law to 0 and thus in probability to 
0. Further, since n-'U[o3t, &, g"(fl*)] is at most Op(l) and n"/2(O - 0 *)2 is Op(n-w/2), it follows that 
expression (A.9) is Oj(n-1/2). Thus equation (A.7) is true. 

Theorem (A.3) and part (b) of Theorem (A.2) imply proposition (1) in the paragraph following 
equation (13). Proposition (2) is an easy calculation. 
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