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SUMMARY

Estimation of treatment e�ects with causal interpretation from observational data is complicated be-
cause exposure to treatment may be confounded with subject characteristics. The propensity score, the
probability of treatment exposure conditional on covariates, is the basis for two approaches to adjusting
for confounding: methods based on strati�cation of observations by quantiles of estimated propensity
scores and methods based on weighting observations by the inverse of estimated propensity scores. We
review popular versions of these approaches and related methods o�ering improved precision, describe
theoretical properties and highlight their implications for practice, and present extensive comparisons of
performance that provide guidance for practical use. Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Observational data are often the basis for epidemiological and other investigations seeking to
make inference on the e�ect of treatment exposure on a response. Randomized studies aim to
balance distributions of subject characteristics across groups, so that groups are similar except
for the treatments. However, with observational data, treatment exposure may be associated
with covariates that are also associated with potential response, and groups may be seriously
imbalanced in these factors. Consequently, unbiased treatment comparisons from observational
data require methods that adjust for such confounding of exposure to treatment with subject
characteristics, and inferences with a causal interpretation cannot be made without appropriate
adjustment.
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For comparing two treatments, ‘treated’ and ‘control’, say, the propensity score is the proba-
bility of exposure to treatment conditional on observed covariates [1]. Properties of the propen-
sity score that facilitate causal inferences are given by Rosenbaum and
Rubin [1] (see also References [2, 3]), and applications of methods using adjustments based
on propensity scores are increasingly widespread, e.g. References [4–6]. A popular method
for estimating the (causal) di�erence of two treatment means is that of Rosenbaum and
Rubin [7], where individuals are strati�ed based on estimated propensity scores and the dif-
ference estimated as the average of within-stratum e�ects. An alternative approach is to ad-
just for confounding by using estimated propensity scores to construct weights for individual
observations [8, 9].
In this paper, we review approaches using strati�cation and weighting based on propensity

scores for making causal inferences from observational data and contrast their performance.
A main objective is to provide a mostly self-contained introduction to these methods and
their underpinnings, a description of their properties that highlights insights with implications
for practice, and a demonstration of relative performance that suggests guidelines for appli-
cation. In Section 2, we discuss the framework of counterfactuals or potential outcomes [10],
which formalizes the notion of ‘causal e�ect,’ and assumptions required to justify adjustments
for confounding. We describe popular propensity-score-based approaches and describe some
additional methods that may be less familiar to practitioners that may improve upon these.
Section 3 presents theoretical properties of the estimators, and Section 4 reports on extensive
comparative simulations.

2. ESTIMATORS BASED ON THE PROPENSITY SCORE

2.1. Counterfactual framework

Let Z be an indicator of observed treatment exposure (Z =1 if treated, Z =0 if control) and X
be a vector of covariates measured prior to receipt of treatment (baseline) or, if measured post-
treatment, not a�ected by either treatment. Each individual is assumed to have an associated
random vector (Y0; Y1), where Y0 and Y1 are the values of the response that would be seen
if, possibly contrary to the fact of what actually happened, s=he were to receive control or
treatment, respectively. Consequently, Y0 and Y1 are referred to as counterfactuals (or potential
outcomes) and may be viewed as inherent characteristics of the individual. The response Y
actually observed is assumed to be that would be seen under the exposure actually received,
formalized as

Y =Y1Z + (1− Z)Y0 (1)

Thus, (Y; Z;X) are observed on each individual. It is important to distinguish between the
observed response Y and the counterfactual responses Y0 and Y1. The latter are hypothetical
and may never be observed simultaneously; however, they are a convenient construct allowing
precise statement of questions of interest, as we now describe.
The distributions of Y0 and Y1 may be thought of as representing the hypothetical distribu-

tions of response for the population of individuals were all individuals to receive control or
be treated, respectively, so the means of these distributions correspond to the mean response
if all individuals were to receive each treatment. Hence, a di�erence in these means would
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be attributable to, or caused by, the treatments. Formally, then,

�=�1 − �0 =E(Y1)− E(Y0)

is referred to as the average causal e�ect (of the treated state relative to control). Estimation
of � is thus of central interest in comparing treatments.
This framework makes it possible to formalize the di�culty in estimating �, and thus mak-

ing causal statements, from observational data. The counterfactuals are never both observed
for any subject; thus, whether estimation of � is possible relies on whether E(Y0) and E(Y1)
may be identi�ed from the observed data (Y; Z;X). The sample average response in the treated
group estimates E(Y |Z =1), the mean of observed responses among subjects observed to be
treated, which from (1) is equal to E(Y1 |Z =1) but is di�erent from E(Y1), the mean if
the entire population were treated, and similarly for control. In a randomized trial, as Z is
determined for each participant at random, it is unrelated to how s=he might potentially re-
spond, and thus (Y0; Y1)�Z , where � denotes statistical independence. Here, using (1), we
thus have E(Y |Z =1)=E(Y1 |Z =1)=E(Y1), and similarly E(Y |Z =0)=E(Y0), verifying
that the sample average di�erence is an unbiased estimator for � with a causal interpre-
tation, as widely accepted. However, in an observational study, because treatment exposure
Z is not controlled, Z may not be independent of (Y0; Y1); indeed, the same characteris-
tics that lead an individual to be exposed to a treatment may also be associated, or ‘con-
founded,’ with his=her potential response. In this case, E(Y |Z =1)=E(Y1 |Z =1) �=E(Y1)
and E(Y |Z =0)=E(Y0 |Z =0) �=E(Y0), so that the di�erence of observed sample averages
is not an unbiased estimator for �. It is important to distinguish between the conditions
(Y0; Y1)�Z and Y �Z . The former involves potential responses, which are indeed inde-
pendent of treatment assignment under randomization, while the latter involves the observed
response and is unlikely to be true under any circumstances unless treatment has no e�ect.
In an observational study, although (Y0; Y1)�Z is unlikely to hold, it may be possible

to identify subject characteristics related to both potential response and treatment exposure,
referred to as ‘confounders.’ If we believe that X contains all such confounders, then, for
individuals sharing a particular value of X, there would be no association between the exposure
states and the values of potential responses; i.e. treatment exposure among individuals with a
particular X is essentially at random. Formally, Y0, Y1 are independent of treatment exposure
conditional on X, written

(Y0; Y1)�Z |X (2)

Rosenbaum and Rubin [1] refer to (2) as the assumption of strongly ignorable treatment
assignment; (2) has also been called the assumption of no unmeasured confounders [9]. One
must appreciate that (2) is an assumption; willingness to assume (2) requires the analyst to
have con�dence that X contains all characteristics related to both treatment and response and
that there are no additional, unmeasured such confounders.
The bene�t of (2) is that E(Y0) and E(Y1) may be identi�ed from (Y; Z;X). The regression

relationship E(Y |Z;X) depends only on the observed data, so is identi�able. Then the average
for Z =1 over all X satis�es E{E(Y |Z =1;X)}=E{E(Y1 |Z =1;X)}=E{E(Y1 |X)}=E(Y1),
where the �rst equality is from (1), the second follows from (2), and the outer expectation
is with respect to the distribution of X; similarly, E{E(Y |Z =0;X)}=E(Y0). Thus, it should
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be possible to make inferences on � if (2) may be assumed to hold. Methods using the
propensity score are one way to achieve this.

2.2. The propensity score

The propensity score e(X)=P(Z =1 |X), 0¡e(X)¡1, is the probability of treatment given
the observed covariates. Rosenbaum and Rubin [1] showed that X�Z | e(X), so individuals
from either treatment group with the same propensity score are ‘balanced’ in that the dis-
tribution of X is the same regardless of exposure status. Rosenbaum and Rubin show that
if (2) holds, in addition (Y0; Y1)�Z | e(X), so that treatment exposure is unrelated to the
counterfactuals for individuals sharing the same propensity score. We now review ways these
developments may be exploited to derive estimators for � from observed data (Yi; Zi;X i),
i=1; : : : ; n, an i.i.d. sample containing both treated and control subjects.
In practice, the propensity score is unlikely to be known, so it is routine to estimate it

from the observed data (Zi;X i), i=1; : : : ; n, by assuming that e(X) follows a parametric
model, e.g. a logistic regression model e(X; R)= {1 + exp(−XTR)}−1, R(p× 1). Interaction
and higher-order terms may also be included. Here, R may be estimated by the maximum
likelihood (ML) estimator R̂ solving

n∑
i=1

 �(Zi;X i ; R)=
n∑

i=1

Zi − e(X i ; R)
e(X i ; R){1− e(X i ; R)} @=@R{e(X i ; R)}= 0 (3)

We assume that the analyst is pro�cient at modelling e(X; R), so that it is correctly speci�ed,
and write e= e(X; R) and e�= @=@R{e(X; R)}, with subscript i when evaluated at X i.

2.3. Estimation of � based on strati�cation

The popular approach using strati�cation on estimated propensity scores to estimate � in-
volves the following steps: (i) Estimate R as in (3) and calculate estimated propensity scores
êi= e(X i ; R̂) for all i; (ii) form K strata according to the sample quantiles of the êi, where
the jth sample quantile q̂j, j=1; : : : ; K , is such that the proportion of êi6q̂j is roughly j=K ,
q̂0 = 0, and q̂K =1; (iii) within each stratum, calculate the di�erence of sample means of the
Yi for each treatment; and (iv) estimate � by a weighted sum of the di�erences of sample
means across strata, where weighting is by the proportion of observations falling in each stra-
tum. De�ning Q̂j=(q̂j−1; q̂j]; nj=

∑n
i=1 I(êi ∈ Q̂j), the number of individuals in stratum j; and

n1j=
∑n

i=1 ZiI(êi ∈ Q̂j) is the number of these who are treated, the estimator using a weighted
sum is

�̂S =
K∑

j=1

(nj

n

) {
n−1
1j

n∑
i=1

ZiYiI(êi ∈ Q̂j)− (nj − n1j)−1
n∑

i=1
(1− Zi)YiI(êi ∈ Q̂j)

}
(4)

As the weights nj=n≈K−1, they may be replaced by K−1 to yield an average across strata.
The rationale follows from the property (Y0; Y1)�Z | e(X) when (2) holds. Because treat-

ment exposure is essentially at random for individuals with the same propensity value, we
expect mean comparisons within this group to be unbiased. Identifying individuals sharing
exactly the same propensity value may be infeasible in practice, so strati�cation attempts to
achieve groups where this at least holds approximately. Consequently, �̂S may be a biased
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estimator of �, as some residual confounding within strata may remain. Rosenbaum and Ru-
bin [1, 7] advocate the use of quantiles (K =5), a choice made in most published applications.
Intuitively, these results require that the propensity model be correctly speci�ed. Thus, it is
often recommended [5, 7] that, following (ii), the analyst examine the degree of balance for
each element of X within each stratum using standard statistical tests. Evidence that balance
has not been achieved may re�ect an incorrect model and the need for re�nement, followed
by a return to (i).
To reduce residual within-stratum confounding, a variation on (4) is often advocated [2, 11].

Here, steps (iii) and (iv) are modi�ed as follows: (iii) within each stratum j=1; : : : ; K , �t a
regression model of the form m( j)(Z;X; Q( j)) representing the postulated regression relationship
E(Y |Z;X) within stratum j and, based on the resulting estimate Q̂( j), estimate treatment e�ect
in stratum j by averaging over X i in j as

�̂
( j)
= n−1

j

n∑
i=1

I(êi ∈ Q̂j){m( j)(1;X i ; Q̂( j))− m( j)(0;X i ; Q̂( j))} (5)

and (iv) estimate � by the average or weighted sum of the �̂
( j)
, e.g. using the average

�̂SR=K−1 K∑
j=1
�̂
( j)

(6)

Ordinarily, the m( j) are taken to be the same function of Z and X for all j. E.g. for a linear

model, m( j)(Z;X; Q( j))= �( j)0 + �( j)Z Z +XTQ( j)X ; here, �̂
( j)
= �̂( j)Z for each j.

Within-stratum regression modelling is intended to eliminate any remaining imbalances
within strata. In Section 3.2, we demonstrate that while �̂S does not yield a consistent esti-
mator for � in general, �̂SR is consistent as long as the models m( j) all coincide with the
true, overall regression relationship E(Y |Z;X), but may be inconsistent otherwise.

2.4. Estimation of � based on weighting

Rather than seeking unbiased estimation within strata, weighting methods attempt to obtain
an unbiased estimator for � in a way akin to that proposed by Horvitz and Thompson [12].
Under (1), as Z(1− Z)=0, E{ZY=e(X)}=E{ZY1=e(X)}, so that, assuming (2),

E
{

ZY
e(X)

}
=E

[
E

{
I(Z =1)Y1

e(X)

∣∣∣∣Y1;X
}]
=E

{
Y1

e(X)
E{I(Z =1) |Y1;X}

}
=E(Y1)

where (2) implies E{I(Z =1) |Y1;X}= e(X), allowing the last equality; and we have used
Z = I(Z =1). Similarly, E[(1− Z)Y={1− e(X)}]=E(Y0). This suggests immediately the esti-
mator for � proposed by Rosenbaum [3] and others

�̂IPW1 = n−1 n∑
i=1

ZiYi

êi
− n−1 n∑

i=1

(1− Zi)Yi

1− êi
= �̂1; IPW1 − �̂0; IPW1 (7)
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E{Z=e(X)}=E{E(Z |X)=e(X)}=1 and E[(1− Z)={1− e(X)}]= 1 suggest

�̂IPW2 =
(

n∑
i=1

Zi

êi

)−1 n∑
i=1

ZiYi

êi
−

(
n∑

i=1

1− Zi

1− êi

)−1 n∑
i=1

(1− Zi)Yi

1− êi
= �̂1; IPW2 − �̂0; IPW2 (8)

The estimator for a single mean in (8) is known as a ratio estimator in the sampling literature.
As (7) and (8) involve weighting the observations in each group by the inverse of the prob-

ability of being in that group, ‘IPW’ denotes ‘inverse probability weighting,’ and �̂IPW1 and
�̂IPW2 are popular approaches based on such weighting. However, they are special cases of a
broader class of estimators that may be deduced by viewing the situation as a ‘missing data’
problem discussed in a landmark paper by Robins, Rotnitzky, and Zhao [13]. To appreciate
this, consider �1. Identifying (Y1; Z;X) as the ‘full data,’ Y1 is only observed for individuals
with Z =1 (and is ‘missing’ for those with Z =0), so that the probability of a ‘complete case’
is P(Z =1 |X) if treatment is related to X. Inverse weighting in the �rst terms of �̂IPW1 and
�̂IPW2 allows each ‘complete case’ i to count for him=herself and (ê−1

i − 1) other ‘missing’
subjects with like characteristics X i in estimating �1. From this ‘missing data’ perspective,
the Robins et al. theory may be used to describe the class of all consistent, semiparametric
estimators for �1 and �0 and hence �; i.e. estimators that do not require the distribution of
(Y1; Y0;X) to be speci�ed. The theory shows that all such estimators for � involve ‘inverse
weighting’ of ‘complete cases’ and are consistent if the complete-case probability (i.e. the
propensity score) is correctly modeled, so should be approximately unbiased in �nite sam-
ples. The class includes simple estimators such as �̂IPW1 and �̂IPW2 [for �0, the complete-case
probability is P(Z =0 |X)=1−P(Z =1 |X)], but others are possible. We describe two alter-
native estimators here.
The theory of Robins et al. [13] identi�es the estimator within the class having the smallest

(large-sample) variance, the (locally) semiparametric e�cient estimator

�̂DR= n−1 n∑
i=1

ZiYi − (Zi − êi)m1(X i ; Q̂1)
êi

− n−1 n∑
i=1

(1− Zi)Yi + (Zi − êi)m0(X i ; Q̂0)
1− êi

(9)

Here mz(X; Qz)=E(Y |Z = z;X) is the regression of the response on X in group z, z=0; 1,
depending on parameters Qz, and Q̂z is an estimator for Qz based on the data from subjects
with Z = z. Each term in �̂DR has the form of those in �̂IPW1 and �̂IPW2 but ‘augmented’
(e.g. Reference [14]) by an expression involving the regression; it is this ‘augmentation’ that
serves to increase e�ciency. Unlike �̂S , �̂IPW1, and �̂IPW2, �̂DR requires speci�cation of this
regression model; however, because �̂DR is the e�cient estimator in the class, in large samples,
it has smaller variance than �̂IPW1 or �̂IPW2, often dramatically so. Moreover, Scharfstein
et al. [15, Section 3.2.3] note that �̂DR has a so-called ‘double-robustness’ property that the
estimator remains consistent if either (i) the propensity score model is correctly speci�ed but
the two regression models m0 and m1 are not or (ii) the two regression models are correctly
speci�ed but the propensity score model is not, although under these conditions it need no
longer be most e�cient. Neither �̂IPW1 nor �̂IPW2 need be consistent if e is incorrectly
speci�ed, as the motivating arguments earlier in this section would no longer be valid.
It is also possible to derive other estimators in the Robins et al. class that do not incor-

porate regression modeling by attempting to improve directly upon estimation of �1 and �0.
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With R known, the estimators for �1 and �0 in �̂IPW1 and �̂IPW2 solve

n∑
i=1

{
Zi(Yi − �1)

ei
+ �1

(
Zi − ei

ei

)}
=0 and

n∑
i=1

{
(1− Zi)(Yi − �0)

1− ei
− �0

(
Zi − ei
1− ei

)}
=0

(10)

respectively, where (�0; �1)= (�0; �1) yields �̂IPW1 and (�0; �1)= (0; 0) gives �̂IPW2. This
suggests improving upon �̂IPW1 and �̂IPW2 by identifying constants �0; �1 that minimize
the large-sample variance of solutions to the equations in (10), given by �1 = − E
{Z(Y − �1)=e2}=E{(Z − e)2=e2} and �0 = − E{(1 − Z)(Y − �0)=(1 − e)2}=E{(Z − e)2=
(1− e)2}, which motivates estimating these constants by solving

n∑
i=1

{
(Zi(Yi − �1)

e2i
+ �1

(
Zi − ei

ei

)2}
=0 and

n∑
i=1

{
(1− Zi)(Yi − �0)

(1− ei)2
+ �0

(
Zi − ei
1− ei

)2}
=0

(11)

In practice, one would estimate R, solving (10) and (11) jointly with (3), yielding

�̂IPW3 =
{

n∑
i=1

Zi

êi

(
1− C1

êi

)}−1 n∑
i=1

ZiYi

êi

(
1− C1

êi

)

−
{

n∑
i=1

1− Zi

1− êi

(
1− C0

1− êi

)}−1 n∑
i=1

(1− Zi)Yi

1− êi

(
1− C0

1− êi

)

= �̂1; IPW3 − �̂0; IPW3 (12)

C1 =
n∑

i=1
{(Zi − êi)=êi}

/
n∑

i=1
{(Zi − êi)=êi}2

C0 =−
n∑

i=1
{(Zi − êi)=(1− êi)}

/
n∑

i=1
{(Zi − êi)=(1− êi)}2

Unlike (7) and (8), in the �rst term of (12), each weight ê−1
i is proportionately scaled by

a measure of how the sample, weighted exposure indicators Zi=êi deviate from their expec-
tation (if R were known) of 1, and similarly for the second term. In large samples, C0, C1
should be close to 0, but for smaller n, this scaling proportionately reduces or increases each
‘complete-case’ weight. For �̂IPW1 and �̂IPW2, inverse weighting an observation by a very
small complete-case probability can result in numerical instability, particularly when n is not
large. Thus, the scaling has the e�ect in practice of o�ering stability in the case where some
complete-case probabilities may be small or are highly variable. Interestingly, the ‘augmenta-
tion’ incorporated in �̂DR tends to lessen such instability problems in practice.
As we demonstrate in Section 4, estimators like �̂IPW3 that do not incorporate regression

models, although improving in precision over �̂IPW1 and �̂IPW2, cannot achieve the e�ciency
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gains possible through ‘augmentation’ involving regression as in �̂DR. Hirano and Imbens [16]
report on a practical application of weighted methods and advocate incorporation of regression
models as in (9) for this reason.

2.5. Summary

It is important to recognize that incorporation of regression modelling in �̂DR and �̂SR is
di�erent from a popular alternative to all estimators previously discussed, that of estimation
of � directly from a regression model. For example, for a linear model E(Y |Z;X)= �0+�ZZ+
XT�X , under (2), it is straightforward to verify that �=E(Y1)−E(Y0)=E{E(Y |Z =1;X)}−
E{E(Y |Z =0;X)}= �Z . For models nonlinear in X such as the logistic, this di�erence may
not have a closed form, as each term involves integration over the distribution of X. In either
case, the direct modelling approach has serious drawbacks; Rubin [17] o�ers an excellent
discussion. When dim(X) is large, ensuring that the regression model is correct, and hence
that a consistent estimator for � will be obtained, is di�cult. In addition, if the distributions of
some confounders do not overlap substantially in the treated and control groups, the regression
relationship is determined primarily by treated subjects in one region of the X space and by
control subjects in another, so that estimates of causal e�ects using direct modelling are
essentially based on extrapolation. In contrast, the regression modelling used by �̂SR largely
circumvents this, as X and Z should be approximately independent within-strata. Moreover,
by ‘double robustness,’ even if the regression models in �̂DR are incorrect, this estimator,
which incorporates regression models only as a way to gain e�ciency over simpler weighted
estimators, will still be consistent.
When the true regression is linear and var(Y |Z;X) is constant, direct modelling may be

implemented by ordinary least squares (OLS), which is ML estimation if Y |Z;X has a normal
distribution. If, in fact, these conditions hold, and the chosen model for E(Y |Z;X) is correctly
speci�ed by the analyst, then standard large sample theory implies that the resulting estimator
for � will be consistent and the most e�cient. One would thus expect the direct regression
approach to outperform those based on propensity scores; however, such gains would be at the
risk of the disadvantages noted above. In Section 4, we investigate these issues empirically.
The same considerations apply to ML estimation for any regression model, e.g., logisitic
regression for binary response.
As noted, �̂IPW1, �̂IPW2, �̂IPW3, and �̂DR are all members of the class of consistent, semi-

parametric estimators of Robins et al. [13]. However, as shown in Section 3.2, for �xed K ,
�̂S is not consistent and evidently neither �̂S nor �̂SR makes use of inverse weighting, so
these estimators are not members of this class. Thus, although insights into additional proper-
ties of �̂IPW1, �̂IPW2, �̂IPW3, and �̂DR follow easily from the Robins et al. theory, as shown
next in Sections 3.1 and 3.3, those for �̂S and �̂SR must be deduced separately.

3. THEORETICAL PROPERTIES

In this section we summarize properties of the estimators and highlight the practical insights
that can be deduced from these. The large-sample properties for weighted estimators follow
from the general framework of Reference [13] and may also be obtained directly from the
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standard theory of M -estimation, as we describe in Section 3.1. The properties for strati�cation
estimators to our knowledge have not been elucidated and are sketched in Section 3.2.

3.1. Weighted estimators

Properties of �̂IPW1, �̂IPW2, �̂IPW3, and �̂DR when e is correctly speci�ed may be deduced
by viewing them as solutions to a set of estimating equations. To obtain �̂IPW1 and �̂IPW2,
one solves jointly in (�; R) (3) and an equation of the form

∑n
i=1  �(Yi; Zi;X i ;�; R)=0

that follows from (7) or (8). For �̂IPW3,  � implied by (12) also depends on �0, �1,
and this equation is solved jointly with those in (11) and (3); similarly  � correspond-
ing to �̂DR in (9) depends on Q0, Q1, which are estimated by solving equations of the form∑n

i=1 I(Zi= z) �z(Yi;X i ; Qz)= 0, z=0; 1, as for OLS or logistic regression.
This representation allows application of the theory of M -estimation; a review is given by

Stefanski and Boos [18]. From Equation (3) of Reference [18], because the expectations of
 �,  �, and  � for �̂IPW1, �̂IPW2, and �̂IPW3 are zero at the true values of R, �0, �1, and �,
the estimators of these quantities converge in probability to the true values, and hence, �̂IPW1,
�̂IPW2, and �̂IPW3 are consistent for �0, the true value of �. (This may be seen equivalently
by substituting the true values of R, �0, and �1 in (7), (8), and (12) and applying the law
of large numbers directly.) A similar argument shows that �̂DR converges in probability to
�0, even if the models mz are not correctly speci�ed, as the corresponding  � still has mean
zero. The theory [18, Section 2] then implies that each estimator is such that n1=2(�̂ −�0)
converges in distribution to a N (0;�) random variable.
It instructive to �rst consider the (unlikely) case where R is known, so that e(X; R) is a

known function of X and joint solution with (3) is unnecessary. Under these conditions, for
�̂IPW1; �̂IPW2, and �̂IPW3, the large-sample variances are

�∗
IPW1 = E

(
Y 21
e
+

Y 20
1− e

)
−�2

0; �∗
IPW2 =E

{
(Y1 − �1)2

e
+
(Y0 − �0)2

1− e

}

�∗
IPW3 = E

{
(Y1 − �1)2

e
+
(Y0 − �0)2

1− e

}
+ �1E

(
Y1 − �1

e

)
+ �0E

(
Y0 − �0
1− e

)
+ 2�1�0

(13)

where expectations are with respect to the distribution of (Y0; Y1;X) and all parameters are
equal to their true values. It may be shown that �∗

IPW2¿�
∗
IPW3. If, as in practice, R is estimated,

then the variances become, with E��=E[e�eT�={e(1− e)}],

�IPW1 =�∗
IPW1 −HT

�;1E
−1
�� H�;1; H�;1 =E

{(
Y1
e
+

Y0
1− e

)
e�

}
(14)

�IPW2 =�∗
IPW2 −HT

�;2E
−1
�� H�;2; H�;2 =E

{(
Y1 − �1

e
+

Y0 − �0
1− e

)
e�

}
(15)

�IPW3 =�∗
IPW3 −HT

�;3E
−1
�� H�;3; H�;3 =E

{(
Y1 − �1 + �1

e
+

Y0 − �0 + �0
1− e

)
e�

}
(16)

thus exhibiting the interesting property that estimating R, even if its true value is known,
leads to smaller (large-sample) variance for these estimators than using the true value. Thus,
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even if the functional form of the propensity score is known exactly, it is bene�cial from an
e�ciency standpoint to estimate it anyway. We have found in empirical studies like those in
Section 4 that in general �IPW1¿�IPW2¿�IPW3.
For �̂DR, similar arguments show that its large-sample variance is

�DR=�∗
IPW2 − E

[√
1− e
e

{E(Y1 |X)− �1}+
√

e
1− e

{E(Y0 |X)− �0}
]2

(17)

The Robins et al. [13] theory guarantees that �DR6�IPW1, �IPW2, and �IPW3. As long as the
propensity and regression models do not share parameters, �DR is the same whether R and
Q0, Q1 are known or estimated.
The components of the expressions in (14)–(17) may be estimated from the observed data,

yielding approximate sampling variances for �̂IPW1, �̂IPW2, �̂IPW3, and �̂DR. Alternatively,
variance estimates may be obtained via the empirical sandwich method [18, Sections 2 and
3], which we have found to be more stable in practice. Speci�cally, for propensity models of
the form {1+exp(−WTR)}−1, where W is a function of elements in X, approximate sampling
variances are computed as n−2 ∑n

i=1 Î
2
i , where

Î IPW1; i =
ZiYi

êi
− (1− Zi)Yi

1− êi
− �̂IPW1 − (Zi − êi)Ĥ

T
�;1Ê

−1
��Wi (18)

Î IPW2; i =
Zi(Yi − �̂1; IPW2)

êi
− (1− Zi)(Yi − �̂0; IPW2)

1− êi
− (Zi − êi)Ĥ

T
�;2Ê

−1
��Wi (19)

Î IPW3; i =
Zi(Yi − �̂1; IPW3) + �̂1(Zi − êi)

êi
− (1− Zi)(Yi − �̂0; IPW3)− �̂0(Zi − êi)

1− êi

−(Zi − êi)Ĥ
T
�;3Ê

−1
��Wi (20)

Î DR; i =
ZiYi − m1(X i ; Q̂1)(Zi − êi)

êi
− (1− Zi)Yi +m0(X i ; Q̂0)(Zi − êi)

(1− êi)
− �̂DR (21)

Ê
−1
�� = n−1 ∑n

i=1 êi(1− êi)WiWT
i , �̂1 = − ∑n

i=1 {Zi(Yi − �̂1; IPW3)=ê
2
i }

/∑n
i=1 {(Zi − êi)=êi}2, and

�̂0 = −∑n
i=1 {(1−Zi)(Yi − �̂0; IPW3)=(1− êi)2}

/∑n
i=1 {(Zi − êi)=(1− êi)}2. The terms Ĥ�;1, Ĥ�;2,

and Ĥ�;3 are empirical versions of the terms in (14)–(16):

Ĥ�;1 = n−1 n∑
i=1

{
ZiYi(1− êi)

êi
+
(1− Zi)Yiêi
1− êi

}
Wi

Ĥ�;2 = n−1 n∑
i=1

{
Zi(Yi − �̂1; IPW2)(1− êi)

êi
+
(1− Zi)(Yi − �̂0; IPW2)êi

1− êi

}
Wi

Ĥ�;3 = n−1 n∑
i=1

{
Zi(Yi − �̂1; IPW3 + �̂1)(1− êi)

êi
+
(1− Zi)(Yi − �̂0; IPW3 + �̂0)êi

1− êi

}
Wi

In Section 4, we demonstrate performance of these formul�.
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3.2. Strati�cation estimators

Here, we present a heuristic account of large-sample results for �̂S and �̂SR based on repre-
senting the strati�cation and within-stratum estimation schemes for each as solutions to sets
of estimating equations. Because in practice it is standard to take a predetermined number
of strata K regardless of sample size (K =5 is most common), we view K as �xed (so not
depending on n). As in Section 3.1, assume e is correctly speci�ed.
Both �̂S and �̂SR involve estimation not only of R by solving (3), as before, but also of

the true quantiles q=(q1; : : : ; qK−1)T, which may be carried out by solving
n∑

i=1
 S
qj (X i ; qj; R)=

n∑
i=1

I(ei6qj)− j=K =0; j=1; : : : ; K − 1 (22)

These equations do not have zero solutions for some n, but this technicality does not a�ect
the spirit of the discussion below. We may rewrite (4) in an asymptotically equivalent form
by replacing nj=n with its limit K−1 and writing p̂j= n1j=n as

�̂S = n−1 n∑
i=1

ZiYi

K

{
K∑

j=1

I(êi ∈ Q̂j)
p̂j

}
− n−1 n∑

i=1

(1− Zi)Yi

K

{
K∑

j=1

I(êi ∈ Q̂j)
1=K − p̂j

}
(23)

This shows that �̂S also requires estimation of the probabilities p=(p1; : : : ; pK)T that an
individual is treated and has propensity score in Qj=(qj−1; qj], where q0 = 0, qK =1; the
estimator p̂j= n1j =n follows from solving the equations

n∑
i=1

 S
pj
(Zi;X i ; qj−1; qj; pj; R)=

n∑
i=1

ZiI(ei ∈Qj)− pj=0; j=1; : : : ; K (24)

Instead, calculation of �̂SR involves solving in Q( j) for j=1; : : : ; K

n∑
i=1

 S
�( j) (Yi; Zi;X i ; qj−1; qj; Q( j))=

n∑
i=1

I(ei ∈Qj){Yi − m( j)(Zi;X i ; Q( j))}m( j)� (Zi;X i ; Q( j))= 0

(25)

where m( j)� is the vector of partial derivatives of m( j) with respect to elements of Q( j). We
are now in a position to characterize fully each estimator and evaluate properties.
First consider �̂S . Even with e(X; R) correctly speci�ed, as noted in Section 2.3, we expect

�̂S to be inconsistent due to failure of strati�cation to eliminate all confounding, an observa-
tion we may now formalize. Noting that (3), (22), and (24) have expectation zero at the true
values of X=(qT; pT; RT)T, we may conclude from [18, Section 2] that solving these equations
jointly yields consistent estimators for the elements of X. Thus, considering the asymptoti-
cally equivalent form (23), we may replace êi, Q̂j, and p̂j by their true values and apply the

law of large numbers directly to see that �̂S converges in probability to �∗=�∗
1 −�∗

0 , where
�∗
1 =K−1 ∑K

j=1 E{Y1eI(e∈Qj)}=E{eI(e∈Qj)}, and �∗
0 =K−1 ∑K

j=1 E{Y0(1 − e)I(e∈Qj)}=
[K−1−E{eI(e∈Qj)}]. It is straightforward to see that a su�cient condition for �∗=�0

is (Y0; Y1)�X, in which case confounding is not an issue, as would be expected, but, in
general, �∗ �=�0 so that �̂S is not consistent. The hope in practice, of course, is that
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|�∗ − �0 | is ‘small.’ Thus, �̂S estimates �∗, and from (23) an estimating equation for
�∗ is

∑n
i=1  

S
�∗(Yi; Zi;X;�∗; X)=0, where

 S
�∗(Yi; Zi;X;�∗; X) = ZiYiK−1 K∑

j=1
I(ei ∈Qj)=pj − (1− Zi)YiK−1

×
K∑

j=1
I(ei ∈Qj)=(K−1 − pj)−�∗

Writing ��=( S
q1 ; : : : ;  

S
qK−1

;  S
p1 ; : : : ;  

S
pK

;  �)T, we thus see that �̂S and X̂ jointly solve

n∑
i=1

{�T
� (Zi;X i ; X);  S

�∗(Yi; Zi;X;�∗; X)}T = 0 (26)

in X and �∗. The properties of �̂S may be derived from (26) by appealing to M -estimation
arguments [18]. Consider �rst the ‘ideal’ situation where the qj, pj, and R are all known.
Letting fe(·) be the density of the propensity score and E(· | e) be conditional expectation given
the propensity score, it may be shown under these conditions that n1=2(�̂S −�∗) converges
in distribution to a N (0;�∗

S) random variable, where

�∗
S =K−2 K∑

j=1
p−2

j

∫ qj

qj−1

E(Y 21 | t)tfe(t) dt + K−2 K∑
j=1
(1=K − pj)−2

×
∫ qj

qj−1

E(Y 20 | t)(1− t)fe(t) dt −�2
∗

Comparing this expression to those in (13) suggests that �̂S has di�erent properties from
weighted estimators, as �∗

S depends critically on the density of the propensity score. In the
more realistic case where the qj, pj, and R are estimated, via M -estimation arguments for
nonsmooth  functions [18, Section 4] to account for nondi�erentiability of some elements
of (26) in qj and R, the variance is

�S =�∗
S + �p + �qp + ��qp (27)

where �p, �qp, and ��qp are quantities modifying the ‘ideal’ variance �∗ due to estimation in
turn of p, q, and R; e.g. ��qp is the e�ect of estimating R rather than knowing it if q and p
are estimated (see the Appendix). In contrast to the situation in (14), (15), and (16), it is not
possible to deduce that any of �p, �qp, or ��qp in (27) are negative, which would imply that
estimation of p, q, and=or R reduces variance relative to the (unlikely) situation where they
are known.
We may follow a similar argument for �̂SR. This estimator requires joint solution of (3),

(22), and (25); as above, solving the �rst two jointly leads to consistent estimators for R
and the qj. Substituting these in (25), from the theory of M -estimation [18, Section 2],
the resulting estimators Q̂( j), j=1; : : : ; K , solving (25) converge in probability to some Q( j)∗
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satisfying E{ S
�( j) (Y; Z;X; qj−1; qj; Q( j)∗ )}= 0 for each j, where Q( j)∗ depend on the functions

m( j) used. Now, substituting nj=n≈K−1 in (5), we may rewrite (6) as

�̂SR= n−1 n∑
i=1

K∑
j=1

I(êi ∈ Q̂j){m( j)(1;Xi ; Q̂( j))− m( j)(0;X i ; Q̂( j))} (28)

Then, applying the law of large numbers to (28), �̂SR converges in probability to �∗∗=
∑K

j=1

E[I(e∈Qj){m( j)(1;X; Q( j)∗ ) − m( j)(0;X; Q( j)∗ )}]; e.g. for the linear model example following
(5), �∗∗=

∑K
j=1 E{I(e∈Qj)}Q( j)∗ =K−1 ∑K

j=1 Q
( j)
∗ . If the within-stratum regression models

m( j)(Z;X; Q( j)) are chosen such that they are all of the exact form of the true regression rela-
tionship E(Y |Z;X)=m(Z;X; Q0), say, for some m and true value Q0, then Q( j)∗ = Q0 for each j,
as under these conditions E{ S

�( j) (Y; Z;X; qj−1; qj; Q0)}=E(I(e∈Qj)E[{Y − m(Z;X; Q0)} |Z;X]
m�(Z;X; Q0))= 0 because the inner conditional expectation is zero. Thus, using (2) and m(z;X;
Q0)=E(Y |Z = z;X)

�∗∗ =
K∑

j=1
E[I(e∈Qj){E(Y |Z =1;X)− E(Y |Z =0;X)}]

= E

[{
K∑

j=1
I(e∈Qj)

}
{E(Y1 |X)− E(Y0 |X)}

]
=E{E(Y1 |X)− E(Y0 |X)}=�0

where we use the facts that the sum over j of the indicators of stratum membership is one for
any �xed X and E{E(Y1 |X)− E(Y0 |X)} is equal to the true value of �. This demonstrates
that �̂SR is a consistent estimator for �0 as long as the m( j) have the same form as the true
regression relationship. However, if the m( j) are chosen di�erently, and hence incorrectly,
this argument does not hold, and �∗∗ �=�0 in general. Hence, choice of the within-stratum
regression models is critical for consistency of �̂SR. In contrast, by ‘double robustness,’ �DR,
will be consistent regardless of whether the regression models chosen for ‘augmentation’ are
correct. In Section 4, we demonstrate these properties empirically.
Analogous to the results for �̂S , again by the theory of M -estimation, it may be shown

that in general n1=2(�̂SR −�∗∗) converges in distribution to a normal random variable with
variance similar in form to that in (27); thus, no general insights are possible.
Such theory is not used in practice; rather, it is routine to approximate the sampling vari-

ance of �̂S by treating �̂S as the average of K independent, within-stratum, treatment e�ect
estimates as

K−2 K∑
j=1

�̂2j (29)

assuming an equal number of individuals per stratum, where �̂2j is an estimate of the variance
of the di�erence between the treatment means in stratum j given by �̂2j = n−1

1j s21j + (nj −
n1j)−1s20j, s

2
1j= n−1

1j

∑n
i=1 I(êi ∈ Q̂j)(ZiYi − �y1j)

2, s20j=(nj − n1j)−1
∑n

i=1 I(êi ∈ Q̂j){(1− Zi)Yi −
�y0j}2, �y1j= n−1

1j

∑n
i=1 I(êi ∈ Q̂j)ZiYi, and �y0j=(nj − n1j)−1

∑n
i=1 I(êi ∈ Q̂j)(1−Zi)Yi. Similarly,
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the sampling variance of �̂SR is approximated in practice by an expression of the form (29)
with �̂2j replaced by an estimate of the variance of m

( j)(1;X; Q̂( j))− m( j)(0;X; Q̂( j)) based on
the �t of the regression model in stratum j; e.g., for the linear model example after (6), this
would be the estimated sampling variance of �̂( j)Z , obtainable directly from standard regression
software.

3.3. E�ect of additional covariates

In the previous development, it was assumed that X is associated with both treatment exposure
and potential response and that (2) holds. For �̂S , a common guideline is that it is preferable
to ‘over-model’ the propensity score by including additional covariates unrelated to treatment
exposure rather than run the risk of excluding relevant ones [5, 19]. In fact, intuition would
suggest that including such covariates when they are correlated with potential response could
provide additional information on �. It is possible to gain formal insight as follows.
Suppose V is an additional set of covariates, exclusive of X, that (i) is not associated with

treatment exposure but (ii) is associated with potential response. More precisely, (i) may be
written as P(Z =1 |X;V)=P(Z =1 |X), and (ii) implies that the conditional distributions of
Y0 and Y1 given (Z;X;V) depend on V. Suppose that the analyst is willing to assume strong
ignorability given both X and V, i.e.

(Y0; Y1)�Z | (X;V) (30)

It is straightforward to show using manipulations similar to those in Reference [20] that here
(30) implies that (2) also holds. Thus, it is possible to specify a model P(Z =1 |X;V)=
e(X;V; R; S), where S is an additional (q× 1) parameter corresponding to terms in the model
involving V, such that this model reduces to the true propensity score e(X; R) (depending on
X and R only) when S= 0, its ‘true’ value, and the assumptions underlying the derivations
of (14)–(17) and (27) hold. Suppose, then, that the chosen propensity score model satis�es
e(X;V; R; 0)= e(X; R)= e and is such that @=@R{e(X;V; R; S)}|�=0 = e� depending on X and R
only; e.g. as for the logistic model e(X;V; R; S)= [1 + exp{−(XTR+VTS)}]−1.
Under these circumstances, for all methods, � will be estimated jointly with both the

previous additional parameters and S. The e�ect of including V in the propensity model may
thus be deduced by considering the previous estimating equations for each estimator, replacing
e(X; R) by e(X;V; R; S), and adding the additional equation

n∑
i=1

Zi − e(X i ;Vi ; R; S)
e(X i ;Vi ; R; S){1− e(X i ;Vi ; R; S)} @=@S{e(X i ;Vi ; R; S)}= 0 (31)

Note that @=@S{e(X;V; R; S)} evaluated at the ‘truth’ S= 0 may depend on both X and V; in
the logistic example, this partial derivative is V=[e(X;V; R; S){1 − e(X;V; R; S)}]. In general,
write e�= @=@S{e(X;V; R; S)}|�=0, with subscript i when evaluated at (X i ;Vi).
Incorporating the additional estimating equation (31) for each estimator, it may be shown

by M -estimation arguments [18] that all weighted estimators still are consistent and such that
n1=2(�̂ − �0) converges in distribution to a mean-zero normal random variable, now with
di�erent variance �V . De�ning E ��=E[e�eT� ={e(1 − e)}] and E ��=E[e�eT�={e(1 − e)}], and
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letting H��=E�� − E��E−1
�� E

T
��, for �̂IPW2,

�V
IPW2 =�IPW2 − (H �;2 − E ��E−1

��H�;2)TH−1
�� (H �;2 − E ��E−1

��H�;2) (32)

where H �;2 =E[{(Y1 − �1)=e+ (Y0 − �0)=(1− e)}e�] , with similar expressions for �V
IPW1 and

�V
IPW3. From (32) and these analogous expressions, the e�ect of including V in the propensity
score model is to reduce the variance relative to that in the case where V is excluded.
The practical implication is that, at least in large samples, for these weighted estimators,
incorporating covariates in the propensity model that are not related to treatment exposure but
are associated with potential response will always lead to precision for estimating � at least
as great as that attained by disregarding such covariates.
When V is considered, the form of the semiparametric e�cient estimator, which now is

that with smallest large-sample variance among all estimators in the Robins et al. [13] class
under the condition that the distribution of (Y0; Y1;X;V) is unspeci�ed, is di�erent from (9),
which does not acknowledge availability of V. In particular, we now have

�̂DR= n−1 n∑
i=1

ZiYi − (Zi − ˆ̂ei)m∗
1(X i ;Vi ; T̂1)

ˆ̂ei
− n−1 n∑

i=1

(1− Zi)Yi + (Zi − ˆ̂ei)m∗
0(X i ;Vi ; T̂0)

1− ˆ̂ei
(33)

where ˆ̂ei= e(X i ;Vi ; R̂; Ŝ), and m∗
z (X;V; Tz)=E(Y |Z = z;X;V) is the regression of Y on (X;V)

in group z; z=0; 1, depending on parameters Tz estimated by T̂z from subjects with Z = z.
As before, this estimator requires modelling of the regression and maintains the ‘double-
robustness’ property. The large sample variance of (33)

�V
DR=�

∗
IPW2 − E

[√
1− e
e

{E(Y1 |X;V)− �1}+
√

e
1− e

{E(Y0 |X;V)− �0}
]2

and satis�es �V
DR6�DR, so that a potential gain in e�ciency over disregarding information

on Y in V is achieved. Of course, �V
DR6�

V
IPW1;�

V
IPW2, and �

V
IPW3 as well.

As e(X;V; R; 0)= e; �̂S and �̂SR still converge in probability to �∗ and �∗∗ in general;
however, the large-sample variances change. For example, for �̂S , by similar arguments, where
now (31) is solved jointly with the previous equations, the variance is (see the appendix)

�V
S =�S + ���qp (34)

where ���qp represents the additional e�ect of estimating S rather than knowing it if (p; q; R)
are estimated; as before, it is not possible to show ���qp60. A similar development holds
for �̂SR, where we still have �∗∗=�0 if the m(j) are chosen according to the true regression
relationship. Thus, in contrast to the results for weighted estimators, it is not immediately
evident whether incorporating covariates V into the propensity model leads to a reduction in
variance for these estimators over not. In Section 4, we investigate this issue empirically.
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4. SIMULATION STUDIES

In practice, several covariates will likely be available for modelling the propensity score. To
investigate relative performance in such a realistic setting, we carried out simulations involving
a number of continuous and discrete covariates and a continuous response such that �0¿0,
where larger values of the response are preferred, so that treatment is bene�cial.
We considered covariates X=(X1; X2; X3)T associated with both treatment exposure and

potential response, i.e. confounders, and covariates V=(V1; V2; V3)T associated with potential
response but not treatment exposure, so that the e�ect of adding such covariates as in Section
3.3 could be gauged. In particular, in all scenarios, Z was generated as Bernoulli according
to the true propensity score e(X; R)= {1 + exp(−�0 − �1X1 − �2X2 − �3X3)}−1, not involving
elements of V, and the response Y was generated according to

Y = �0 + �1X1 + �2X2 + �3X3 + �4Z + 	1V1 + 	2V2 + 	3V3 + 
; 
∼N(0; 1) (35)

and ]=(�0; �1; �2; �3; �4)T = (0;−1; 1;−1; 2)T, so that in all cases �0 = �4 = 2. Settings of
R=(�0; �1; �2; �3)T and ^=(	1; 	2; 	3)T were chosen to represent di�erent degrees of asso-
ciation, as described below. All scenarios are such that values of X associated with lower
responses are also associated with increased propensity for treatment, so that subjects with a
covariate pro�le indicating poor response are those more likely to be treated.
The joint distribution of (X;V) was speci�ed by taking X3∼ Bernoulli (0.2) and then gener-

ating V3 as Bernoulli with P(V3 = 1 |X3)=0:75X3 + 0:25(1 − X3). Conditional on
X3; (X1; V1; X2; V2)T was then generated as multivariate normal N(�X3 ;�X3), where

�1 =




1

1

−1
−1



�0 =




−1
−1
1

1




and �1 =�0 =




1 0:5 −0:5 −0:5
0:5 1 −0:5 −0:5

−0:5 −0:5 1 0:5

−0:5 −0:5 0:5 1




Values for ] and ^ were taken such that each positively-correlated pair (Xk; Vk); k=1; 2, has
coe�cients of the same sign in (35) and thus Xk and Vk have similar and correlated e�ects
on response. Overall, the values for ]; R, and ^ result in lower response values and larger
probabilities of treatment exposure when X3 = 1 and conversely when X3 = 0. Note that (35)
implies E(Y |Z = z;X;V)= �0 + �1X1 + �2X2 + �3X3 + �4z+ 	1V1 + 	2V2 + 	3V3 =m∗

z (X;V; Tz)
for z=0; 1, where T0 = (�0; �1; �2; �3; 	1; 	2; 	3)T, T1 = (�∗

0 ; �1; �2; �3; 	1; 	2; 	3)
T, and �∗

0 = �0 + �4.
Moreover, this formulation implies expressions of the form E(Y |Z = z;X)=mz(X; Qz)= �0 +
�1X1 + �2X2 + �3X3 + �4z for some Q0 = (�0; �1; �2; �3)T; Q1 = (�∗

0 ; �1; �2; �3)
T, and �∗

0 = �0 + �4.
Settings of R and ^ that achieve the features described above were chosen to represent

varying degrees of association of the corresponding covariate to Z or Y . Three settings of
^ were used to examine the in�uence of the strength of the association between V and re-
sponse when over-�tting the propensity score: ^str = (−1:0; 1:0; 1:0)T; ^mod = (−0:5; 0:5; 0:5)T,
and ^no = (0; 0; 0)T , where superscripts no, mod, and str denote ‘no,’ ‘moderate,’ and ‘strong’
association. When ^= ^no;V is associated with neither potential response nor treatment expo-
sure, so from Section 3.3 we expect no bene�t to including it in an analysis. Two
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settings Rstr = (0:0; 0:6;−0:6; 0:6)T and Rmod = (0:0; 0:3;−0:3; 0:3)T were considered, correspond-
ing to strong and moderate association of Z and X, yielding marginal exposure probabilities
P(Z =1)=0:38 (str) and 0.42 (mod). For each of the six combinations of (^; R), 1000 Monte
Carlo (MC) data sets were generated for n=1000 and 5000 to emulate many published
applications. For each, � was estimated using �̂IPW1; �̂IPW2; �̂IPW3; �̂DR, and �̂S and �̂SR

with K =5 two ways: (i) including only the true confounders X in the propensity score,
as described in Sections 2.4 and 2.3, thus �tting the true propensity model e(X; R) above
by ML, and (ii) including both X and V as described in Section 3.3, �tting the propensity
model e(X;V; R; S)= {1 + exp(−�0 − �1X1 − �2X2 − �3X3 − �1V1 − �2V2 − �3V3)}−1 by ML.
For �̂DR, in (i), we �t the correct linear models mz(X; Qz) implied above, and in (ii) we �t
instead m∗

z (X;V; Tz); z=0; 1, both by OLS. For �̂SR, we similarly �t within each stratum the
true models for E(Y |Z;X) and E(Y |Z;X;V) for (i) and (ii), respectively. As discussed in
Section 2.5, because OLS is ML estimation in this situation and hence serves as a ‘bench-
mark,’ we also estimated �0 = �4 by directly �tting the true models for (i) E(Y |Z;X) and
(ii) E(Y |Z;X;V) by this method, denoted �̂ML.
To investigate ‘double robustness’ of �̂DR and sensitivity of �̂SR and �̂ML to incorrect

speci�cation of regression models, for both (i) and (ii), we also implemented these estimators
using the correct propensity models but mismodelling the relevant regression relationships
by leaving (X1; V1) and X1 out of the models for E(Y |Z;X;V) and E(Y |Z;X), respectively,
denoted by �̂DR∗ and �̂SR∗ . Similarly, for �̂ML, we �t these misspeci�ed models directly by
OLS, denoted by �̂ML∗ .
Table I summarizes results in the case where the regression models in �̂DR; �̂SR, and �̂ML

correspond to the true relationships; as �̂IPW1 performed uniformly more poorly than the
other IPW estimators, it is omitted for brevity. Biases for all estimators but �̂S are less than
3 per cent in all scenarios, so are not shown. Those for �̂S under conditions (i) and (ii)
can be substantial, particularly when associations are strong, demonstrating the inconsistency
of this estimator. Thus, although MC standard deviation of �̂S is smaller than that of �̂IPW2

and �̂IPW3 in many cases, e�ciency gains of the latter estimators over �̂S as measured by
MC mean square error (MSE) ratio are considerable. In principle, in smaller sample sizes,
biased estimators may outperform estimators with larger sampling variance, as the bias is
small relative to the variance. However, in our experience, we have found this not to be true
for �̂S , with this estimator having bias far exceeding the bias |�∗ − �0| predicted by the
theory. The result is that weighted estimators achieve e�ciency gains over �̂S at both small
and large sample sizes, with comparable performance only in a limited range of moderate
sample sizes (see Reference [21]). The estimator �̂IPW3 has smaller variance than �̂IPW2,
particularly when R= Rstr , showing that this estimator does indeed increase e�ciency over
simpler weighted estimators. However, the results for �̂DR and �̂SR shows that incorporation
of regression modelling yields a substantial payo�. For the former, as predicted by the the-
ory, MC standard deviations for these estimator are uniformly smaller than those for �̂IPW2

and �̂IPW3, which is re�ected in dramatically improved e�ciencies relative to �̂S . In scenar-
ios involving strong association between X and treatment exposure, �̂SR outperforms �̂DR,
with smaller variance and hence higher relative e�ciency; otherwise, these two estimators
exhibit approximately equivalent performance. Consistent with its ‘benchmark’ role, the ML
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Table I. Monte Carlo results, multivariate confounder, correct regression modelling. BiasS is bias of �̂S
(per cent of true value �0 =2:0). For each (^; R) setting, (i) denotes estimators using X only, (ii) denotes
estimators using X and V as in Section 3. MC MSE ratios are computed as MC MSES =MC MSEm,

where m denotes the indicated estimator and MC MSE is MC bias squared plus MC variance.

MC standard deviation MSE ratio

^ R BiasS �̂S �̂SR �̂IPW2 �̂IPW3 �̂DR �̂ML SR IPW2 IPW3 DR ML

n=1000
^str Rstr (i) −28.4 0.184 0.151 0.454 0.234 0.167 0.134 15.65 1.73 5.92 12.79 19.91

(ii) −28.5 0.151 0.087 0.450 0.208 0.097 0.077 45.80 1.72 7.01 37.03 59.38

Rmod (i) −16.0 0.153 0.118 0.150 0.138 0.119 0.117 8.99 5.59 6.61 8.85 9.28
(ii) −15.9 0.125 0.072 0.120 0.103 0.071 0.069 22.65 8.09 11.01 22.83 24.47

^mod Rstr (i) −22.3 0.136 0.106 0.356 0.180 0.116 0.093 19.41 1.71 5.92 16.25 25.05
(ii) −22.6 0.128 0.089 0.361 0.175 0.099 0.078 27.81 1.68 6.25 22.39 36.11

Rmod (i) −12.7 0.111 0.083 0.112 0.100 0.083 0.082 11.26 6.19 7.66 11.12 11.46
(ii) −12.8 0.103 0.070 0.103 0.089 0.070 0.068 15.32 7.17 9.44 15.56 16.40

^no Rstr (i) −16.1 0.109 0.091 0.252 0.138 0.098 0.080 13.80 1.81 5.43 11.97 17.86
(ii) −16.1 0.111 0.092 0.263 0.140 0.099 0.080 13.66 1.67 5.35 11.89 17.96

Rmod (i) − 9.0 0.088 0.069 0.090 0.081 0.069 0.067 8.35 4.96 6.04 8.32 8.71
(ii) − 9.0 0.086 0.069 0.091 0.082 0.069 0.067 8.27 4.83 5.93 8.24 8.68

n=5000
^str Rstr (i) −28.5 0.079 0.064 0.206 0.110 0.070 0.059 80.22 7.75 26.1 67.0 95.15

(ii) −28.5 0.067 0.039 0.203 0.102 0.042 0.035 219.05 8.00 30.10 183.10 265.80

Rmod (i) −16.2 0.067 0.052 0.066 0.061 0.052 0.051 40.93 25.40 29.50 40.60 41.73
(ii) −16.1 0.051 0.030 0.050 0.044 0.030 0.030 118.81 42.20 55.00 119.20 121.57

^mod Rstr (i) −22.3 0.061 0.047 0.168 0.088 0.052 0.043 92.57 7.16 25.30 73.70 112.09
(ii) −22.4 0.057 0.039 0.168 0.084 0.045 0.035 130.78 7.23 27.20 102.00 162.67

Rmod (i) −12.6 0.052 0.038 0.050 0.046 0.039 0.038 44.79 26.90 31.80 43.70 45.28
(ii) −12.7 0.046 0.031 0.043 0.039 0.031 0.031 70.00 35.10 43.70 68.90 70.89

^no Rstr (i) −16.1 0.047 0.038 0.118 0.065 0.042 0.034 73.03 7.52 24.00 60.70 92.28
(ii) −16.1 0.048 0.038 0.119 0.065 0.042 0.034 73.25 7.49 24.10 60.80 92.32

Rmod (i) − 9.2 0.039 0.031 0.038 0.036 0.031 0.031 36.75 24.40 27.80 36.50 37.82
(ii) − 9.2 0.040 0.031 0.038 0.036 0.031 0.031 36.61 24.10 27.50 36.30 37.67

estimator exceeds (under Rstr) or attains similar performance to (under Rmod) that of �̂DR

and �̂SR.
Comparison of results under (i) and (ii) con�rm the reduction in variance expected from the

theory in Section 3.3 for weighted estimators when ‘over-�tting’ the propensity score using
prognostic covariates, i.e. when ^= ^mod or ^str . The few instances of slight e�ciency loss
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at n=1000 are resolved at n=5000. Gains achieved by �̂DR are most dramatic. Moreover,
for a particular R setting, including V in the analysis with �̂DR when ^= ^mod or ^str results
in MC standard deviation equal to that possible when there is no association between V and
response (^= ^no). In contrast, the other weighted estimators gain e�ciency by including V,
but an increase in the magnitude of ^ is associated with an increase in variance. Although
theory in Section 3.3 is not informative for �̂S and �̂SR, the empirical results suggest that
their sampling variation is also reduced by such ‘over-�tting’. In fact, we have evaluated
���qp in (34) in numerous situations and found its sign always to be negative.

Table II shows analogous results for �̂SR∗ ; �̂DR∗ , and �̂ML∗ . ‘Double robustness’ of �̂DR∗

is con�rmed; under all scenarios, the bias of this estimator is less than 1 per cent and is
thus not shown. Moreover, the e�ciency of this estimator relative to �̂DR, which uses correct
regression models, only su�ers noticeably when R= Rstr and is superior to that of �̂IPW2 and
�̂IPW3 in every case, showing that ‘augmentation’ of usual weighted estimators by regression
relationships may increase precision even if the models are not exactly correct. In contrast,
failure to incorporate the correct regression relationship leads to bias of �̂SR∗ , although its
magnitude is smaller than that of �̂S in Table I. This feature results in considerably poorer
e�ciency of �̂SR∗ relative to �̂DR∗ . The drawback of direct regression modelling is clearly
evident; using an incorrect model yields signi�cant bias and consequently drastically inferior
performance. These results suggest that, if one insists on estimators like �̂SR or �̂ML that
involve regression modelling explicitly, the former is ‘safer.’ The nature of the mismodelling
we have examined was chosen deliberately to be rather extreme to demonstrate the potential
pitfalls of these approaches; here, disregarding X1 in the regression modelling disregards a
confounder, emphasizing how sensitive these estimators are to violation of key assumptions
in the regression model, a situation to which �̂DR is robust.
To further assess the quality of inference, we calculated nominal 95 per cent Wald con�-

dence intervals for �0 as estimate ±1:96× estimated standard deviation for each estimator,
using the sandwich method based on (18)–(21) for the weighted estimators, using (29) for �̂S

and the analogous approach for �̂SR, and using the usual OLS standard error for �̂ML. Table
III shows Monte Carlo coverage probabilities for case (i). Low coverages for �̂S are due to
the residual biases in Table I, as estimated standard errors from (29) performed well, closely
tracking the MC standard deviations. Coverage for �̂IPW2 and �̂IPW3 achieves the nominal
level under Rmod, with somewhat optimistic performance when this association is strong. No-
tably, coverages for �̂DR; �̂SR, and �̂ML attain the nominal level in all cases; moreover, so
do those for �̂DR∗ , despite augmentation by the ‘wrong’ regression model. In contrast, due to
the biases in Table II, coverages based on �̂SR∗ and �̂ML∗ are far from nominal.
The foregoing results take K =5 for �̂S , as is common in practice; however, with larger

sample sizes, one might re�ne the balancing e�ect of strati�cation by increasing K . Table IV
shows for case (i) performance of �̂S when the number of strata was doubled from K =5 to
10. While MC standard deviations and standard errors for �̂S are similar and remain fairly
constant from K =5 to 10, bias is reduced by roughly 65 per cent in all scenarios, yielding
improved coverage (although still not at the nominal level). However, performance of �̂S is
still inferior to that of the other estimators, and, because residual bias, although smaller than
for K =5, remains constant as n increases, coverage worsens for n=5000.
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Table II. Monte Carlo results, multivariate confounder, incorrect regression modelling. BiasSR∗ and BiasML∗

are bias of �̂SR∗ and �̂ML∗ (percent of true value �0 =2:0). All other entries are as in Table I.

MC standard deviation MSE ratio

^ R BiasSR∗ BiasML∗ �̂SR∗ �̂DR∗ �̂ML∗ SR∗ DR∗ ML∗

n=1000
^str Rstr (i) −11.9 −35.2 0.166 0.207 0.164 4.24 8.30 0.68

(ii) − 8.3 −23.6 0.107 0.141 0.120 8.96 17.53 1.47

Rmod (i) − 6.7 −18.0 0.131 0.121 0.152 3.62 8.55 0.83
(ii) − 4.5 −12.0 0.085 0.074 0.109 7.69 21.52 1.67

^mod Rstr (i) − 9.8 −28.4 0.118 0.141 0.124 4.17 10.99 0.64
(ii) − 7.8 −21.5 0.102 0.121 0.106 6.36 15.03 1.12

Rmod (i) − 5.3 −14.7 0.092 0.085 0.110 3.89 10.57 0.78
(ii) − 4.2 −11.2 0.077 0.072 0.094 5.88 14.79 1.28

^no Rstr (i) − 7.3 −21.0 0.103 0.118 0.101 3.61 8.34 0.62
(ii) − 6.8 −18.8 0.101 0.118 0.100 4.05 8.40 0.77

Rmod (i) − 3.8 −10.9 0.075 0.070 0.087 3.58 8.08 0.73
(ii) − 3.5 − 9.6 0.073 0.070 0.085 3.94 8.03 0.90

n=5000

^str Rstr (i) −12.2 −35.3 0.069 0.084 0.074 5.15 46.74 0.65
(ii) − 8.6 −23.7 0.047 0.058 0.055 10.32 98.13 1.45

Rmod (i) − 6.9 −18.3 0.056 0.053 0.065 4.93 39.50 0.79
(ii) − 4.8 −12.2 0.035 0.031 0.049 10.32 114.02 1.72

^mod Rstr (i) − 9.9 −28.4 0.052 0.067 0.058 4.83 44.57 0.63
(ii) − 7.9 −21.4 0.045 0.056 0.049 7.62 64.86 1.10

Rmod (i) − 5.5 −14.7 0.042 0.039 0.050 4.83 42.89 0.74
(ii) − 4.3 −11.1 0.034 0.031 0.043 7.82 68.23 1.30

^no Rstr (i) − 7.4 −21.3 0.041 0.053 0.044 4.50 37.79 0.58
(ii) − 6.9 −19.1 0.042 0.052 0.043 5.06 39.55 0.72

Rmod (i) − 4.1 −11.1 0.034 0.032 0.040 4.46 35.36 0.71
(ii) − 3.8 − 9.9 0.034 0.032 0.039 5.09 35.19 0.88

5. DISCUSSION

We have reviewed and compared two principal approaches to estimating average causal e�ects
from observational data using the propensity score, those based on strati�cation and weighting.
We hope that this presentation serves as a resource to practitioners who wish to appreciate
the rationale for and di�erences between these two classes of techniques and to understand
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Table III. Monte Carlo coverage probabilities for case (i) in Tables I and II.

^ R �̂S �̂SR �̂SR∗ �̂IPW2 �̂IPW3 �̂DR �̂DR∗ �̂ML �̂ML∗

n=1000
^str Rstr 13.5 94.7 71.5 88.4 88.0 94.5 94.3 94.6 1.3

Rmod 44.8 94.8 83.6 94.1 93.6 94.9 95.1 94.6 32.8
^mod Rstr 9.8 95.4 68.1 88.1 87.3 95.8 94.5 95.2 0.2

Rmod 38.1 95.0 82.6 94.9 93.9 95.3 95.1 95.0 26.1
^no Rstr 15.1 94.1 70.6 89.2 88.9 94.8 93.9 95.3 1.7

Rmod 49.1 95.6 85.4 94.6 94.7 95.7 95.5 95.6 32.5
n=5000
^str Rstr 0.0 95.3 9.0 91.5 91.5 95.6 95.2 94.7 0.0

Rmod 0.1 95.7 37.5 95.6 95.2 95.9 95.7 95.8 0.0
^mod Rstr 0.0 94.9 4.6 91.0 90.8 94.3 93.2 95.0 0.0

Rmod 0.1 94.3 28.8 94.9 94.5 94.5 95.0 94.0 0.0
^no Rstr 0.0 95.4 8.6 91.5 90.3 95.6 93.9 96.4 0.0

Rmod 0.3 95.1 34.8 95.5 95.7 94.9 94.4 94.8 0.0

Table IV. Monte Carlo results for �̂S at K =10 for case (i) Table I. Bias is bias of �̂S expressed as
percentage of the true value �0 =2:0. MC SD is Monte Carlo standard deviation, Ave SE is the average
of estimated standard errors of �̂S using (29), and Coverage is Monte Carlo coverage of 95 per cent
con�dence interval. MSE ratios are as in Table I; �̂SR is still based on K =5 as in previous tables.

MSE ratio

^ R Bias MC SD (Ave SE) Coverage IPW2 IPW3 DR SR

n=1000
^str Rstr −9.9 0.188 (0.167) 72.9 0.39 1.23 2.82 3.28

Rmod −5.3 0.133 (0.135) 88.4 1.26 1.50 2.05 2.06
^mod Rstr −7.9 0.141 (0.122) 72.4 0.34 1.32 3.55 3.98

Rmod −4.4 0.099 (0.098) 85.0 1.39 1.69 2.40 2.58
^no Rstr −6.0 0.111 (0.097) 73.9 0.39 1.25 2.95 3.18

Rmod −3.2 0.077 (0.078) 87.7 1.35 1.56 2.09 3.09
n=5000
^str Rstr −10.0 0.077 (0.076) 25.0 0.99 3.38 8.78 11.21

Rmod −5.5 0.059 (0.059) 53.1 3.57 4.13 5.62 5.92
^mod Rstr −7.7 0.055 (0.055) 19.3 1.07 3.82 10.04 12.17

Rmod −4.3 0.042 (0.043) 48.1 3.84 4.55 6.58 6.20
^no Rstr −5.7 0.047 (0.045) 26.9 1.14 3.40 7.97 10.64

Rmod −3.1 0.035 (0.034) 54.8 3.29 3.81 5.20 5.27

their relative performance. Strategies based on matching on propensity scores or adjusting for
the propensity score in direct regression modelling [2], which we did not consider, are also
popular.
Theoretical and empirical results indicate that the popular version of strati�cation via esti-

mated propensity scores based on within-stratum sample mean di�erences and a �xed number
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of strata can lead to biased inference due to residual confounding, and the e�ect of this bias
becomes more serious with increasing sample size. Using more strata can increase the sample
size at which the trade-o� of bias and variability involved in e�ciency takes place, but stra-
tifying on quintiles seems to be the most popular approach in practice, even for substantial
sample sizes. Thus, as the ‘trade-o�’ point will be unknown for any speci�c problem, this
approach should be used with caution. An interesting avenue for future research would be to
establish guidelines for choosing the number of strata based on theoretical analysis of the rate
at which the number of strata should increase with sample size to eliminate bias. A modi�-
cation of strati�cation based instead on within-stratum regression estimates of treatment e�ect
can eliminate this bias and achieve dramatic improvements in e�ciency, but correct speci�ca-
tion of the regression model is essential; otherwise, bias and degradation of performance can
result. In this regard, this approach is similar to estimating causal e�ects via direct regression
modelling but is less sensitive to mismodelling.
Methods based on weighting are consistent and o�er approximately unbiased inference for

practical sample sizes. The semiparametric e�cient estimator identi�ed by the theory of Robins
et al. [13], which incorporates regression modelling as a way to gain e�ciency, also yields
high precision. Although strati�cation based on regression and direct modelling can outperform
this approach under some conditions, this estimator enjoys the unique ‘double robustness’
property in that it continues to lead to unbiased estimation of the average causal e�ect even
if the regression models involved do not coincide with the true relationship, a�ording the
analyst broad protection against misspeci�cation not available with these other approaches.
The results presented here support routine use of this estimator in practice.

APPENDIX A: DERIVATION OF (27) AND (34)

Applying the results in Section A.3.6 of Reference [22] to (26), we have∑
S

=A−1
22 (B22 −A21A−1

11 B12 − BT12A−T
11 A

T
21 +A21A

−1
11 B11A

−T
11 A

T
21)A

−T
22 (A36)

where the matrices in this expression follow from tedious evaluation of the required derivatives
and covariance matrix. In particular, it may be shown that A22 = − 1, and

A11 =



Eqq 0 Eq�

Epq −IK Ep�

0 0 −E��


 ; B11 =



Fqq Fqp 0

FTqp Fpp Fp�

0 FTp� E��




Here, Eqq=diag{fe(q1); fe(q2); : : : ; fe(qK−1)}; E(i;j)pq = qjfe(qj); i= j;−qjfe(qj); i= j + 1, and
zero otherwise (K ×K−1); and Eq�(K−1×p) has jth row @=@RT{∫ qj

0 fe(t) dt} and Ep�(K ×p)
has jth row @=@RT{∫ qj

qj−1
tfe(t) dt}, where di�erentiation is with respect to R in fe(·) only. In ad-

dition, Fqq is symmetric with (i; j) upper-triangular element (i=K)(1−j=K); F(i;j)qp =pj(1− i=K);
i¿j; = − pj(i=K); i¡j(K − 1×K); Fpp(K ×K) is symmetric with F(j;j)pp =pj(1 − pj);F

(i;j)
pp =

−pipj; and Fp�(K ×p) has jth row E{I(e∈Qj)eT�}, where the expectation is with respect to
the distribution of X. De�ning h1j=p−1

j

∫ qj
qj−1

E(Y1 | t)tfe(t) dt and h0j=(1=K−pj)−1
∫ qj
qj−1

E(Y0 | t)
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(1 − t)fe(t) dt; j=1; : : : ; K , and g1j=E(Y1 | qj)qj(p−1
j − p−1

j+1) and g0j=E(Y0 | qj)(1 − qj)
{(1=K−pj)−1−(1=K−pj+1)−1}; j=1; : : : ; K−1, then A21 = (E�q E�p E�� ); BT12 = (F

T
q� F

T
p�

FT��)
T, where E�p(1×K) has jth element (pjK)−1h1j − (1−Kpj)

−1h0j, respectively; E�q(1×
K − 1) has elements K−1(g1j − g0j)fe(qj); and E��(1×p) is given by

@=@RT
[

K∑
j=1

{
(pjK)−1

∫ qj

qj−1

E(Y1 | t)tfe(t) dt − (K−1 − pj)−1
∫ qj

qj−1

E(Y0 | t) (1− t)fe(t) dt

}]

where di�erentiation is with respect to R in fe(·). Similarly, FTp�(1×K) has jth element
K−1h1j − pj�∗; FTq�(1×K − 1) has elements K−1∑j

i=1 (h1i − h0i − �∗); and FT��(1×p) is
K−1∑K

j=1 [p
−1
j E{Y1I(e∈Qj)eT�}+ (1=K − pj)−1E{Y0I(e∈Qj)eT�}].

Substituting these expressions in (36) and simplifying yields (27), with �p=E�pFp� +
FTp�E

T
�p+E�pFppET�p;�qp=−H�q(E�pFTqp+FTq�)

T−(E�pFTqp+FTq�)H
T
�q+H�qFqqHT

�q, and
��qp=(H��−H�qEq�)E−1

�� (F
T
��+E�pFT�p)

T+(FT��+E�pFT�p)E
−1
�� (H��−H�qEq�)T+(H��−

H�qEq�)E−1
�� (H��−H�qEq�)T, where H�q=(E�q+E�pEpq)E−1

qq and H��=E��+E�pEp�.
To obtain the second term in (34), let E��(1× q) equal

@=@ST
[

K∑
j=1

{
(pjK)−1

∫ qj

qj−1

E(Y1 | t)tfe(t) dt − (K−1 − pj)−1
∫ qj

qj−1

E(Y0 | t) (1− t)fe(t) dt

}]

Let Eq�(K−1× q) and Ep�(K × q) have jth rows @=@ST
{∫ qj

0fe(t) dt
}
and @=@ST

{∫ qj
qj−1

tfe(t) dt
}
,

respectively. Also let Fp�(K × q) be the matrix with jth row E{I(e∈Qj)eT� }, and FT��(1×p)
is K−1∑K

j=1 [p
−1
j E{Y1I(e∈Qj)eT� } + (1=K − pj)−1E{Y0I(e∈Qj)eT� }]. De�ning H��=E�� −

E�pEp�, D�=H�� −H��E−1
��E

T
�� −H�q(Eq� −Eq�E−1

��E
T
��), and G�=(F��−E ��E−1

��F��)T +
E�p(FTp� − E ��E−1

��E�p)T, one can show that 	��qp=D�H−1
�� G

T
� +G�H−1

�� D
T
� +D�H−1

�� D
T
� .
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