
Biometrics 61, 962–972
December 2005

DOI: 10.1111/j.1541-0420.2005.00377.x

Doubly Robust Estimation in Missing Data
and Causal Inference Models

Heejung Bang

Division of Biostatistics and Epidemiology, Department of Public Health, Weill Medical College
of Cornell University, New York, New York 10021, U.S.A.

email: heb2013@med.cornell.edu

and

James M. Robins

Departments of Biostatistics and Epidemiology, Harvard School of Public Health,
Boston, Massachusetts 02115, U.S.A.

Summary. The goal of this article is to construct doubly robust (DR) estimators in ignorable missing data
and causal inference models. In a missing data model, an estimator is DR if it remains consistent when
either (but not necessarily both) a model for the missingness mechanism or a model for the distribution
of the complete data is correctly specified. Because with observational data one can never be sure that
either a missingness model or a complete data model is correct, perhaps the best that can be hoped for
is to find a DR estimator. DR estimators, in contrast to standard likelihood-based or (nonaugmented)
inverse probability-weighted estimators, give the analyst two chances, instead of only one, to make a valid
inference. In a causal inference model, an estimator is DR if it remains consistent when either a model for
the treatment assignment mechanism or a model for the distribution of the counterfactual data is correctly
specified. Because with observational data one can never be sure that a model for the treatment assignment
mechanism or a model for the counterfactual data is correct, inference based on DR estimators should
improve upon previous approaches. Indeed, we present the results of simulation studies which demonstrate
that the finite sample performance of DR estimators is as impressive as theory would predict. The proposed
method is applied to a cardiovascular clinical trial.
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1. Introduction
In a missing data model, an estimator is doubly robust (DR)
or doubly protected if it remains consistent when either a
model for the missingness mechanism or a model for the distri-
bution of the complete data is correctly specified. In a causal
inference model, an estimator is DR if it remains consistent
when either a model for the treatment assignment mecha-
nism or a model for counterfactual data is correctly specified.
Because of the frequency and near inevitability of model mis-
specification, double robustness is a highly desirable property.

Robins, Rotnitzky, and Zhao (1994) and Rotnitzky, Robins,
and Scharfstein (1998) proposed augmented orthogonal in-
verse probability-weighted (AIPW) estimators in missing data
models. Scharfstein, Rotnitzky, and Robins (1999) showed the
orthogonal AIPW estimator had an alternative “regression
representation.” More importantly, they showed this estima-
tor was DR and developed a general method to construct DR
estimators in missing data models when the data are miss-
ing at random (MAR). They also showed how to construct
DR estimators in causal inference models under the assump-

tion of no unmeasured confounders. This methodology was
further extended in Robins (2000), Robins, Rotnitzky, and
Van der Laan (2000), Lunceford and Davidian (2004), Neuge-
bauer and Van der Laan (2005), Lipsitz, Ibrahim, and Zhao
(1999), Robins and Rotnitzky (2001), and Van der Laan and
Robins (2003); the last two references provide the detailed
mathematical theory underlying the methodology.

In this article, we review previously developed methods and
algorithms for constructing DR estimators in nonlongitudinal
missing data and causal inference models and extend them to
longitudinal monotone missing data models and longitudinal
causal models, specifically to longitudinal marginal structural
models (MSMs). Although algebraically equivalent, we rep-
resent our DR estimators as sequential regression estimators
rather than as AIPW estimators, because the former represen-
tation leads to a computational algorithm that can be easily
implemented using standard off-the-shelf regression software.

This article is organized as follows. We begin, in Section 2,
by considering estimation of the mean of an outcome variable
from nonlongitudinal data when the outcome is MAR. We
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next consider estimation of the effect of a binary treatment in
the presence of high-dimensional baseline covariate data un-
der the assumption of no unmeasured confounders (i.e., ignor-
ability). In Section 3, we obtain a DR estimator for monotone
MAR longitudinal data. In Section 4, we construct DR esti-
mators of the parameters of an MSM under the assumption of
no unmeasured confounders. In each section, results of simu-
lations illustrate the finite sample efficiency and robustness of
our DR estimators. The method is illustrated with the data
from a multicenter cardiovascular clinical trial in Section 5.
Some concluding remarks and discussion are provided. In the
Appendix, we show how to represent our sequential regression
estimators as AIPW estimators.

2. Cross-Sectional Models
In this section, we show how to construct DR estimators in
two nonlongitudinal models: the first a model with missing
outcome data and the second a model for a treatment effect.

2.1 A Missing Data Model
Consider an observational follow-up study with full data
L = (V′, Y )′, where V is an always observed vector of base-
line variables and Y is a scalar outcome which is missing by
happenstance on some subjects. Let ∆ be the indicator of
whether Y is missing. Then the observed data are O = (∆,
Lobs), where Lobs = L when ∆ is 1 and Lobs = V when ∆ = 0.
In realistic epidemiologic studies it would not be unusual for
the sample size n to be between 500 and 2000 and yet for V
to be 50–100 dimensional.

Suppose that interest lies in estimating the unconditional
mean µ of Y based on n i.i.d. copies of Oi (i = 1, . . . , n).
If, as we assume, Y is MAR and the probability of observing
complete data is always positive, that is, P (∆ = 1 |Y , V) =
P (∆ = 1 |V) ≡ π(V) > 0 with probability 1, then we can
represent the mean µ = E(Y ) = E{E(Y |V)} of Y in terms
of the distribution of the observed data as either E{E(Y |∆ =
1, V)} or E{∆Y /π(V)}. The second representation of Y
suggests (i) fitting a model for the “propensity score”
(PS) π(V) based on a parametric model π(V; α), such
as the linear logistic regression model logit {π(V; α)} =
α′V, where logit (x) = log {x/(1 − x)}, and (ii) then
estimating µ with the Horvitz–Thompson (HT) estima-
tor µ̂HT = n−1

∑
i
∆iYi/π(Vi; α̂), where α̂ is the maximum

likelihood estimator (MLE) of α (Horvitz and Thompson,
1952; Rosenbaum, 1987). Note that because V is very high-
dimensional, it may not be feasible to estimate π(V) non-
parametrically using smoothing techniques. Rather we must
specify a dimension reducing parametric model for π(V ;α).

The first representation of Y suggests (i) fitting a
model Ψ{s(V ;β)} for E(Y |∆=1, V) with Ψ−1 a known
link function and s(V;β) a known regression func-
tion of an unknown finite-dimensional parameter β, and
(ii) then estimating µ by the outcome regression (OR)
estimator µ̂OR = n−1

∑
i
Ψ{s(Vi; β̃)}, the sample average

over all subjects of the predicted values Ψ{s(Vi;β̃)}
of the Yi . Here β̃ solves the “normal equations” 0 =∑n

i=1 ∆i∂s(Vi;β)/∂β′[Yi − Ψ{s(Vi;β)}], where 0 is a vector
of all zeros of an appropriate dimension. Note that if Ψ−1 is the
canonical link function of a generalized linear model (GLM),
these equations are precisely the likelihood (score) equations

for the model and the resulting estimator is the MLE. This es-
timator is often referred to as the iteratively reweighted least
squares (IRLS) estimator because an IRLS algorithm is of-
ten used to solve the score equations. For example, if Y were
dichotomous, we choose Ψ−1 (x) = ln {x/(1 − x)} to be the
logit link, [Ψ(x) = ex/(1 + ex )], and might choose s(V;β) to
be the linear function s(V;β) = β′V. Then β̃ is the MLE of
β in this linear logistic model among subjects on whom Y was
observed.

There has been considerable debate as to which approach
to estimating the mean of Y is to be preferred as the ap-
proach based on the HT estimator µ̂HT is inconsistent if the
model for ∆ (i.e., the PS model) is misspecified while the ap-
proach based on the OR estimator µ̂OR is inconsistent if the
OR model s(V;β) is misspecified. This controversy could be
resolved if an estimator were available that was guaranteed to
be consistent for µ whenever at least one of the two models
was correct. We refer to such an estimator as DR as it can pro-
tect against misspecification of either the OR model or the PS
model, although not against simultaneous misspecification of
both. Because with observational data one can never be sure
that either model is correct, the best that can be hoped for is
to find a DR estimator.

Scharfstein et al. (1999, p. 1140–1141) showed that to ob-
tain a DR estimator in this setting it suffices to model E(Y |∆
= 1, V) as e(V;β, φ) = Ψ{s(V;β) + φπ−1(V; α̂)}, which adds
the covariate π−1(V; α̂) to the OR model Ψ{s(V;β)}. Then
the estimator

µ̂dr = n−1
∑
i

e(Vi; β̂, φ̂)

= n−1
∑
i

Ψ{s(Vi; β̂) + φ̂π−1(Vi; α̂)}

is DR in the sense that µ̂dr is consistent asymptotically nor-
mal (CAN) if either the model e(V;β, φ) (with π−1(V; α̂)
replaced by its probability limit) for E(Y |∆ = 1, V) or the
PS model π(V;α) is correct. Here (β̂, φ̂) jointly solve 0 =∑

i
∆i∂e(Vi;β, φ)/∂(β′, φ){Yi − e(Vi;β, φ)}. Thus if Y is di-

chotomous, Ψ−1 is the logit link and s(V;β) = β′V,(β̂′, φ̂)′

are the MLEs among subjects with ∆ = 1 in the logistic re-
gression model with covariates V and 1/π(V; α̂). It is clear
that the µ̂dr is CAN when the model e(V;β, φ) is correct.

To see why it is DR, consider the estimator µ̃AIPW solving
0 = Û(µ) where Û(µ) can be written in either of the following
algebraically equivalent forms:

Û(µ) =
∑
i

π−1(V; α̂)∆i(Yi − µ)

−
{
π−1(V; α̂)∆i − 1

}
{e(Vi; β̂, φ̂) − µ}

=
∑
i

π−1(V; α̂)∆i{Yi − e(Vi; β̂, φ̂)}

+
∑
i

{e(Vi; β̂, φ̂) − µ}.

Because it solves an AIPW estimating equation, µ̃AIPW is
obviously CAN if the model π(V;α) is correct. We now
show that µ̃AIPW = µ̂dr (i.e., µ̂dr is simply a regression rep-
resentation of µ̃AIPW ), which proves the double robustness
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of µ̃AIPW = µ̂dr. It follows from the second representation
of Û(µ), that µ̃AIPW = µ̂dr provided

∑
i
π−1(V ; α̂)∆i{Yi −

e(Vi; β̂, φ̂)} = 0. But this equality is immediately seen from
the normal equations satisfied by (β̂, φ̂). The key to the dou-
ble robustness property of Û(µ) is that it estimates the or-
thogonal estimating function Uorth (µ) obtained by replacing
the estimates π−1(V ; α̂) and e(V ; β̂, φ̂) in Û(µ) with the true
functions π−1 (V ) and E(Y |V). An AIPW estimating equa-
tion is said to be orthogonal if it is uncorrelated with the set
{
∑

i
{∆i − π(Vi)}h(Vi);h(Vi) arbitrary} of scores of any PS

model.
One could wonder about the actual advantage of using DR

estimators as, in practice, all models including the OR and PS
models are misspecified and thus even the DR estimator of µ
may be considerably biased. In our opinion, a DR estimator
has the following advantage that argues for its routine use: if
either the model for the OR or the model for the PS is nearly
correct, then the bias of a DR estimator of µ will be small.
Thus, the DR estimator µ̂dr, in contrast with both the OR
estimator µ̂OR and the HT estimator µ̂HT, gives the analyst
two chances to get nearly correct inference about the mean
of Y. Of course, there can be an efficiency cost to using a DR
estimator rather than the OR estimator of µ. However, we will
see in the simulation study reported later in this section that
the use of DR estimators may provide major improvements
in robustness while incurring strikingly little efficiency loss.

A further advantage of DR estimation is that comparison
of the three estimators µ̂dr, µ̂HT, and µ̂OR with one another
serves as a useful goodness of fit test (Robins and Rotnitzky,
2001). To formalize here, let τ̂ 2

dr−HT and τ̂ 2
dr−OR be the empiri-

cal variance of (µ̂dr − µ̂HT) and (µ̂dr − µ̂OR), respectively, cal-
culated from a large number of nonparametric bootstrap repli-
cations of the study data. Then the tests with rejection regions
|(µ̂dr − µ̂HT)/τ̂dr−HT| > 1.96 and |(µ̂dr − µ̂OR)/τ̂dr−OR| > 1.96
are valid large sample 0.05 level tests of the null hypotheses
that the PS model and the OR model, respectively, are cor-
rectly specified. However, the tests are not consistent. That is,
there exist laws under which the PS and OR models are incor-
rect but the estimators µ̂dr and µ̂HT converge in probability
to a common value µ∗ that differs from the true parameter µ,
resulting in misleading inference. The same holds true with
µ̂OR replacing µ̂HT. However, although logically possible, such
inconsistency may be uncommon in practice.

One possible theoretical objection to µ̂dr is that when the
PS is either known or correctly modeled, µ̂dr can be less ef-
ficient than µ̂HT if the model for E(Y |∆ = 1, V ) is badly
misspecified. Robins (2002, Appendix 4) has developed an al-
ternative DR estimator, referred to as µ̂IPCW , that, as noted
by Robins, Rotnitzky, and Bonetti (2001), is always guaran-
teed to be at least as efficient as µ̂HT when the PS is either
known or correctly modeled. However, µ̂IPCW is more difficult
than µ̂dr to compute with standard software. Furthermore, in
practice, it would be rare for the model for E(Y |∆ = 1, V )
to be so badly misspecified that µ̂dr was seriously inefficient.

2.2 A Treatment-Effect Model
In this subsection we show the DR estimator of the mean of
Y can be generalized to provide an estimator of the average
causal effect of a binary treatment from observational data
under the assumption of no unmeasured confounders. Con-
sider an observational study with i.i.d. data {Oi = (∆i, Yi ,

Vi) ; i = 1, . . . ,n} on n study subjects, where ∆ is the in-
dicator of the dichotomous treatment, Y is the outcome, and
V is a high-dimensional vector of pretreatment confounding
variables.

We assume ignorable treatment assignment, that is, Y (δ)�
∆ |V, where Y (δ) is the counterfactual outcome at treatment
level δ(δ ∈ {0, 1}), and A�B |C denotes independence be-
tween A and B conditional on C. We often refer to the as-
sumption of ignorable treatment assignment as the assump-
tion of no unmeasured confounders. Under the assumption
of no unmeasured confounders, the average treatment effect
µ ≡ E{Y (1)} − E{Y (0)} can be written in two different ways
as a function of the joint distribution of the observed data.
Specifically, µ ≡ E{E(Y |∆ = 1, V) − E(Y |∆ = 0, V)}
and µ = E{∆Y /π(V)} − E[(1 − ∆)Y /{1 − π(V)}]. Thus
given a parametric OR model Ψ{s(∆, V;β)} for E(Y |∆,
V), we could estimate µ by µ̂OR = n−1

∑
i
[Ψ{s(1,Vi; β̃)} −

Ψ{s(0,Vi; β̃)}], the difference in the treatment-specific OR
estimators of E{Y (δ)}. Here β̃ solves

0 =

n∑
i=1

∂s (∆i,Vi;β) /∂β′[Yi − Ψ{s (∆i,Vi;β)}],

which reduce to the ordinary least squares (OLS) normal
equations when, for example, Ψ(·) is the identity link. A sim-
ple choice for s(∆, V;β) would be β′ (∆, V′)′ in the absence
of the interactions between the treatment and covariates.

Alternatively, we can estimate µ by µ̂HT = n−1[
∑

i
∆iYi/

π(Vi; α̂) −
∑

i
(1 − ∆i)Yi/{1 − π(Vi; α̂)}], the difference in

the treatment-arm-specific HT estimators of E{Y (δ)}, where
α̂ is as in the previous subsection. Now µ̂HT is inconsistent
if the PS (i.e., treatment) model is misspecified, while µ̂OR is
inconsistent if the OR model is misspecified. Scharfstein et al.
(1999, p. 1141) also showed that to obtain a DR estimator,
we can model E(Y |∆, V) by

e(∆,V;β, φ1, φ2) = Ψ[s(∆,V;β) + φ1∆π−1(V; α̂)

+φ2(1 − ∆){1 − π(V; α̂)}−1],

which adds the covariates ∆π−1(V; α̂) and (1 − ∆){1 −
π(V; α̂)}−1 to the original OR model. In fact, an alterna-
tive DR estimator µ̂dr, that is more efficient than Scharfstein
et al.’s when only the OR model Ψ{s(∆, V; β)} is correct, is
to impose φ1 = φ2 in the previous model. That is, to obtain
µ̂dr we fit the model

e(∆,V;β, φ) = Ψ[s(∆,V;β) + φ{f(∆ |V ; α̂)}−1],

where f(∆ |V ;α) = ∆π(V ; α̂) + (1 − ∆){1 − π(V ; α̂)} is a
subject’s estimated probability of getting the treatment they
actually received.

The estimator µ̂dr = n−1
∑

i
{e(1,Vi; β̂, φ̂) − e(0,Vi; β̂, φ̂)}

is DR in the sense that µ̂dr is CAN if either the model
e(∆, V;β, φ) for E(Y |∆, V) or the PS model π(V;α) is
correct. Here, (β̂, φ̂) jointly solve 0 =

∑
i
∂e(∆i,Vi; β, φ)/

∂(β′, φ){Yi − e(∆i,Vi; β, φ)}.
The estimator µ̂dr solves a long-standing open problem in

the estimation of treatment effects: what function (or func-
tions) of the PS needs to be added to a model Ψ{s(∆,
V;β)} for E(Y |∆, V) in order to ensure consistent estima-
tion of the average treatment effect when the PS is modeled
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correctly but the OR model Ψ{s(∆, V;β)} is incorrect. We
see that we must add to the regression the inverse proba-
bility of treatment weighted (IPTW) covariate 1/f(∆ |V ; α̂),
which is the (estimated) inverse of the PS for treated subjects
(∆ = 1) and the inverse of “1 minus the PS” for untreated
subjects (∆ = 0). Other choices can result in inconsistent
estimation of the average treatment effect.

2.3 A Simulation Study
Numerical studies were performed to compare the finite sam-
ple behavior of the standard estimators and the proposed DR
estimator. In our numerical experiments we assumed a lin-
ear regression model for E(Y |∆, V ) (i.e., an identity link
function), but a nonlinear model with other canonical link
functions could have been used. Simulation results are sum-
marized in terms of the bias, variance, and interquartile range

Table 1
Simulation scenarios

A. Nonlongitudinal model

True s(V;β) = β · [1, V 2
1, V 2, V 2V 3 ]′, β = [0, 1, 2.5, 3].

logit{π(V;α)} = α · [1, I1, I2, I3, I1I2 ]′, α = [−1, 1, 0, 0, −1].
False s(V;β) = β · [1, V 1, V

2
2 ]′.

logit{π(V;α)} = α · [I1, I3 ]′.

B. Treatment-effect model

True s(∆, V;β) = β · [1, V 2
1∆, V 2∆, V 2V 3 (1 − ∆), V 3 (1 − ∆)]′, β = [0, 2, 3, 2, −4].

logit{π(V;α)} = α · [1, I1, I2, I3, I1I2 ]′, α = [−3, 2.5, 3, 1, −3].
False s(∆, V;β) = β · [1, V 1∆, V 2

2 (1 − ∆)]′.
logit{π(V;α)} = α · [I3, V 4 ]′.

C. Longitudinal data model

True s1 (L1; β) = β · [1, V 11, V 11V 13 ]′, β = [0, 3, −2].
s2(L2;β) = β · [1, V 2

11, V12, V
2

2 , V12V2]
′,β = [0,−3, 3, 1,−2].

logit{λ(1 |L1; α)} = α · [1, I11, I12, I13, I11I12 ]′, α = [−1, 1, 1, −1, −1].
logit{λ(2 |L2;α)} = α · [1, I11, I12, I13, I11I12, I2, I2I13]

′,α = [0, 1, 1, 0,−1, 0,−2].
False s1 (L1; β) = β · [1, V 11, V 12 ]′.

s2(L2;β) = β · [1, V11, V
2

12, V
2

13, V2]
′.

logit{λ(1 |L1; α)} = α · [1, I12, I13 ]′.
logit{λ(2 |L2;α)} = α · [1, I2]

′.

D. MSM

True s1 (L1, a1 = 1; β) = β · [1, V 11, V 11V 13 ]′, β = [0, 3, −2].
s1 (L1, a1 = 0; β) = β · [1, V 11, V 12 ]′, β = [0, −1, 3].
s2(L2,a2 = (1, 1);β) = β · [1, V 2

11, V12, V
2

2 , V12V2]
′,β = [0,−3, 3, 1,−2].

s2(L2,a2 = (1, 0);β) = β · [1, V 2
11, V12, V

2
2 ]′,β = [0, 5,−2, 1].

s2(L2,a2 = (0, 1);β) = β · [1, V11, V12, V2]
′,β = [0,−1, 3, 1].

s2(L2,a2 = (0, 0);β) = β · [1, V11, V11V2]
′,β = [0, 2, 1].

logit{P (A1 = 1 |L1; α)} = α · [1, I11, I12, I13, I11I12 ]′, α = [−1, 1, 1, −1, −1].
logit{P (A2 = 1 |L2, a1 = 1;α)} = α · [1, I11, I12, I13, I11I12, I2, I2I13]

′,
α = [0,1, −1,0,0, −0.4, −0.3].

logit{P (A2 = 1 |L2, a1 = 0;α)} = α · [1, I11, I12, I13, I2]
′,α = [0, 2, 1,−1,−1].

False s2(L2,a2 = (1, 1);β) = β · [1, V 2
11]

′.
s2(L2,a2 = (1, 0);β) = β · [1, V 2

11]
′.

s2(L2,a2 = (0, 1);β) = β · [1, V11, V12, V2]
′.

s2(L2,a2 = (0, 0);β) = β · [1, V11]
′.

logit{P (A1 = 1 |L1; α)} =α · [1, I11, I12 ]′.
logit{P (A2 = 1 |L2, a1 = 1;α)} = α · [1, I11, I12, I13, I11I12]

′.
logit{P (A2 = 1 |L2, a1 = 0;α)} = α · [1, I11, I2, I13I2]

′.

For simple notation, we let Il = I(Vl > 0) and logit(r) ≡ log{r/(1 − r)}. ā2 denotes (a1, a2). α and β are
parameter vectors of appropriate dimensions.

of the estimates. The precise definitions of the estimators and
all the models employed for data generation are summarized
in Table 1 and in the footnote of Table 2, and are omitted
from the main text. In all simulations, the sample size was
500 and 1000 simulations were conducted.

Turn first to the missing data model. Recall the full data
are L = (V′, Y )′. We took V = (V 1, V 2, V 3)

′ to be a vec-
tor of always observed baseline variables. We generated Vk

(k = 1, 2, 3) independently from a standard normal distri-
bution and then Y from a normal distribution with mean
of s(V;β) and a unit variance (see Table 1A). The param-
eter values chosen in Table 1A imply the marginal mean µ
of Y is 1. The missingness indicator ∆ was generated from
the logistic regression model logit {π(V;α)} also given in
Table 1A. To investigate the robustness to misspecification,
we also considered false models for both the missingness
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Table 2
Simulation result: estimating µ = E (Y ) (upper) and

treatment effect (lower)

Estimator Bias1 Variance Bias2 IQR

µ̂HT −0.01 0.11 0.00 0.43
µ̂HT.fal −0.31 0.12 −0.29 0.44
µ̂OR 0.00 0.04 −0.00 0.28
µ̂OR.fal −0.36 0.12 −0.35 0.44
µ̂dr 0.00 0.04 −0.00 0.28
µ̂dr.ofal −0.02 0.11 0.00 0.45
µ̂dr.pfal 0.00 0.04 −0.00 0.28
µ̂dr.o⊕pfal −0.32 0.12 −0.30 0.45

µ̂HT −0.01 0.21 −0.00 0.59
µ̂HT.fal 0.86 0.15 0.87 0.52
µ̂OR 0.00 0.07 0.01 0.35
µ̂OR.fal −1.56 0.07 −1.56 0.34
µ̂dr 0.00 0.09 0.01 0.41
µ̂dr.ofal −0.09 0.28 −0.06 0.63
µ̂dr.pfal 0.00 0.08 0.01 0.39
µ̂dr.o⊕pfal 0.92 0.15 0.93 0.54

True parameter µ is 1 for mean parameter (upper) and 2 for treatment
effect (lower). Bias1, Bias2, and Variance denote bias in mean, bias
in median, and variance of the estimates from 1000 simulations,
respectively. IQR denotes the interquartile range, that is, upper
quartile (75%)–lower quartile (25%). Each simulation is based on the
sample size of 500.

Description of estimators

• µ̂HT is the Horvitz–Thompson estimator with the correct
model for π.

• µ̂HT.fal is the Horvitz–Thompson estimator with the false model
for π.

• µ̂OR is the OLS estimator using the correct model for s.
• µ̂OR.fal is the OLS estimator using the false model for s.
• µ̂dr is µ̂dr using the correct models for π and s.
• µ̂dr.ofal is µ̂dr using the correct model for π and the false model

for s.
• µ̂dr.pfal is µ̂dr using the false model for π and the correct model

for s.
• µ̂dr.o⊕pfal is µ̂dr using the false models for π and s.

Note that π denotes missingness or treatment allocation probability,
and s represents the OR model for complete data.

mechanism and OR. We implemented the estimators
µ̂HT, µ̂OR, and µ̂dr of Section 2.1 and results are reported in
the upper half of Table 2.

Turn next to the treatment-effect model based on data
O = {∆, Y , V′ = (V 1, V 2, V 3)}. The parameter of inter-
est is the average treatment effect. Vk (k = 1, 2, 3) were
generated as above and Y from N(s(∆, V;β), 1) where s(∆,
V;β) is given in the same table. The parameter values used
in Table 1B imply an average treatment effect µ of 2. The
treatment indicator ∆ was generated from the logistic model
logit {π(V;α)} provided in Table 1B. To investigate the im-
pact of model misspecifications, we also generated the data
from false models for the treatment mechanism as well as
the OR model. In our false model for the treatment mecha-
nism, we regressed the treatment indicator on two covariates:
the first was one of the four covariates that actually deter-
mined treatment and the second was a noise variable indepen-

dent of these four. Results are presented in the lower half of
Table 2.

Reading from Table 2, we observe that in both the miss-
ing data and treatment-effect models, as expected, µ̂HT was
virtually unbiased if we adopted a correct model for π(V)
but was badly biased otherwise; similarly µ̂OR was unbiased
under a correct OR model but badly biased otherwise. In
contrast, µ̂dr was virtually unbiased when either (or both)
the PS or OR model was correct, although, as anticipated,
µ̂dr was considerably biased when both were incorrect. Con-
sider next the variance and interquartile range of the estima-
tors. Because µ̂OR is the MLE of µ in both the missing data
and treatment-effect models it should have minimum vari-
ance among all consistent estimators. What is remarkable in
Table 2 is that whenever the OR model was correctly speci-
fied (so that µ̂OR was consistent), µ̂dr was nearly as efficient
as the MLE µ̂OR. Thus a very small price is paid in terms of
efficiency loss by using µ̂dr in place of µ̂OR, and yet, when the
PS model was correct, huge benefits were obtained in terms
of robustness against misspecification of the OR model.

It follows from the theory of semiparametric efficiency
bounds that, when the PS model is correct, µ̂dr based on
a correct model for the OR is asymptotically more efficient
than µ̂dr based on an incorrect model for the OR (Scharfstein
et al., 1999). These theoretical results are born out here; in-
deed we see that µ̂dr based on an incorrect model for the OR
may have variance two to four times that of µ̂dr based on a
correct model for the OR.

3. Longitudinal Models with Monotone Missing Data
Next we turn to longitudinal missing data models. We let
L = L̄K+1 = (L′

1, . . . ,L
′
K+1)

′ represent the full data obtained
at times m = 1, . . . ,K + 1. Let C be the censoring time
such that if C = m, then Lobs = L̄m ≡ (L′

1, . . . ,L
′
m)′ is ob-

served and Lm+1 ≡ (L′
m+1, . . . ,L

′
K+1)

′ is missing. That is, we
observe n i.i.d. copies of O = (C, L̄C). The sample space for
C is {1, . . . ,K + 1}, implying that L1 is an always observed
baseline variable. We assume that the data are MAR, which
implies that λ(m |L) = λ(m | L̄m) for m = 1, . . . ,K where
λ(m | ·) = P (C = m |C ≥ m; · ) is the discrete hazard of cen-
soring, that is, censoring at time m depends on the full data
L = L̄K+1 only through the observed past L̄m. In addition, we
assume that λ(m | L̄m) < 1 − σ with probability one for all m
and positive σ.

Suppose the parameter of interest µ is the mean of Y =
LK+1, which we will assume to be univariate for simplicity.
Again we can represent µ as a function of the distribution of
the observed data in two different ways. The first representa-
tion, analogous to the HT inverse probability-weighted (IPW)
representation of Section 2.1, is E(Y ) = E(∆Y/π̄K+1) where
π̄m =

∏m

j=1{1 − λ(j | L̄j)} is the probability of not being cen-
sored at any time less than or equal to m − 1, and now ∆ =
1 if a subject stays uncensored through the end of the study,
that is, ∆ = I(C = K + 1).

The second representation is most easily defined recur-
sively. Let HK+1 = Y , then HK = E(HK+1 | C ≥ K + 1,
L̄K), . . . ,Hm−1 = E(Hm |C ≥ m, L̄m−1), . . . ,H1 =E(H2 |C ≥
2, L̄1). Finally µ = E(Y ) = E(H1) where H1 is a function of
the always observed L1. It follows that if we can specify a
correct model for λ(j | L̄j) then we can obtain a consistent
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estimator of µ as the sample average of ∆Y/ˆ̄πK+1, where
ˆ̄πK+1 is the estimated value of π̄K+1 under the parametric
model. Alternatively, we could correctly specify parametric
regression models for E(Hm | C ≥ m, L̄m−1) for each m, and
then estimate µ by the sample average of the estimated H1’s
obtained from the recursive regression models for the Hm .
However, the first approach will be inconsistent if the models
for λ(j | L̄j) are misspecified, whereas the second approach
will be inconsistent if the models for E(Hm | C ≥ m, L̄m−1)
are misspecified. Thus it would be useful to derive DR
estimators that are CAN if either the PS models for the
missingness mechanism or the sequential OR models are
correctly specified.

Let us introduce some theoretical background. Our goal in
this section is to make inference about the finite-dimensional,
say p, parameter µ in a semiparametric or nonparametric
model with likelihood f(L;µ, θ) where µ ∈ Rp (i.e., Eu-
clidean space) and θ ∈ Θ is an infinite-dimensional nui-
sance parameter. We assume that, in the absence of missing
data, we would estimate µ by solving a p-dimensional un-
biased estimating function 0 =

∑
i
d(Li;µ) for some d ∈ D =

{d(L;µ);Eµ,θ{d(L;µ)} = 0 for all θ}. For instance, when µ is
the marginal mean of LK+1 as above, then d(L; µ) = (LK+1 −
µ) and the model f(L;µ, θ) for L is nonparametric in the
sense that we allow the full data L to have an arbitrary un-
known distribution restricted only by LK+1 having a finite ex-
pectation. If we were interested in the regression coefficients
E(LK+1L

′
1) cov(L1)

−1 of the population least squares regres-
sion of LK+1 on L1, then d(L;µ) could be taken to be L′

1

(LK+1 − L1µ) (i.e., the OLS normal equations). Henceforth,
to simplify notation, we will go back to one-dimensional µ and
LK+1.

In the presence of missing data, even when we assume
MAR, we will in general not be able to estimate µ without
making further modeling assumptions due to the curse of di-
mensionality. Formally, we are assuming that when there are
missing data, the curse of dimensionality appropriate infor-
mation bound for µ is zero (Robins and Ritov, 1997). One
approach to reducing the dimension is to assume a paramet-
ric submodel f(L; µ, β) for the distribution of the full data,
where β ∈ B ⊂ Θ with a finite-dimensional space B and esti-
mate the parameters by maximum likelihood, using the EM
algorithm. An alternative approach is to specify a parametric
model for λ(m | L̄m;α) for the censoring hazard λ(m | L̄m)
and estimate µ with the inverse probability of censoring esti-
mators of Robins, Rotnitzky, and Zhao (1995). The first ap-
proach will be inconsistent if the model f(L;µ, β) is incorrect
and the second will be inconsistent if the model λ(m | L̄m;α)
is incorrect.

It is possible to construct an estimator of µ based on the full
data estimating function d(L;µ), that is, CAN in the semi-
parametric union model that assumes that (i) the data are
MAR, (ii) the semi- or nonparametric model f(L;µ, θ) is
true, and (iii) at least one (but not necessarily both) of a
lower dimensional model f(L;µ, β) for β ∈ B or a paramet-
ric model λ(m | L̄m;α) is correct (Scharfstein et al., 1999;
Robins, 2000). Any such estimator is referred to as DR. Note
(ii) will always hold if f(L;µ, θ) is a nonparametric model.

But, as we now show we can do even better. Specifically,
we do not need to specify a parametric model f(L;µ, β) for

the entire joint distribution of L. Rather, to be DR, it suffices
to specify parametric models Ψ{sm(L̄m;βm)} for the regres-
sion functions Hm(µ) ≡ E{d(L;µ) | L̄m} for m = K, . . . , 2 and
then to estimate the regression parameters βm from the ob-
served data. This latter task we will carry out recursively for
m = K, . . . , 2, based on the observations that (i) by definition,
E{Hm(µ) | L̄m−1} = Hm−1(µ), (ii) under the MAR assump-
tion, E{Hm(µ) | L̄m−1} = E{Hm(µ) | L̄m−1, C ≥ m}, and (iii)
Hm (µ) is a function of L̄m, which is observed whenever C ≥m.
Robins (2000) proved that the estimator µ̂dr constructed in
the following algorithm is CAN for µ under the union model
that differs from the above union model by replacing “a lower
dimensional model f(L;µ, β) for β ∈ B” with “a parametric
model Ψ{sm(L̄m;βm)} for E{Hm+1(µ) | L̄m}(m = K, . . . , 2).”
In what follows we describe how to compute the DR estimator
µ̂dr.

1. Compute the MLE α̂ of α from the observed data.
2. Select a particular d from D. (The choice can only affect

efficiency.)
3. Set ĤK+1(µ) = d(L;µ).
4. Recursively, for m = K + 1, . . . , 2,

a: For subjects with C ≥ m, specify and fit by IRLS a
parametric regression model em−1(L̄m−1;βm−1, φm−1) =
Ψ{sm−1(L̄m−1;βm−1) + φm−1π̄

−1
m−1(α̂)} for the condi-

tional expectation E{Ĥm(µ) | C ≥ m, L̄m−1}, where
sm−1(L̄m−1;βm−1) is a known function with unknown pa-
rameter βm−1, Ψ−1 is the canonical link function of a
given GLM, and π̄m(α̂) =

∏m

j=1{1 − λ(j | L̄j ; α̂)}. Note
that βm−1 ≡ βm−1 (µ) and φm−1 ≡ φm−1 (µ) depend on
µ.
b: For subjects with C ≥ m − 1, let Ĥm−1(µ) =
Ψ{sm−1(L̄m−1; β̂m−1) + φ̂m−1π̄

−1
m−1(α̂)} be the pre-

dicted value from IRLS fit of the model where φ̂m−1

and β̂m−1 are the (joint) IRLS estimators. This

means that (β̂′
m−1, φ̂m−1)

′ satisfies 0 = Ẽ[I(C ≥ m)

[Ĥm(µ) − Ψ{sm−1(L̄m−1; β̂m−1) + φ̂m−1π̄
−1
m−1(α̂)}]

{∂sm−1(L̄m−1; β̂m−1)/∂β
′
m−1, π̄

−1
m−1(α̂)}] where Ẽ(V ) =

n−1
∑n

i=1 Vi.

5. Finally µ̂dr solves 0 =
∑

i
Ĥ1i(µ).

Remark. Depending on their functional forms, it is possible
that the parametric models Ψ{sm(L̄m;βm),m = K, . . . , 2}
are mutually incompatible in the sense that no joint distri-
bution satisfies all K − 1 simultaneously, so, by definition,
they must be misspecified. Even if such is the case, we do not
regard this as a practical drawback, because each of the K
− 1 models Ψ{sm(L̄m;βm)} may still have small (approxi-
mation) bias for its estimand Hm(µ). After all, even for para-
metric models that are mutually compatible, the models are
practically (although not logically) certain to be misspecified.
Thus, the most that can be hoped for is an estimator µ̂dr of
µ with small bias if either the models for censoring hazards
λ(m | L̄m) or the models for the full data regression functions
Hm(µ) have small (approximation) bias.

Finally, even if the model Ψ{sm(L̄m;βm)} for Hm(µ)
is misspecified, µ̂dr remains DR if the larger model
em(L̄m;βm, φm) is correct (with π̄−1

m−1(α̂) replaced by
its probability limit). When both the parametric models
em(L̄m;βm, φm) and λ(m | L̄m;α) are correct and the model
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Table 3
Simulation result: estimating µ = E (Y ) in the longitudinal

missing data model

Estimator Bias1 Variance Bias2 IQR

µ̂HT 0.02 10.31 −0.34 4.07
µ̂HT.fal −3.31 5.10 −3.48 2.98
µ̂OR 0.02 1.73 −0.04 1.77
µ̂OR.fal −4.82 3.34 −4.99 2.41
µ̂dr 0.02 1.74 −0.02 1.76
µ̂dr.ofal −0.20 9.79 −0.56 3.94
µ̂dr.pfal 0.01 1.74 −0.03 1.74
µ̂dr.o⊕pfal −2.24 7.82 −2.51 3.56

The true mean µ = E(Y ) is 11. Bias1, Bias2, and Variance denote
bias in mean, bias in median, and variance of the estimates from 1000
simulations, respectively. IQR denotes the interquartile range, that is,
upper quartile (75%)–lower quartile (25%). Each simulation is based
on the sample size of 500. See Table 2 footnote.

f(L;µ, θ) does not restrict the distribution of L (i.e., it is non-
parametric), Robins (2000) shows our estimator µ̂dr will at-
tain the semiparametric variance bound for the union model.

3.1 A Simulation Study
Let L = (L

′
1, L2, L3)

′ represent the full data with L1 = (V 11,
V 12, V 13)

′ and L3 = Y . So the censoring variable C takes a
value in {1, 2, 3}. V 1i (i = 1, 2, 3) were generated indepen-
dently from a standard normal, L2 from N(s1 (L1; β), 1), and
Y from N(s2(L̄2;β), 1) as presented in Table 1C. We are inter-
ested in estimating µ = E(Y ) = 11. Ignorable MAR data were
created according to the missingness probabilities of λ(1 |L1;
α) and λ(2 | L̄2;α). Under this data configuration, L2 and L3

are missing for approximately 33% and 70% of subjects, re-
spectively. Data were additionally generated from false models
to explore how each estimator behaves under misspecification.
µ̂dr was constructed based on the sequential regression analy-
sis described above; first we regressed L3 = Y on L̄2 = (L1, L2)
and the estimated inverse PS π−1

2 (α̂) jointly among those who
had C = 3, and computed the corresponding predicted val-
ues for all subjects with C ≥ 2. Next, these predicted values
were regressed on L1 and π−1

1 (α̂). Hence, the new predicted
values were obtained as a function of L1 only, which is never
missing. The average of this quantity is the final estimate. As
evident in Table 3, the performance of the estimators under
comparison is in agreement with the results predicted by the
theory of double robustness.

4. MSM for Causal Inference
In this section, let the temporally ordered observed data be
O = (L1, A1, L2, A2, . . . ,LK , AK , LK+1) where Ak is a treat-
ment given at time k and Lk are other variables measured
just prior to treatment. For easier presentation, we assume
that each of Am , LK+1, and µ are all one-dimensional. As-
sociated with each treatment history ā = (a1, . . . , aK), there
is a counterfactual random variable Lā = L̄ā,K+1 recording a
subject’s response history if treatment regime ā was followed.
We link the counterfactual data to the observed data through
the consistency assumption L̄ā,m = L̄m if Ām−1 = ām−1 which
states that the observed and counterfactual response through

m will be equal if the observed and counterfactual treatments
agree through m − 1. That is to say, the future cannot de-
termine the past. We impose the assumption of sequential
ignorability (i.e., no unmeasured confounders) that for all ā
and m

Lā

∐
Am | L̄m, Ām−1 = ām−1, (1)

which implies that sufficient covariates have been recorded
in the Lm so that, as in a sequential randomized trial, the
treatment Am is independent of the counterfactuals given the
observed past. Further we assume that, for all Am in the sup-
port of Am ,

if f(Ām−1, L̄m) > 0 then f(am | Ām−1, L̄m) > 0, (2)

which says that there is a positive probability that, in the
observed study, any regime ā may be followed by a given
subject.

We shall consider inference concerning the parame-
ter µ of the marginal structural mean model (MSMM)
E(Lā,K+1) = g(ā;µ) with g(·; ·) a known function. The pa-
rameter µ quantifies the effect of the regime ā on the mean of
LK+1. The MSMM is a semiparametric model characterized
by the restriction that E{d(Lā, ā;µ)} = 0 for d ∈ D, with
D = {d(Lā, ā;µ) = d∗(ā){Lā,K+1 − g(ā;µ)}; d∗(·) arbitrary}.
If the assumption that E{d(Lā, ā;µ)} = 0 does not restrict
the distribution of the Lā, we say our MSMM is saturated
(i.e., the observed data model is nonparametric). Under
sequential ignorability, an MSMM induces a semiparametric
model for the observed data with likelihood f(O;µ,θ,ρ) =∏K+1

m=1 f(Lm | L̄m−1, Ām−1;µ,θ)×
∏K

m=1 f(Am | Ām−1, L̄m;ρ),
where f(Lm | L̄m−1, Ām−1;µ,θ) and f(Am | Ām−1, L̄m;ρ)
are densities with respect to some dominating measures
νl and νa, respectively, where (µ, θ) and ρ are variation
independent, and θ and ρ are (often infinite-dimensional)
nuisance parameters. Robins (2000) notes that, by sequential
ignorability, the observed data model is characterized by the
restriction for all functions d ∈ D

E{d
(
L̄K+1, ĀK ;µ

)
/π̄K} = 0, (3)

where now π̄m =
∏m

j=1 f(Aj | L̄j , Āj−1).
In order to reduce dimensionality, we could specify para-

metric submodels f(lā,m | l̄ā,m−1;µ,β) where β and α are
finite-dimensional parameters. Robins (2000) shows that, by
sequential ignorability, f(lā,m | l̄ā,m−1) = f(lm | l̄m−1, ām−1) so
in terms of the observables we are modeling f(lm | l̄m−1, ām−1)
by the model f(lm | l̄m−1, ām−1;µ,β). We could then estimate
(µ, β) by maximum likelihood since the MLE does not depend
on the treatment mechanism f(am | l̄m, ām−1). An alternative
approach is to specify a parametric model f(am | l̄m, ām−1;α)
for f(am | l̄m, ām−1) and estimate µ with the inverse prob-
ability of treatment estimators of Hernán, Brumback, and
Robins (2001), as these estimators do not require models for
f(lm | l̄m−1, ām−1) (Robins et al., 1995). The first approach
will be inconsistent if the model f(lm | l̄m−1, ām−1;µ,β) is
incorrect and the second will be inconsistent if the model
f(am | l̄m, ām−1;α) is incorrect.

Robins (2000) constructs a CAN estimator of µ in the semi-
parametric union model that assumes (1), (2), and the MSMM
model are true (so (3) holds), and at least one of the two
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finite-dimensional submodels indexed by β and α is correct
as well.

Again we can do better. Specifically, we need not paramet-
rically model all of the joint law of Lā through the models
f(lā,m | l̄ā,m−1). Rather we need only specify parametric mod-
els for the counterfactual regression functions m = K, . . . , 2,
1:

hm(̄lm, ām;µ) ≡
∫

· · ·
∫

E{d(Lā, ā;µ) | L̄ā,m = l̄m}

K∏
j=m+1

dν(aj),

where ν is counting measure if Aj is discrete and Lebesgue
measure if Aj is continuous, and β ≡ β (µ). Note the in-
tegral over the measure of the aj (j >m) is required to
make hm(̄lm, ām;µ) a function ā only through ām. Robins
(2000) shows that if we let tK+1(̄lK+1, āK ;µ) = d(̄lK+1, āK ;µ)
and tm+1(̄lm+1, ām;µ) =

∫
hm+1(̄lm+1, ām+1;µ)dν(am+1) < ∞

for m = K, . . . , 1, then, under sequential ignorability,
Hm(µ) = hm(L̄m, Ām;µ) equals E{Tm+1(µ) | L̄m, Ām} where
Tm+1(µ) = tm+1(L̄m+1, Ām;µ). Thus we can fit a model for the
counterfactual regression hm(̄lm, ām;µ) by fitting a model for
the observed data regression E{Tm+1(µ) | L̄m, Ām}.

Robins (2000) proves that the estimator constructed in
the following algorithm is CAN for µ under the union
model that differs from the above union model by replac-
ing the model f(lā,m | l̄ā,m−1;µ) with parametric models for
hm(L̄m, Ām;µ) = E{Tm+1(µ) | L̄m, Ām}. When all our para-
metric submodels are correct both for treatment and for the
hm(L̄m, Ām;µ) and our MSMM is saturated, the DR estima-
tor µ̂dr will attain the semiparametric variance bound for the
union model.

1. Compute the MLE α̂ of α from the observed data.
2. Select a particular d from D. (The choice can only affect

efficiency.)
3. Set T̂K+1(µ) = d(L̄K+1, ĀK ;µ).
4. Recursively, for m = K + 1, . . . , 2,

a: Specify and fit by IRLS a parametric regres-
sion model hm−1(L̄m−1, Ām−1;βm−1, φm−1) = Ψ{sm−1

(L̄m−1, Ām−1;βm−1) + φm−1π̄
−1
m−1(α̂)} for the conditional

expectation E{T̂m(µ) | Ām−1, L̄m−1}, where sm−1(L̄m−1,
Ām−1;βm−1) is a known function with the unknown pa-
rameter βm−1, Ψ is the canonical link function of a given
GLM, and π̄m(α̂) =

∏m

j=1 f(Aj | L̄j , Āj−1; α̂). Implicitly,
βm−1 ≡ βm−1 (µ) and φm−1 ≡ φm−1 (µ) depend on µ.
b: Let Ĥm−1(µ) ≡ ĥm−1(L̄m−1, Ām−1;µ) = Ψ{sm−1

(L̄m−1, Ām−1; β̂m−1) + φ̂m−1π̄
−1
m−1(α̂)} be the predicted

value from IRLS fit of the model. This implies that
(β̂′

m−1, φ̂m−1)
′ is a solution of 0 = Ẽ[[T̂m(µ) − Ψ{sm−1

(L̄m−1, Ām−1; β̂m−1) + φ̂m−1π̄
−1
m−1(α̂)}]{∂s(L̄m−1; β̂m−1)/

∂β′
m−1, π̄

−1
m−1(α̂)}] where Ẽ(V ) = n−1

∑n

i=1 Vi.
c: Here, for m = K, . . . , 1, we have recursively defined
T̂m(µ) =

∫
ĥm(L̄m, Ām;µ)dνa(Am).

5. Finally µ̂dr solves 0 =
∑

i
T̂1i(µ).

In the Appendix, we will show that this sequential regression
estimator µ̂dr is indeed an AIPW estimator.

4.1 A Simulation Study
As a last simulation, we show how to implement the above
algorithm and illustrate the finite sample efficiency and ro-
bustness of µ̂dr. The following longitudinal data O = {L1 =
(V 11, V 12, V 13), A1, L2, A2, L3 = Y } were generated as fol-
lows. We supposed that there exists a counterfactual out-
come Yā associated with treatment history ā = (a1, a2). Let
V 1i (i = 1, 2, 3) be distributed as independent N(0, 1) and
treatment A1 was assigned according to the probability mass
functions P (A1 = 1 |L1; α). Then generate La1,2 |L1 from N(s1

(L1, A1 = a1; β), 1). Next A2 was assigned according to the
probability mass function P (A2 = 1 |A1 = a1, L̄2;α). Finally,
the counterfactual outcome Yā | (Lā,2,L1) was distributed as
N(s2(L̄2, Ā2 = ā2;β), 1) (see Table 1D).

Under the underlying correct models, Robins’s (1986) G-
computation algorithm gives E(Y 1,1) = 11, E(Y 1,0) = 19,
E(Y 0,1) = 0, and E(Y 0,0) = −1 where, for example, Y 1,1 is
Yā with ā = (1, 1). Thus, equivalently, E(Yā) = E(Ya1,a2) =
−1 + 20a1 + a2 − 9a1a2 so all main effects and interactions
of the MSM are nonzero. To construct a biologically in-
teresting nonsaturated model, we considered a transforma-
tion Y ∗

ā = Yā + 9a1a2 + 19a2 of Yā. Then Y ∗
ā satisfies E(Y ∗

ā ) =
−1 + 20 cum(ā2), where cum(ā2) = a1 + a2. Such a model is
typical in occupational health studies where it is often hy-
pothesized that the exposure effect only depends on cumula-
tive exposure. Finally we took the observed outcome Y = L3

to be Y ∗
Ā, that is, Y ∗

ā with ā evaluated at the observed treat-
ment Ā = (A1, A2). It follows that µ ≡ (µ0, µ1)

′ = (−1, 20)′ is
the true parameter to be estimated, where µ0 is the intercept
and µ1 is the slope.

A naive OLS estimator, µ̂assoc was obtained by regress-
ing Y∗ on cum(Ā2). The OLS estimator will converge to
a value that differs from the causal parameter µ of the
MSM in the presence of confounding by (L1, L2). The
simple HT-like IPW estimator, µ̂HT, of the MSM param-
eter is defined as the solution of 0 =

∑
i
d(L̄3i, Ā2i;µ)/

π̄2i(α̂), where d(L̄3, Ā2;µ) = {Y ∗ − µ0 − µ1cum(Ā2)}f(A1)

f(A2 |A1){1, cum(Ā2)}′ and π̄2(α)=
∏2

j=1 f(Aj | L̄j , Āj−1;α),
and α̂ is estimated by maximum likelihood. Both correct
and incorrect models f(Aj | L̄j , Āj−1;α) were tried. This
estimator is consistent under the correct PS (i.e., treatment)
effect model but neither robust to its misspecification nor
efficient. The estimator µ̂OR simply replaced the unknown
conditional probabilities in the G-computation formula with
their estimates based on the fit of parametric models for
Y = Y ∗

Ā given (A2, L2, A1, L1), L2 given (A1, L1), and L1

using the OR models in Table 1D. Both correct and incorrect
models were tried. The estimator is efficient under correct
specification but inconsistent otherwise. Finally, the DR
estimator was computed using the above algorithm, with
the required regressions based on both correct and incorrect
models.

Simulation results are summarized in Table 4. µ̂assoc, which
failed to account for confounding, was severely biased. Again
µ̂OR was consistent and had the smallest variance under the
correct regression models but was substantially biased un-
der their misspecification. Similarly, µ̂HT was considerably
biased with the incorrect model for the probability of treat-
ment. Our µ̂dr performed best, being unbiased if either the
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Table 4
Simulation result: estimating regression parameters in the

MSM: intercept (upper) and slope (lower)

Estimator Bias1 Variance Bias2 IQR

µ̂assoc −1.24 0.92 −1.22 1.24
µ̂HT −0.02 0.73 −0.00 1.09
µ̂HT.fal −0.31 1.11 −1.26 1.30
µ̂OR 0.00 0.05 0.00 0.30
µ̂OR.fal −1.66 0.89 −1.60 1.24
µ̂dr 0.00 0.06 0.01 0.32
µ̂dr.ofal 0.10 1.33 0.12 1.40
µ̂dr.pfal 0.00 0.05 0.00 0.30
µ̂dr.o⊕pfal −1.04 1.01 −0.99 1.28

µ̂assoc 1.97 2.52 1.85 2.09
µ̂HT 0.03 1.81 −0.10 1.66
µ̂HT.fal 1.89 3.31 1.74 2.18
µ̂OR 0.01 0.49 −0.04 0.90
µ̂OR.fal 1.35 1.61 1.24 1.70
µ̂dr 0.01 0.50 −0.03 0.85
µ̂dr.ofal −0.04 1.80 −0.13 1.69
µ̂dr.pfal 0.00 0.49 −0.04 0.90
µ̂dr.o⊕pfal 1.41 1.74 1.29 1.73

The true intercept and slope parameters are −1 and 20, respectively, in
a simple linear regression model. µ̂assoc is the OLS estimator from the
simple linear regression model ignoring relevant confounders. Bias1,
Bias2, and Variance denote bias in mean, bias in median, and variance
for the estimates from 1000 simulations, respectively. IQR denotes the
interquartile range, that is, upper quartile (75%)–lower quartile (25%).
Each simulation is based on the sample size of 500. See Table 2 footnote.

counterfactual OR model or the PS model was correct and
being nearly as efficient as µ̂OR when both were correct.

5. An Example: The ENRICHD Study
We applied the method for time-independent treatment ef-
fects presented in Section 2.2 to the recently conducted
ENRICHD (Enhancing Recovery in Coronary Heart Disease)
trial (2003). The trial protocol randomized postmyocardial in-
farction patients suffering from depression or social isolation
to a cognitive behavior therapy program or to usual care. Pri-
mary endpoints were time to reinfarction or death. In both
arms an antidepressant(s) was allowed when prescribed by a
physician. Thus antidepressant therapy was a nonrandomized
concomitant treatment. Here, we analyze the effect of post-
randomization antidepressant drug therapy on a secondary
endpoint, the Beck Depression Inventory (BDI) measured at 6
months from randomization exclusively for statistical illustra-
tion. In the analysis we coded postrandomization antidepres-
sant drug therapy as 1 if an antidepressant were prescribed
any time in the first 6 months and 0 otherwise. We restricted
the analysis to those who were depressed at baseline with non-
missing BDI scores. We adjusted only for baseline variables.

We report a naive crude estimate of the treatment effect
equal to difference in mean BDI among antidepressant users
(N = 206) and nonusers (N = 1126). We also report the HT,
OR, and DR estimators of Section 2.2.

To select our OR model, we used the following algorithm.
We considered as the potential regressors in a linear regres-
sion model, main effects of antidepressant use, treatment arm,

baseline BDI, and 23 remaining baseline characteristics (as
shown in Table 1 of ENRICHD, 2003) and their two-way in-
teractions with BDI score at baseline, antidepressant use, and
treatment arm. We used backward elimination to simplify our
multivariate model. At each step, the factor with the largest p-
value was dropped one at a time until all factors are significant
with a cutpoint of p-value = 0.06. In this process, the main
effect terms corresponding to each significant interaction were
retained. Our final OR model included the following factors:
main effect terms for antidepressant use, treatment arm, base-
line BDI, age, education level, perceived stress score (PSS),
perceived social support scale (PSSS), comorbidity index, va-
sodilator use, diabetes, cerebrovascular disease, and interac-
tion terms for antidepressant by education, antidepressant by
BDI score, BDI by comorbidity, BDI by age, BDI by diabetes,
treatment by age, and treatment by PSS.

A completely analogous algorithm was used to build our
final PS model but with logistic replacing linear regression.
The final PS model included BDI at randomization, treat-
ment arm, age, race, comorbidity score, creatinine, and an
interaction of BDI and creatinine.

Remark. We chose this particular model selection method-
ology not because we believe it to be optimal, but rather be-
cause we believe it approximates current practice. Indeed the
issue of how to select an optimal PS model is difficult. Specif-
ically, one cannot simply choose a very large model that in-
cludes all main effects and all possible interactions to many
orders. This reflects the fact that the issue is not only bias
but variance. Specifically, in order for the HT estimator to
be CAN or for our DR estimator to be CAN when the OR
model is misspecified, the estimated PS must converge to the
true score at rate n1/4 or better. But the rate of convergence
depends both on the degree of model misspecification (ap-
proximation bias) and on the variance of the estimated PS.
To control the variance, the number of parameters in the PS
model can increase no faster than the square root of the sam-
ple size n. Indeed the question of how to optimally choose
a PS model that optimally trades off bias with variance is
beyond the scope of this article.

Results are summarized in Table 5. Standard errors and
the corresponding 95% confidence intervals were obtained
from 1000 nonparametric bootstrap samples. The estimates
µ̂HT, µ̂OR, and µ̂dr varied between 2.40–2.76, a maximum

Table 5
The ENRICHD study data analysis: estimating the effect of

antidepressants on BDI

Estimator Mean (SE) 95% CI

µ̂naive 3.32 (0.73) (1.91, 4.71)
µ̂HT 2.40 (0.71) (0.96, 3.81)
µ̂OR 2.64 (0.61) (1.47, 3.90)
µ̂dr 2.76 (0.68) (1.38, 4.12)

BDI stands for Beck Depression Inventory. SE and CI denote standard
error and confidence interval, respectively. Treatment effect is defined
by the difference in mean BDI score between the treated group and
the untreated group. µ̂naive is computed as a (unweighted) sample
average as observed. SE and CI are estimated from 1000 bootstrap
samples. See Table 2 footnote.
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difference of approximately 1/2 a standard deviation. In
contrast, the unadjusted crude “naive estimate” was 3.32. The
values 1.08 and 1.5 of the test statistics |(µ̂dr − µ̂HT)/τ̂dr−HT |
and |(µ̂dr − µ̂OR)/τ̂dr−OR| offer no evidence against the null
hypotheses that the PS and OR models were correctly spec-
ified. The most parsimonious summary of the evidence ap-
pears to be that OR and PS models are nearly correct and
thus, in this data set, µ̂dr, µ̂HT, and µ̂OR may have nearly
fully corrected for confounding by the measured baseline
variables. In contrast the naive crude estimator is biased
upward due to uncontrolled confounding by the measured
variables.

The 95% confidence intervals for µ constructed from
µ̂dr, µ̂HT, and µ̂OR based on the bootstrap standard errors
exclude the null value of 0, suggesting an adverse effect of
antidepressants on BDI. However, randomized trials of antide-
pressant therapy in patients with coronary heart disease have
previously shown a beneficial effect of these drugs on BDI.
The most likely explanation for the discrepancy between our
findings and these previous findings is time-dependent con-
founding by depressive symptoms and BDI scores. For exam-
ple, subjects in the cognitive behavior therapy arm were given
a repeat BDI test at 5 weeks postrandomization. If the repeat
test showed less than 50% reduction in score from baseline,
the subject was referred to a psychiatrist for consideration of
antidepressant therapy. Thus BDI test at 5 weeks is a con-
founder as it predicts both antidepressant treatment and the
study endpoint, BDI score at 6 months. At time of random-
ization, 4.8% of the usual care arm and 9.1% of the inter-
vention arm were placed on antidepressants. By 6 months,
the cumulative rates of antidepressant use had increased to
13.4% in the usual care and to 20.5% in the intervention arm.
Since in our analysis we only adjusted for baseline variables,
we did not eliminate confounding caused by time-varying de-
terminants (such as the BDI score at 5 weeks and clinical
symptoms of depression) of postrandomization antidepressant
therapy.

6. Discussion
In this article we have considered both the theoretical and, via
simulation, the practical advantages of DR estimators in four
different epidemiologic settings. A DR estimator offers the
analyst two chances to make nearly correct inference about
the parameter of interest, a crucial property not shared by
standard IPW estimators or standard likelihood-based esti-
mators. Although a DR estimator will be less efficient than
an MLE when the likelihood model is correct, nonetheless, in
our opinion, the additional robustness of the DR estimator
to misspecification argues for its routine use. Furthermore, in
our simulation studies, we have seen that the use of DR esti-
mators may incur surprisingly little efficiency loss compared
to MLEs when both are consistent, and yet provide major
improvements in robustness when the likelihood model is in-
correct.

Although the DR estimators are attractive and exist in the
four models we studied in this article, in many models they
do not exist and even when they do, their construction may
not be obvious. Robins and Rotnitzky (2001) characterized
necessary and sufficient conditions for the existence of DR
estimators in a number of models including various nonignor-

able missing data models and the semiparametric regression
model.
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Appendix

Equivalence between Sequential Regression Estimators
and AIPW Estimators

We will show that the sequential regression estimator
µ̂dr in Section 4 is precisely an orthogonal AIPW esti-
mator. Define, following Robins (1999), the AIPW esti-

mating function UAIPW (µ) = d(L̄K+1, ĀK ;µ)/π̄K(α̂) −
∑K

m=1
[c(m, L̄m, Ām;µ) −Eα̂{c(m, L̄m, Ām;µ) | L̄m, Ām−1}], where
the choice c(m, L̄m, Ām;µ) = Ĥm(µ)/π̄m(α̂) makes UAIPW (µ)
orthogonal. We will show that

∑
i
UAIPW ,i (µ) =

∑
i
T̂1i(µ) for

all µ in the proposition below.

It follows from Robins (1999) that, because µ̂dr is an
AIPW estimator, it is regular asymptotically linear when the
model f(am | L̄m, ām−1;α) is correct. The key step in showing
that µ̂dr is regular asymptotically linear when the model for
hm(̄lm, ām;µ) is correct is that φ̂m converges to 0 for each m.
It then immediately follows that n−1

∑
i
T̂1i(µ) converges to

E{d(L̄K+1, ĀK ;µ)/π̄K}. Efficiency results from the fact that,
if the MSMM is saturated, then at laws where both para-
metric models are true, the tangent space (i.e., the closed
linear span of scores for correctly specified regular parametric
submodels) for the union model is all random variables with
finite variance. This implies that all regular estimators have
the same efficient influence function.

Moreover, the monotone missing data model in Section 3 is
actually a special case of the MSMM model of Section 4. To
see why, we show a correspondence between the two models by
recoding our monotone missing data model via the following:
define Am = 1 if C > m and Am = 0 otherwise. Then we can
write ∆d(L;µ) as I(ĀK = 1)d(L;µ) where 1 is the vector with
all components equal to 1. Then define d(L̄K+1, ĀK ;µ) to be
I(ĀK = 1)d(L;µ) and the correspondence is complete. In this
special case, Ĥm(µ) = T̂m(µ).

Proposition A.1:
∑

i
UAIPW,i(µ) =

∑
i
T̂1i(µ).

Proof: Let us set d(L̄K+1, ĀK ;µ)= T̂K+1(µ) and
c(m, L̄m, Ām;µ) = Ĥm(µ)π̄−1

m (α̂). The relationships of Eα̂

{c(m, L̄m, Ām;µ) | L̄m, Ām−1}= T̂m(µ)π̄−1
m−1(α̂) and π̄0(α̂)=

1 lead to
n∑
i=1

UAIPTW ,i (µ)

=

n∑
i=1

[
d
(
L̄K+1i, ĀKi;µ

)
π̄Ki(α̂)

−
K∑

m=1

[
c(m, L̄mi, Āmi;µ)

−Eα̂{c(m, L̄mi, Āmi;µ) | L̄mi, Ām−1i}]
]

=

n∑
i=1

[
d(L̄K+1i, ĀKi;µ)

π̄Ki(α̂)
−

K∑
m=1

{
Ĥmi(µ)

π̄mi(α̂)
− T̂mi(µ)

π̄m−1i(α̂)

}]

=

n∑
i=1

[
d(L̄K+1i, ĀKi;µ)

π̄Ki(α̂)
−

K∑
m=1

{
T̂m+1i(µ)

π̄mi(α̂)
− T̂mi(µ)

π̄m−1i(α̂)

}]

=

n∑
i=1

T̂1i(µ),

because the sample averages of Ĥm(µ)π̄−1
m (α̂) and

T̂m+1(µ)π̄−1
m (α̂) are equal for m = 1, . . . ,K. This is

guaranteed by including the term φm−1π̄
−1
m−1(α̂) in the GLM

in Step 4 in Section 4.


