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Estimation of dose–response functions for
longitudinal data using the generalised propensity
score
Erica EM Moodie Department of Epidemiology & Biostatistics, McGill University, 1020 Pine
Ave W., Montreal, QC H3A 1A2 Canada and David A Stephens Department of Mathematics
and Statistics, McGill University, 805 Sherbrooke Str W., Montreal, QC H3A 2K6 Canada

In a longitudinal study of dose–response, it is often necessary to adjust for confounding or non-compliance,
which may otherwise compromise the estimation of the true effect of a treatment. Using an approach based
on the generalised propensity score (GPS) – a generalisation of the classical, binary treatment propen-
sity score – it is possible to construct a balancing score that provides an estimation procedure for the
true (unconfounded) direct effect of dose on response. Previously, the GPS has been applied only in a single
interval setting; in this article, we extend the GPS methodology to the longitudinal setting to estimate the
direct effect of a continuous dose on a longitudinal response. The methodology is applied to two simu-
lated examples, and a real longitudinal dose–response investigation, the Monitored Occlusion Treatment
of Amblyopia Study (MOTAS). In the treatment of childhood amblyopia, a common ophthalmological
condition, occlusion therapy (patching) was for many decades the standard medical treatment, despite the
fact that its efficacy was not quantified. MOTAS was revolutionary, as it was the first study to obtain precise
measurements of the amount of occlusion each study participant received over the course of the study.

1 Introduction

In observational studies of the efficacy of a treatment, there is the potential for bias
in the estimation of the treatment effect whenever the treatment dose level received is
influenced by subject-specific covariates. Randomised trials, particularly those where
treatment is given over time in several treatment intervals, must also contend with partial
or total non-compliance, which arguably renders the trial an observational study of the
effect of received treatment (though still a randomised study of assigned treatment).
Statistical analyses in the face of non-compliance have often relied on intention-to-treat
or as-treated analyses, which respectively ignore the dose actually received or do not
account for the informative nature of non-compliance. The aim of this article is to
provide a framework for examining the direct effect of treatment given over time with
either incomplete adherence to prescribed dose or at a patient-controlled level.
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2 EEM Moodie and DA Stephens

1.1 Longitudinal observational dose–response studies
There are two primary effects of interest in longitudinal data where an exposure such

as a dose of a treatment is received over time: the direct effect the treatment received at
one instance on a response some time in the future, or the total or cumulative (direct
and indirect, i.e. mediated) effect of the treatment. In both cases, the data are collected
over time, with each participant providing not only baseline data but also (potentially
time-varying) covariate, treatment, and response data over a number of observation
intervals. If interest lies in the direct effect of a treatment dose on the next-measured
response, examining the by-interval changes (i.e. taking as the response, the vector of
differences in, say, health outcomes between successive measurements) may simplify the
analysis by reducing or even removing the serial correlation which may be present in
the data. Using the vector of differences in response also has the advantage of allowing
the analyst to fit a common curve in all intervals (e.g. a linear dose–response with a
common intercept as well as slope) provided the treatment effect is not modified by
time. A recent review of the main statistical issues that arise when estimating causal
effects from observational longitudinal data can be found in Arjas and Parner.1

In this article, we focus on the by-interval changes, and estimate the direct effect of
dosing that may be attributed to a unit of dose in an interval. To account for subject-
controlled treatment level, which we interpret as non- or partial compliance, a potential
source of bias in the estimation of treatment effect, we develop methods that address
issues of confounding and non-compliance using a balancing score approach based on
the generalised propensity score (GPS)2,3 for a continuous treatment that controls for
sources of such bias. The GPS has received relatively little attention in statistical circles;
however, see Flores4 for an economics application.

As discussed in Rubin,5 observational studies and randomised trials are part of a
continuum, where confounding of the effect of dose received in randomised studies may
arise due to non-compliance. In the context of randomised trials, causal methods have
been proposed which are based on principal stratification by the compliance score;6–8

see Joffe et al.9 for a comprehensive explanation and discussion. In such an approach,
the compliance score, a predictive model for compliance with assigned treatment given
baseline covariates, is used to estimate the complier average causal effect, that is, the
effect of treatment among individuals who would comply with a prescribed treatment
dose. Adjustments for compliance based only on pre-treatment variables will typically
be unable to identify the effect of a treatment taken over time, as compliance may vary
as a function of response to treatment.

1.2 Causal methods for repeated measures data
Causal methods for estimating treatment effects on a univariate end-of-study outcome

(e.g. depression score 4 years after diagnosis) from repeated measures data are avail-
able but not readily implemented for continuous doses. For example, a G-computation
procedure was proposed in Neugebauer and van der Laan,10 which was computation-
ally expensive, and so the authors discretised the continuous treatment. Another causal
procedure for repeated measures data uses marginal structural models (MSMs).11,12

MSMs use inverse weighting using the treatment mechanism model to estimate the
marginal effect of time-varying treatment regimes on a univariate response. MSMs were
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Estimation of dose–response functions 3

originally designed to estimate the effects of static (not covariate-adapted) time-varying
treatments, but were recently proposed as a method to compare dynamic regimes which
may have been found by other estimation procedures13 and further extended to estimate
the optimal dynamic regime.14−16 MSMs can be used when treatments are measured on
a continuous scale, although this is not common in practice. Both the G-computation
and the MSM approach are designed to examine total effects of dosing regimes on
end-of-study outcomes, rather than the direct effects that are addressed in this article.

1.3 Objectives and structure of the article
In this article, we extend a causal modelling approach to account for the within-person

correlation of responses, the within-person correlation of doses, and the potential con-
founding of the direct effect of dose on response by previous doses and responses.
The article is structured as follows: Sections 2.1–2.4 introduce notation and the GPS
methodology, the quantity which is the focus of interest, the average potential out-
come, and an algorithm to estimate this quantity. Section 2.5 extends the balancing
score approach to incorporate the complexities of a repeated measures structure with
time-varying covariates. Section 3 contains two simulated examples illustrating the
methodology where some analytical calculations are possible. In section 4, the first
causal analysis of the Monitored Occlusion Treatment of Amblyopia Study (MOTAS) is
undertaken, where the dose–response relationship between occlusion and improvement
in visual acuity is quantified. We conclude with a discussion in section 5.

2 A balancing score approach to estimating a dose–response
relationship

To ascertain the true direct effect of dose, a causal analysis, which accounts for the
possible confounding of treatment or dose effect by other measured covariates, is neces-
sary. One tool used to account for possible confounding relationships between occlusion
treatment and other covariates is the GPS,2,3,17 a constructed variable that can be used
(in a regression analysis or via stratification) for removal of bias in the estimation of
the treatment effect. A regression, which includes the GPS, does not directly provide a
parameter that may be interpreted causally; however, it can be used to obtain estimates
of the potential response to a dose, which do have a causal interpretation.

2.1 Notation
Suppose that we have collected data repeatedly on N individuals, so that

ni, i = 1, . . . , N measurements are available for each subject. We denote the total num-
ber of data points by n = ∑N

i=1 ni, the response for individual i at time j by Yij, the
treatment dose by Dij, and other possibly confounding covariates by Xij; we denote
observed values of these random variables yij, dij and xij, respectively. We define D, a
bounded interval in R, to be the set of possible doses.

Initially, for simplicity, we restrict attention to the case where ni = 1, and drop
the interval-specific subscript j, so the response data are simply Yi ∈ {Yij : i =
1, . . . , N, j = 1} and n = N. We address the general longitudinal case in section 2.5.
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4 EEM Moodie and DA Stephens

2.2 The generalised propensity score
The causal analysis is formulated through the use of potential or counterfactual

outcomes. A potential outcome is a value of the response that would result if a subject
were to receive a specified treatment dose, not necessarily the same dose that they received
in the study. We denote by Yi(d) ≡ Yi(Di = d) the potential response random variable
resulting from a dose Di = d taken in an interval, and write yi(d) for the observed
version. Throughout the article, d without a subscript will indicate a potential dose.
Potential outcomes adhere to the axiom of consistency: the actual and potential response
are equal when the regime in question is the dose actually received, that is, yi(d) = yi if
di = d.

As with all models for observational data, causal models require certain modelling
assumptions to be appropriately specified.11,18 Specifically, we make the stable unit
treatment value assumption,19 which states that a subject’s outcome is not influenced
by other subjects’ treatment allocation. We further assume weak unconfoundedness:
for all d ∈ D, the potential outcome Yi(d) and the dose received Di are presumed con-
ditionally independent given the covariates Xi, that is Yi(d) ⊥ Di|Xi. Informally, weak
unconfoundedness implies that the mechanism which dictates response to any specific
(potential) dose d and the mechanism by which dose is allocated, are probabilistically
independent, conditional on the covariates. See Hirano and Imbens3 for formal argu-
ments. Here we note that this assumption is no stronger than that required for unbiased,
causal inference from a standard regression approach: that is, in any regression, all con-
founding variables must have been measured and included in the response model to
ensure unbiased estimation of the true effect of an exposure on the response. Thus, the
GPS methodology requires the same assumption as standard covariate adjustment.

Following Imbens2 and Hirano and Imbens,3 we define the GPS, ri = r(d, xi) for any
dose d and observed covariate values xi by

ri = r(d, xi) = fDi |Xi (d|xi), (1)

that is, the conditional density function for Di given Xi = xi evaluated at Di = d; the
random variable Ri = r(d, Xi) denotes a corresponding random quantity for fixed d.
Note that these are potential quantities that may be evaluated at d = di and x = xi to
yield the observed GPS; we reserve the notation r̂i for this special case, that is we define

r̂i = r(di, xi) = fDi |Xi (di|xi).

The GPS is an extension of the propensity score20 to continuous treatments. In this
article, we regard the construction of the conditional density as a regression problem,
and regress Di on Xi; that is, we fit a regression model to the pairs (xi, di), i = 1, . . . , N
in order to be able to compute r(d, xi) for any d. Note that, for two doses d1 �= d0 we
will have

r(d1, x1) �= r(d0, x0),

in general, even if x1 = x0.
The GPS quantities, Ri and ri, form part of the bias removal strategy. As is shown

by Hirano and Imbens,3 the GPS random quantity Ri has two properties that render it
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useful in causal inference problems. First, Ri acts as a balancing score, in that Di and Xi
are conditionally independent given Ri: in particular, within strata of Ri, the distribution
of dose is (approximately) the same irrespective of the value of the covariate. Secondly,
for any d, the distribution of the treatment dose is conditionally independent of the
potential response, given the propensity score,

Yi(d) ⊥ Di| r(d, Xi)

that is, we have weak unconfoundedness of Yi(d) and Di given Ri.
The first point, that Ri breaks the dependence between Di and Xi, is the crucial factor

that permits causal inference; the second point permits simplified modelling. We shall
see that with natural extensions, both features carry over to the longitudinal setting.

2.3 Average potential outcomes
The causal effect in a single-interval study on which we focus is the marginal effect of

dose on the response. Specifically, a typical quantity of interest in causal dose–response
modelling is the average potential outcome (APO) at dose level d, μ(d) = E[Yi(d)], which
traces the causal dose–response relationship as d varies in D. That is, we are interested
in μ(d) for d ∈ D where the response Yi may be a health rating or a change in health
score from baseline. We make the assumption that μi(d) = μ(d) for all i, so that

μ(d) = E[Yi(d)] = EXi [E[Yi(d)|Xi]].
To report the causal effect of interest, we first examine the conditional average causal

effect of dose, defined as the difference in expected outcomes for two potential dose
levels d0, d1 for fixed covariate values Xi = x, that is

E[Yi(d1)|Xi = x] − E[Yi(d0)|Xi = x]. (2)

The marginal average causal effect is the expectation of this quantity over the distribution
of different X values in the study population, provided all confounding covariates are
included in X. Such an approach provides interpretable estimates of the causal dose–
response relationship, both conditionally and after marginalising over the distribution
of X. That is, marginalising Equation (2) with respect to the distribution of X yields an
estimate of μ(d1) − μ(d0). However, note that to estimate the marginal average effect,
it is necessary first to compute the conditional expectation of response given dose and
covariates, and then to compute the conditional expectation of the covariates given the
dose. This latter step requires knowledge of the conditional expectation of X at each
d ∈ D.

The modelling of outcome on dose and the GPS, Ri (rather than Xi), returns an
estimate of

E[Yi(d1)|Ri = r] − E[Yi(d0)|Ri = r], (3)

and its population average. Thus GPS does not return estimates of the (causal) quan-
tity in Equation (2), but does yield a bias-removal strategy: we examine the conditional
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6 EEM Moodie and DA Stephens

distribution of Yi(d) for fixed d given Ri = r(d, Xi), rather than the conditional distribu-
tion given for fixed d given Xi, and recover a consistent estimator of the dose–response
relationship by averaging over the empirical distribution of Ri in the population.

More specifically, Equation (3) facilitates consistent estimation of μ(d), as we may
average the conditional expectations over the distribution of Ri if the balancing property
holds, that is, if within strata of Ri, the conditional distribution of Di does not depend
on Xi. The adequacy of any proposed propensity score model rests on whether or
not balance is achieved, but this can be checked by standard exploratory statistical
methods. In particular, strata of Ri may be formed; with the strata, the dose–response
relationship may be estimated by, for example, regression; the relationship between
doses and responses may then be averaged over the strata.

2.4 An algorithm for estimating the APO
The role of the propensity score in estimating the APO is made clear by the identity

given in Imbens.2 Assuming that μi(d) = μ(d) for all i, we may drop the dependence on
i and write μ(d) = E[Y(d)]. This marginal expectation can be achieved via the iterated
expectation EX[E[Y(d)|X]]; however, this requires a model for the response as a function
of the potentially very high dimensional covariate vector, X. Instead, we note that

EX[E[Y(d)|X]] ≡ EX[E[Y(d)|X, r(d, X)]] = EX[E[Y(d)|r(d, X)]],
so that the iterated expectation over Y given X, then X, that is computed at the fixed
dose d, is replaced by an iterated expectation over Y given R, then R (at the fixed
dose d), utilising the fact that for fixed d and X, R is completely determined. Because
of the properties of the GPS, both the internal and external expectations

E[Y(d)|r(d, X)] and EX[E[Y(d)|r(d, X)]],
can be estimated consistently and without bias from the sample data for any potential
d using the corresponding empirical averages; we require in turn models for Y given R,
and then D given X to get R. In contrast, for the ‘direct’ approach, we have the two
expectations

E[Y(d)|X] and EX[E[Y(d)|X]]
and require the correct model for Y given D and X, and then the correct model for X
given D = d, at all d ∈ D. The latter of these models is considerably more difficult to
learn from observed data, especially when X is high dimensional. Thus, in general, the
benefit afforded by the GPS approach lies in the simplification of the model specification
for the response: in the GPS approach, response is modelled as a function of dose and
a one-dimensional summary of the covariates, i.e. the GPS, in contrast to standard
regression modelling where response must be specified as a function of dose and the
possibly very high dimensional covariate vector. We note, however, that it is possible
and may in some cases desirable to model response not only as a function of dose and
the GPS, but also some small subset of the covariates X.

We outline the estimation procedure of Hirano and Imbens3 tailored specifically to the
context discussed in this article. We presume parametric models for the two components

 at MCGILL UNIVERSITY LIBRARY on June 24, 2014smm.sagepub.comDownloaded from 

http://smm.sagepub.com/
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of the procedure:

(I) Form the GPS model: Construct a model, fDi |Xi (d|xi, β), for dose Di given covari-
ates Xi by regressing the observed doses di on the observed covariates xi. Estimate
parameters β, from the observed dose and covariate data {(di, xi), i = 1, . . . , N}.

(II) Compute the fitted GPS values: Compute the estimated GPS, r̂i = fDi |Xi (di|xi, β̂).
(III) Form the observable model: Construct a model fY(d)|X,R(y(d)|x, r, α) for Yi for

given dose value d, covariates Xi and propensity score Ri, using a regression
approach and a model with parameters α. Note that we would only usually
include a subset of the Xi in this model. Estimate parameters α using the observed
data and estimated GPS values {(yi, di, xi, r̂i), i = 1, . . . , N}.

(IV) Estimate the APO: For d ∈ D, estimate the APO at dose level d by

μ̂(d) = Ê[Yi(d)] = 1
N

N∑
i=1

E[Yi(d)|Xi = xi, ri = r(d, xi), α̂],

where ri is evaluated from the model in (I) at β = β̂.

The result of this procedure, μ̂(d), d ∈ D, is the GPS-adjusted estimated dose–response
function. Uncertainty bounds can be obtained analytically from the parametric anal-
ysis, or by a bootstrap procedure where individuals are sampled with replacement,
which may be more straightforward in the longitudinal setting. Justification for the
GPS APO estimation procedure is given in Hirano and Imbens3, and is extended to the
repeated measures case in section 2.5. The two key conditional models fD|X(d|x, β) and
fY(d)|X,R(y(d)|x, r, α) or the corresponding conditional moments, must be user-specified,
but the adequacy of both components can be assessed in a straightforward statistical
fashion. Note that we have allowed for the possibility that the observable model is for-
mulated including terms in X, as discussed in Imai and Van Dyk,17 but in many settings
(including the analysis of section 4), the observable model will be formulated in terms
of the dose and the GPS only.

We note that any one-to-one function of the GPS provides the desired balancing
property; in addition, categories defined by discretising Ri may also provide sufficient
balance to remove most of the bias due to confounding variables. In particular, an
alternative approach proposed by Imai and Van Dyk17 suggests that the APO may be
approximated by estimating the dose–response effect within strata defined by the linear
predictor of the treatment density function, and then combining these estimates to form
a single, weighted average. This approach is straightforward to implement and often
provides an estimate of the dose–response relationship that has little or no residual bias,
although it may be less efficient than the regression approach described above.

2.5 The GPS for repeated measures data
In the case of dose–response estimation from repeated measures or multi-interval data,

the potential patterns of confounding are more complex than that can be dealt with
using a univariate GPS approach. In this section, we formulate a GPS approach suitable
for the analysis of repeated measures response data with interval-dependent dosing.
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8 EEM Moodie and DA Stephens

In the repeated measures setting, we no longer wish to ignore the correlation structure
in the data, and so we return to the use of notation that makes this explicit. We therefore
have that Yij, i = 1, . . . , N, j = 1, . . . , ni is the response for individual i in interval j;
dose and covariate variables are similarly subscripted.

We assume that the marginal distribution of the counterfactual response, Yij(d), is not
modified by time, so that we have a single dose–response function μ(d) = E[Yij(d)] =
E[Y(d)] to estimate. The method is amenable to more general models, however, including
those in which there are treatment-by-time interactions.

Repeated measures, or multivariate, data require a modification of the GPS procedure
to account for confounding of the direct effect of dose Dij on response Yij by previous
doses and responses to treatment. Thus, we allow covariates Xij at time j to include treat-
ment doses and responses to treatments for person i at times 1, 2, . . . , j − 1. We denote
the history of covariates, response, and previous doses by X̌ij = (X1j, . . . , Xij)T, and let
Rij = r(d, X̌ij). Furthermore, we modify the notion of weak unconfoundedness to what
we term sequential weak unconfoundedness; we assume

Yij(d) ⊥ Dij|X̌ij.

That is, at each interval, assignment to dose Dij is weakly unconfounded with the
response during interval j given covariates, previous response and dose values measured
up to the start of the j-th interval.

We now demonstrate that the multivariate GPS (MGPS) procedure – the GPS con-
structed to allow for multivariate or repeated doses – retains the desired balancing
properties of the univariate approach in a repeated measures setting. The results for the
single interval setting can be recovered from the theorems as special cases.

Theorem 1 (Weak unconfoundedness given the MGPS). Suppose that assignment
to treatment in the j-th interval is sequentially weakly unconfounded given variables
X̌ij that occurred prior to treatment in the current interval (and may include previous
treatment doses). Then, for every dose d,

Yij(d) ⊥ Dij|Rij,

that is, for d ∈ D, current potential response Yij(d) is conditionally independent of the
distribution of dose received Dij given the MGPS Rij, for all i and j.

Theorem 2 (Bias removal of the MGPS procedure). Suppose that μ(d) = E[Yij(d)] =
E[Y(d)] is the marginal mean of interest. For interval j, consider the mean

β(d, r) = E[Yij(d)|Rij = r(d, x̌ij) = r]
that conditions on the MGPS. The APO, obtained by averaging β(d, r) over the
observed distribution of the covariates X̌ij, is an unbiased estimator of the dose–response
function μ(d).
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Proofs of these theorems follow in a straightforward fashion from the results in Hirano
and Imbens3, and are included for completeness in the Appendix.

By Theorem 2, applying the bias removal result sequentially to each interval, we
obtain an unbiased estimator of μ(d) after pooling results over all intervals, by taking
the expectation in turn over X̌i1, X̌i2, . . . . Note that a ‘univariate’ GPS analysis that
does not construct a GPS by conditioning on X̌ij = x̌ij for each j may not achieve bias
removal.

We have carried out extensive testing of the MGPS approach and performed com-
parisons with non-causal and standard GPS methods. Our examples demonstrate the
importance of the use of the multivariate extension of the GPS provided in this article.

3 Simulation studies

3.1 Simulation I: Non-linear, non-additive treatment effect
We extended the artificial example of Hirano and Imbens 3 to a two-interval,

two-confounder setting. In this section, we drop dependence on subject index i for con-
venience; we have covariates measured in two intervals, the first subscript will denote
interval and the second subscript will denote variable.

Data generation: Suppose that at the first and second interval, we have

Y1(d)|X11, X12 ∼ N (
d + (X11 + X12) exp[−d(X11 + X12)], 1

)
Y2(d)|X21, X12 ∼ N (

d + (X21 + X12) exp[−d(X21 + X12)], 1
)
,

and that the marginal distributions of each of X11, X12 and X21 are all unit exponential.
Let D1 ∼ exp(X11 + X12), D2 ∼ exp(X21 + X12). The marginal mean of the response
in either interval is identical. As in Hirano and Imbens3, the APO can be obtained by
integrating out the covariates analytically, yielding

μ(d) = d + 2
(1 + d)3

.

A multivariate GPS (MGPS) analysis will involve the concatenated vector
RM = (R1, R2)T where R1 = (X11 + X12) exp[−D(X11 + X12)] and R2 = (X21 +
X12) exp[−D(X21 + X12)], which consists of correctly specified models. We began by
adjusting for the known MGPS.

Next, an analysis was performed in which the GPS was estimated using a gener-
alised linear model for Gamma-distributed data. A univariate or cross-sectional GPS
(UGPS) analysis might fail to include information from the previous interval and hence
the estimated univariate GPS used would be R̂U = (R̂∗

1, R̂∗
2)T where R̂∗

1 = (θ̃0 + θ̃1X11 +
θ̃2X12) exp[−D(θ̃0 + θ̃1X11 + θ̃2X12)] and R̂∗

2 = (θ̃0 + θ̃1X21) exp[−D(θ̃0 + θ̃1X21)]. We
compared this with an analysis that adjusts for the estimated multivariate GPS: in
this analysis, the response was regressed on treatment and the estimated MGPS
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R̂M = (R̂1, R̂2)T where R̂1 = (θ̂0 + θ̂1X11 + θ̂2X12) exp[−D(θ̂0 + θ̂1X11 + θ̂2X12)] and
R̂2 = (θ̂0 + θ̂1X11 + θ̂2X12) exp[−D(θ̂0 + θ̂1X11 + θ̂2X12)].
Analyses and results. We generated 1000 datasets of size 250, 500, 100 and 10 000.
Using the true MGPS yielded an APO that lay exactly on the analytically derived dose–
response curve (results not shown). The mean and median APO/dose–response curves
using the estimated MGPS were also correct, while the UGPS analysis was clearly biased
(see Figure 1(a) for results with n = 250). The general shape of the UGPS APO was
correct; however, the curve fell outside of the confidence bands of the MGPS over part
of the range of doses.

3.2 Simulation II: Misspecified models
We next considered a more realistic situation, in which the true distribution of the

treatment is not known, and so the model is misspecified.

Data generation. As before, X11, X12 and X21 are each unit exponential and treatment is
distributed according to D1 ∼ exp(X11 + X12), D2 ∼ exp(X21 + X12). Now, however,
we introduce additional non-linear dependence of the response on the covariates:

E[Y1(d)|X11, X12] = d + (X11 + X12) exp[−d(X11 + X12)] − 0.3
√

X11X12,

E[Y2(d)|X21, X12] = d + (X21 + X12) exp[−d(X21 + X12)] − 0.3
√

X21X12,

where the responses are normal random variables with unit variance. The APO (marginal
mean) of the response in each interval is as in the previous simulation.

Analyses and results. Two approaches were used to estimate the dose–response rela-
tionship: an MGPS analysis and a linear model analysis. In the MGPS analysis, the
MGPS was estimated using generalised linear model for Gamma-distributed data. The
response was regressed on treatment and the estimated MGPS R̂ = (R̂1, R̂2)T where

R̂j = (θ̂0 + θ̂1Xj1 + θ̂2X12 + θ̂3Xj1X12)

× exp[−D(θ̂0 + θ̂1Xj1 + θ̂2X12 + θ̂3Xj1X12)],
for j = 1, 2 and then the APO was calculated as described in previous sections. In the
linear model analysis, the response was modelled as a quadratic function of dose, with
adjustment for the confounding variables by the inclusion of linear terms and a first-
order interaction between the confounding variables in the regression model. Note that
both the MGPS and the linear model analyses misspecify the relationship between the
confounding variables and the response, failing to include the square root of the product
of the two confounding variables in the conditional model for the response.

One thousand datasets of size 250, 500, 100 and 10 000 were generated (see Figure
1(b) for results with n = 250). The mean and median MGPS-adjusted APO curve pro-
vides a reasonable approximation of the shape of the true dose–response relationship
over most of the range of doses considered. In contrast, the linear model is unable to
detect the curvature in the dose–response relationship. Linear model parameter esti-
mates (95% confidence intervals) for D and D2 were 0.720 (0.405, 1.034) and 0.016
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Figure 1 Simulation results. (a) Simulation Study I: Pointwise median APO adjusted for the estimated MGPS
(with pointwise 95% credible interval) and dose–response curve adjusted for the ‘univariate’ GPS (UGPS).
(b) Simulation Study II: Pointwise median dose–response curves, estimated by MGPS-adjusted APO (with
pointwise 95% credible interval) and a linear model (LM).

(−0.020, 0.051), respectively, for n = 250. The dose–response relationship obtained
from the linear model analysis and plotted in Figure 1(b) has averaged the estimated
dose–response curves over the distribution of the confounding variables, assuming no
dependence between covariates and dose.
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4 Motivating example: MOTAS amblyopia study

We now turn to our motivation for the methodological development of the MGPS, the
MOTAS. Amblyopia is the most common childhood vision disorder, and is characterised
by reduced visual function in one eye. A standard treatment for the condition is occlusion
therapy, that is, patching of the functioning fellow eye. The apparent beneficial effect
of occlusion therapy has never been well quantified, partly due to difficulty in the
accurate measurement of the occlusion dose. MOTAS21 was the first clinical study
aimed at quantifying the dose–response relationship of occlusion, facilitated by the use
of an electronic occlusion dose monitor, consisting of an eye patch with two electrodes
attached to its undersurface connected to a data-logger powered by battery from which
patch use was read by clinicians at follow-up visits.

The MOTAS design and a full description of the study base have been published
previously.21,22 At study entry, all children who required spectacles entered the refractive
adaptation phase; the remainder entered the occlusion phase directly. Children still
considered amblyopic after refractive adaption began occlusion and were prescribed
6 h of occlusion daily. Visual acuity was measured on the logarithm of minimum angle
of resolution (logMAR) scale; improvement is indicated by a decrease in logMAR.
Visual function and monitored occlusion dose were recorded at approximately 2-week
intervals until visual acuity ceased to improve, at which point children exited the study
and returned to usual care. A total of 116 children were enrolled in MOTAS; we analyse
data of the 68 who took part in the occlusion phase (whether they participated in
the refractive adaption phase of the study or not) who, although prescribed 6 h of
occlusion daily, received varying occlusion doses because of incomplete concordance.
Our notation is as follows: for child i, the response, Yij, is the change in visual acuity
during interval j, and Dij is the random occlusion dose (in hours) received in interval
j. Intervals are approximately 2 weeks in length, thus a child who concorded perfectly
with prescribed treatment would be have a dose of 84 h in an interval (i.e. 6 h daily for
14 days). However, children typically did not follow the prescribed occlusion dose, and
both higher and lower than prescribed doses were observed.

4.1 Applying the MGPS to the MOTAS data
In the study, dose is a continuous variable, but 60 out of 404 (about 15%) of inter-

vals in the occlusion phase had a zero dose. The MGPS model fD|X(d|x̌ij, β) must
acknowledge the mixture nature of the dose distribution, so we assume that, given
X̌ij = x̌ij,

Dij
L= π (x̌ij, γ )I[d = 0] + (1 − π (x̌ij, γ ))I[d �= 0]D+

ij , (4)

where I[B] is the indicator of event B, D+
ij is a strictly positive random variable whose

distribution depends on X̌ij = x̌ij and β, and 0 < π (x̌ij, γ ) < 1 is a mixing weight. Esti-
mation in this model is straightforward when a parametric distribution is used for
D+

ij , and any such regression model that induces a balancing property can be used. To
estimate γ , we fit a logistic regression model to the binary (Dij = 0/Dij > 0) dose data.
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Recent work has shown that the binary treatment propensity score should include all
confounding variables (i.e. variables predictive of both treatment and outcome) as well
as variables that predict outcome, while variables that are purely predictors of treatment
should not be included in the model.23,24 The following covariates therefore included
in the MGPS: previous dose, visual acuity at start of interval, age, sex, interval number,
length of interval (in days) and amblyopic type (anisometropic, strabismic, mixed).
These covariates were used to predict both the probability of having any occlusion at all
(Dij = 0/Dij > 0) in a logistic model and the probability of receiving a particular dose
(greater than zero) of occlusion in a Weibull model. The MGPS used was

r̂(d, x̌ij) = π̂ (x̌ij, γ̂ )I[d = 0] + (1 − π̂ (x̌ij, γ̂ ))I[d �= 0]f (d|x̌ij, φ̂, β̂),

where f (d|x̌ij, φ, β) is a Weibull density with shape φ and scale exp{x̌T
ijβ}. For the GPS

to act as a balancing score, the distribution of Dij should not depend on X̌ij within strata
of r̂. A graphical check of whether the balancing property was achieved was performed.

As response in the MOTAS is the vector of changes in visual acuity, there is little
observed serial correlation in the data. When using a mixture distribution such as (4)
for the GPS, it may be that the r̂ values for one component differ substantially from
those of the other, so that there are no data in a portion of the space D × R̂ where R̂
denotes the range of estimated GPS. We account for this explicitly in the model; rather
than fitting a model that assumes that the relationship between response and dose and
the GPS is the same function in regions of the plane where (d, r) pairs were observed and
in regions where no data was observed, we restrict estimation to a subspace of D × R̂
where data are observed. The observable model for change in visual acuity, Yij(d), is
modelled via the expectation

EYij(d)|Rij
[Yij(d)|Rij = r, α] = α0 + I[r < 0.1](α1 + α2d + α3r + α4d.r), (5)

following the model used by Hirano and Imbens.3 This model can be readily extended
to a more flexible or piecewise constant partition model. Here, the inclusion of higher
order terms led to only minimal changes in the inferences made. The parameters in the
model can be estimated using ordinary least squares or a model that accounts for any
remaining within-person correlation, such as a mixed effects model. For the MOTAS
data, there was little residual correlation in the longitudinal data for an individual.

4.2 Results and comparison with other approaches
The following covariates were included in the MGPS model: occlusion dose in the

previous interval, visual acuity at start of interval, age, sex, interval number, length
of interval (in days) and amblyopic type. Coefficient estimates (SE) are displayed in
Table 1. The distribution of confounding variables such as visual acuity at the start
of an interval appeared not to depend on the range of dose within quintiles of the
propensity score, indicating that the required balancing property was achieved (results
not shown). The observable model in Equation (5) was adopted. Parameters were esti-
mated using a linear mixed effects model with a random intercept and an autoregressive
structure to account for any correlation that may exist in the response. Using the model in
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Table 1 MOTAS data: Estimates and standard errors for the parameters from the repeated measures
(first-order Markov) GPS model: the model comprised a logistic regression for D = 0 versus D > 0 and a
Weibull model for positive dose

Model: Any dose Continuous dose
Term Est. (SE) Est. (SE)

Intercept −2.736 (0.918) 3.490 (0.584)
Previous dose −0.014 (0.002) 0.003 (0.002)
Visual acuity 0.223 (0.534) 0.562 (0.292)
Age 0.012 (0.009) −0.001 (0.006)
Sex −0.392 (0.298) 0.136 (0.165)
Interval number 0.237 (0.053) 0.026 (0.020)
Interval length 0.012 (0.007) 0.003 (0.003)
Type: mixed −1.901 (0.523) −0.309 (0.265)
Type: strabismic −0.239 (0.524) −0.138 (0.308)
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Figure 2 MOTAS data: The estimated average potential change in visual acuity (APO) for doses in the range
of 1–100 h per interval with pointwise 95% credible interval. The repeated measures GPS (MGPS) APO of
section 2.5 is plotted, with a ‘univariate’ GPS APO included for comparison. Observed dose values indicated
along the horizontal axis.

Equation (5), we obtain estimates (SE) α̂0 = −0.018(0.008), α̂1 = −0.002(0.035), α̂2 =
−3.25e − 4(2.93e − 4), α̂3 = 0.120(3.602) and α̂4 = −0.070(0.083), respectively; the
standard deviation of the random intercept term was 2.17e − 06 and the autoregressive
correlation was 0.077.

A plot of the dose–response curve is presented in Figure 2, with numerical values
of the estimated APO presented in Table 2. The plot indicates that the direct effect of
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Table 2 MOTAS data: Summaries of the APO (on the logMAR scale) from a multivariate GPS model analysis
for changing dose amount per interval: 5000 bootstrap samples

Dose (h)

Quantile 10 25 50 75 100

2.5 −0.044 −0.055 −0.085 −0.102 −0.114
25 −0.028 −0.043 −0.070 −0.086 −0.096
50 −0.021 −0.036 −0.061 −0.077 −0.086
75 −0.013 −0.030 −0.053 −0.068 −0.077
97.5 0.002 −0.018 −0.039 −0.052 −0.060

dose on visual acuity, when confounding between dose and the responses is adjusted for
using the GPS approach, is appreciable; the average potential effect on change in visual
acuity measurement Yij is significantly negative (corresponding to vision improvement)
over the entire range of positive doses considered.

Using the model in Equation (5) with a ‘univariate’ GPS strategy, i.e. one in which
previous dose was not included in the dose density function, we obtain least-squares
estimates (SE) α̂0 = −0.022(0.007), α̂1 = 0.010(0.033), α̂3 = −2.86 − 04(2.94e −
04), α̂3 = 0.219(3.382) and α̂4 = −0.107(0.078), respectively. The APO obtained is
very similar to that obtained using the MGPS, indicating that previous dose did little to
confound the association between most recent dose and change in visual acuity.

Finally, the average dose effect estimated by a mixed effects model analysis yields an
intercept further from zero than the GPS analyses, and does not find any evidence of
curvature in the dose–response relationship. The GPS results are in closer agreement
with the ophthalmological belief that visual acuity will not improve spontaneously in
the absence of occlusion. Also, the GPS APOs suggest a plateau, or a saturation, of
the effect of occlusion in an interval at about 80 h. This indicates that children may
not exhibit a clinically meaningful improvement in visual acuity with more than, on
average, 6 h of occlusion per day over a 2-week period. This is biologically plausible,
as physical changes to the amblyopic eye that can occur in a fixed time period are likely
limited by physiological processes.

5 Discussion

In the use of propensity scores for binary treatments, there has been considerable atten-
tion devoted of late to the use of propensity scores to design observational studies,5 or to
estimate average effects only when the experimental treatment assignment assumption
is satisfied.25 That is, an average causal effect can only be identified without further
assumptions (and hence should only be estimated using the entire sample of observed
data) if all individuals in the population have a positive probability of receiving both the
active and control treatments. A straightforward check of this can be performed by exam-
ining the distribution of propensity scores among the treated and the untreated to see
whether these are completely overlapping;26 however, more sophisticated approaches
have also been proposed.27,28
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Figure 3 Scatter plots of the true GPS by dose when dose level is normally distributed. (a) Dose level does
not depend on X, (b) dose depends on categorised values of X, (c) and (d) dose level depends linearly on X
(smaller variance in the right panel).

When treatment doses are continuous, there is no simple analog to plotting the GPS
values against dose levels to look for overlap. Consider, for illustration, a setting in which
there is a single covariate X that may confound the relationship between dose and the
outcome of interest. In Figure 3, the relationship between a normally distributed dose and
the GPS is plotted under four scenarios of dependence of dose on the covariate. In the first
scenario, dose level does not depend on X, while in the second, the mean dose depends on
categorised values of X. The final two scenarios allow the mean dose level to depend on
X in a linear fashion with different degrees of strength of the relationship (correlations
of approximately 0.34 and 0.99). It is clear that, for normally-distributed doses, it is
possible to distinguish to some extent between the different degrees of dependence of
dose on a single covariate. Furthermore, by examining the situation where dose depends
on a categorical variable, an approximate guideline presents itself for deciding the dose
levels within which it is reasonable to estimate the APO. In particular, we wish to
find a range of doses that is no wider than four standard deviations (so as to contain
approximately 95% of the distribution) and that contains the peaks of the dose density
curves.
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It may be the case that the peaks of the density curves are not sufficiently close together
that all can be contained in an interval that is four standard deviations in length. In such
a case – for example, if the dependence of dose on covariates is very high – it may be
necessary to estimate APOs in subpopulations that differ by dosage level, rather than
attempt to construct a population average dose–response estimate over the entire range
of doses D which would rely on smoothing over regions of the covariate×dose space in
which there are little or no data.

Unfortunately, it may be more difficult to identify whether there is sufficient variability
in doses over the covariate range, or over which range to estimate the dose–response
curve, simply by plotting the GPS scores against the dose values. For example, if the dose
distribution is asymmetric, the doses in which to estimate the APO should be selected
to maximise the number of observations contained in a four standard deviation range.
This will help to reduce the loss of power that results from the restriction of the range
and the consequent elimination of data points lying outside of that range. Research into
whether all dose levels could have been received by all individuals as described by their
covariate types is required.

Another important point of consideration in any propensity score analysis in the issue
of model choice. A number of authors23,24,29 have considered the case of binary treat-
ment propensity scores, and concluded that including in the propensity score model all
variables that are causes of both the response and the treatment (confounding variables),
and all variables that are predictors of the response only, improves the performance of
the estimators, while the inclusion of variables that are causes of treatment only is not
helpful and leads to an increase in variance. As noted here, GPS adjustment simplifies
the model specification for the response, which can be modelled only as a function of
dose and a one-dimensional summary of the covariates, namely the GPS. However, it
may be the case that the dose–response curve is modified by some covariate(s). In such a
case – for example, where treatment interacts with sex – it may be preferable to include
sex and the dose-by-sex interaction directly in the response model rather than including
sex in the dose model, particularly if dose–response profiles for each sex separately were
desired (rather than the marginal population-averaged dose–response profile).

We have extended the GPS methodology to the repeated measures setting to cope
with situations where treatment doses received in different intervals are correlated and
response may depend on doses in current and earlier intervals. In a longitudinal study
of dose–response, full compliance is the exception rather than the expected. To estimate
the dose–response relationship with confidence, modelling potentially confounding rela-
tionships flexibly is key. The GPS is under-used, yet the approach provides a tractable
and flexible option of analysis, and can be adapted to analyse any number of complex
dosing strategies – including multi-interval treatments.
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Appendix: Theoretical properties of the MGPS

Proof of Theorem 1, Weak unconfoundedness given the MGPS:
Sequential weak unconfoundedness implies that for all d ∈ Dj, Yij(d) ⊥ Dij|X̌ij, that is,
for each dose d, Yij(d) and Dij are conditionally independent given X̌ij. To establish the
result we need to show that

fDij |Rij,Yij(d)(d|r(d, x̌ij), yij(d)) = fDij |Rij (d|r(d, x̌ij)).

Consider the random quantity, Rij = r(d, X̌ij) where r(d, x̌ij) = fDij |Xij (d|x̌ij), defined for
fixed d. Denoting by f the density function for the relevant random variables, we have

fDij |Rij (d|r(d, x̌ij)) =
∫

Xd,j

fDij,X̌ij |Rij
(d, x̌|r(d, x̌ij)) dx̌

=
∫

Xd,j

fDij |X̌ij,Rij
(d|x̌, r(d, x̌ij))fX̌ij |Rij

(x̌|r(d, x̌ij)) dx̌

where Xd,j ⊂ Xj is the set of solutions x̌ of the equation r(d, x̌) = r(d, x̌ij). Now, in Xd,j

fDij |X̌ij,Rij
(d|x̌, r(d, x̌ij) ≡ fDij |X̌ij

(d|x̌ij) = r(d, x̌ij),

as for fixed d and x̌ in Xd,j, r(d, x̌) = r(d, x̌ij) is completely defined. Thus

fDij |Rij (d|r(d, x̌ij)) =
∫

Xd,j

r(d, x̌ij)fX̌ij |Rij
(x̌|r(d, x̌ij)) dx̌

= r(d, x̌ij)
∫

Xd,j

fX̌ij |Rij
(x̌|r(d, x̌ij)) dx̌ = r(d, x̌ij) = fDij |X̌ij

(d|x̌ij)

 at MCGILL UNIVERSITY LIBRARY on June 24, 2014smm.sagepub.comDownloaded from 

http://smm.sagepub.com/


20 EEM Moodie and DA Stephens

for an archetypal x̌ij in Xd,j. Similarly, by weak unconfoundedness,

fDij |Rij,Yij(d)(d|r(d, x̌ij), yij(d)) =
∫

Xd,j

fDij |X̌ij,Rij,Yij(d)(d|x̌, r(d, x̌ij), yij(d))

fX̌ij |Rij,Yij(d)(x̌|r(d, x̌ij), yij(d)) dx̌

=
∫

Xd,j

fDij |X̌ij
(d|x̌)fX̌ij |Rij,Yij(d)(x̌|r(d, x̌ij), yij(d)) dx̌

=
∫

Xd,j

r(d, x̌ij)fX̌ij |Rij,Yij(d)(x̌|r(d, x̌ij), yij(d)) dx̌

= r(d, x̌ij) = fDij |X̌ij
(d|x̌ij)

for an archetypal x̌ij in Xd,j. Thus, for all d, we have weak unconfoundedness given
Rij = r(d, x̌ij).

Proof of Theorem 2, Bias removal of the MGPS procedure:
Consider the conditional distribution of potential response Yij(d) given Dij = d and
Rij = rij = r(d, x̌ij), for fixed d ∈ D. By conditional probability and Theorem 1 above,
we have

fYij(d)|Dij,Rij
(yij(d)|d, r(d, x̌ij)) = fYij(d)|Rij

(yij(d)|r(d, x̌ij))fDij |Yij(d),Rij
(d|yij(d), r(d, x̌ij))

fDij |Rij (d|r(d, x̌ij))

= fYij(d)|Rij
(yij(d)|r(d, x̌ij))fDij |Rij (d|r(d, x̌ij))

fDij |Rij (d|r(d, x̌ij))

= fYij(d)|Rij
(yij(d)|r(d, x̌ij)).

However, by definition and Theorem 1,

E[Yij(d)|Rij = r(d, x̌ij)] = β(d, r(d, x̌ij))

Thus, by iterated expectation, noting that E[Y(d)] ≡ E[Yij(d)],

μ(d) ≡ E[Yij(d)] = ERij [E[Yij(d)|Rij = r(d, x̌ij)]] ≡ EX̌ij
[β(d, r(d, X̌ij))].
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