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Quantifying Causal Effects of Road Network Capacity
Expansions on Traffic Volume and Density via a Mixed

Model Propensity Score Estimator
Daniel J. GRAHAM, Emma J. MCCOY, and David A. STEPHENS

Road network capacity expansions are frequently proposed as solutions to urban traffic congestion but are controversial because it is
thought that they can directly “induce” growth in traffic volumes. This article quantifies causal effects of road network capacity expansions
on aggregate urban traffic volume and density in U.S. cities using a mixed model propensity score (PS) estimator. The motivation for
this approach is that we seek to estimate a dose-response relationship between capacity and volume but suspect confounding from both
observed and unobserved characteristics. Analytical results and simulations show that a longitudinal mixed model PS approach can be
used to adjust effectively for time-invariant unobserved confounding via random effects (RE). Our empirical results indicate that network
capacity expansions can cause substantial increases in aggregate urban traffic volumes such that even major capacity increases can actually
lead to little or no reduction in network traffic densities. This result has important implications for optimal urban transportation strategies.
Supplementary materials for this article are available online.

KEY WORDS: Average treatment effect; Confounding; Congestion; Continuous dose-response; Urban traffic volumes.

1. INTRODUCTION

Road network congestion, which is characterized by travel
times in excess of those under free-flow conditions, is a phe-
nomenon experienced in most major urban areas around the
world. Transport engineers generally view congestion as unde-
sirable because it can impose large costs on road users and the
economy through delay and reduced traffic flow. A common
intervention used to ameliorate the problem is to build more
roads in the hope of reducing traffic densities and accommodat-
ing future growth in traffic volumes. This strategy is, however,
controversial because some believe that network capacity expan-
sions themselves cause a direct rise in aggregate traffic volumes,
a phenomenon known as “induced demand.”

The theory of induced demand is widely known (for key con-
cepts see Small and Verhoef 2007; Kelly 2008). In principle,
it can occur via the following causal process. A capacity ex-
pansion (i.e., increase in lane miles) is introduced which causes
an immediate reduction in traffic density (i.e., traffic volume to
capacity ratio) on the network and consequently network con-
gestion falls. With less congestion, average travel times decrease
causing the volume of aggregate traffic to rise in response be-
cause the cost of travel, in terms of time spent, has effectively
fallen. As traffic volumes rise, travel times start to increase
as congestion again becomes prevalent. In theory these inter-
actions between demand and cost can yield a new equilibrium
with a higher volume of network traffic than prior to the capacity
expansion. Depending on the extent of induced demand, unde-
sirable consequences of road use such as congestion, pollution,
and accidents could worsen. Many U.S. cities have experienced
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considerable expansions in road capacity in recent decades and
the purpose of this article is to investigate consequences for road
traffic volumes and densities.

There are a number of existing empirical studies that have
sought statistical evidence for induced demand (for reviews see
Noland 2001; Cervero 2002). Cervero (2002) conducted a meta-
analysis of such studies and finds that while the statistical work
generally finds evidence of induced demand, there is substantial
variation in estimates leading to ambiguity over magnitude. This
is in part due to contextual differences between studies, for
instance in spatial coverage and units used for analysis, but
crucially also due to the statistical model specifications adopted.

There are three key issues which have guided model speci-
fication: confounding from measured covariates, potential for
unmeasured confounding, and bi-directionality between de-
mand and capacity. Some studies have addressed confounding
using a linear regression with adjustment for covariates and,
where appropriate, dummy variables for unmeasured categori-
cal effects (e.g., Hansen and Huang 1997; Fulton et al. 2000;
Cervero 2003). Other studies have explicitly recognized the bi-
directional nature of the relationship between travel demand
and network capacity assignment either through simultaneous
equation modeling of assignment and outcome or through ap-
plication of instrumental variables (IV) estimation to the linear
model (e.g., Noland and Cowart 2000; Noland 2001; Cervero
and Hansen 2002; Hymel, Small, and Dender 2010; Duranton
and Turner 2011). Finally, there are studies that have adopted
Granger causality methods (e.g., Granger 1969) to test whether
changes in capacity help to predict future values of traffic vol-
ume given the dynamic evolution of volume itself over time
(e.g., Fulton et al. 2000; Cervero and Hansen 2002; Melo,
Graham, and Canavan 2013).

These previous attempts to obtain estimates of induced de-
mand have used outcome regression (OR) models. In this
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article, we estimate the relationship between network capac-
ity and aggregate traffic volumes and densities in U.S. cities
using a novel mixed model generalized propensity score (GPS)
estimator. To our knowledge, this is the first time that induced
demand has been studied using a statistical model based on the
potential outcomes framework for causal inference. The origi-
nal GPS approach was introduced by Imbens (2000) and Hirano
and Imbens (2004) for estimation of multivalued and continu-
ous treatment effects with measured confounding. Here, we pro-
vide a longitudinal mixed model extension of the GPS estimator
which can accommodate both measured time-varying confound-
ing and unmeasured time-invariant confounding, as well as bi-
directionality between response and treatment assignment. This
is attractive for the type of application we present for a number
of reasons. First, it addresses the three key estimation issues em-
phasized in previous literature. Second, it allows us to estimate
a flexible semiparametric dose-response function rather than a
single summary point estimate, which can reveal heterogeneity
in treatment effects by dose. Third, the formal framework for
causal inference that we adopt requires us to ensure that the sam-
ple for causal comparison is valid, that is, that it comprises units
that are genuinely comparable and so focuses the inference prob-
lem on the relevant subsample and avoids undue extrapolation.

The article is structured as follows. Section 2 explains the
properties of mixed model GPS methods for continuous dose-
response estimation. Section 3 illustrates some properties of
the mixed model PS approach through simulation. Section 4
presents results from our case study application. Section 5 con-
cludes and outlines some issues for future research.

2. A MIXED MODEL PROPENSITY SCORE (PS)
APPROACH FOR ESTIMATION OF CONTINUOUS

TREATMENT EFFECTS

2.1 The PS for Continuous Treatments in a One-Period
Setting

In this article, we are concerned with estimating causal quan-
tities associated with a continuous treatment. We consider first
the one-period setting: the observed data are realizations of a
random vector, Wi = (Yi,Di,Xi, Ui), i = 1, . . . , N , where for
the ith unit of observation Yi denotes a response, Di the treat-
ment received, Xi is a vector of covariates which we assume are
sufficient to represent all sources of confounding, and Ui is a
vector of covariates that are not confounders because they are
independent of Yi but not Di . The treatment can take values in
some bounded interval in R,D ⊆ R, and we define the indicator
for receipt of treatment level (or dose) d as

IDi
(d) =

{
1 if Di = d

0 if Di �= d

For any treatment level d ∈ D, we assume the existence of a
potential outcome for unit i, which we denote Yi(d). The set of
all potential outcomes is Yi = {Yi(d), d ∈ D for i = 1, . . . , N}
and the full data for estimation of causal effects are taken to
be (Yi , Di,Xi, Ui). Unobserved potential outcomes are then
treated much like missing data.

For continuous treatments, Hirano and Imbens (2004) showed
that observance of actual outcomes is sufficient to estimate av-

erage potential outcomes (APOs) for a population, even under
nonrandom treatment assignments, so long as three key as-
sumptions hold. First, to address confounding we must be able
to assume “ignorability,” or conditional independence between
the response and treatment assignment given the covariates Xi :
Yi(d) ⊥⊥ IDi

(d)|Xi for all d ∈ D. Second, to ensure comparabil-
ity across potential outcomes there must be common support, or
overlap, by treatment status in the covariate distributions within
some region of dose C ⊆ D. A sufficient condition is that for any
subset of C, sayA ⊆ C, Pr(Di ∈ A|Xi = x) > 0 for all x. Third,
for logical consistency there must be equivalence between the
observed response under a given dose d and the potential re-
sponse under that dose: Yi ≡ IDi

(d)Yi(d) for all d ∈ D, for all
Yi(d) ∈ Yi , and for i = 1, . . . , N . One important implication of
this is that the stable unit treatment value assumption (SUTVA)
(e.g., Rubin 1978) must hold, which requires: (i) that the out-
come for each unit be independent of the treatment status of
other units, or in other words, there should be no interference in
treatment effects across units; and (ii) that there are no different
versions of the treatment.

If these assumptions hold, then the APO under a given dose
D = d, which we denote μ(d) = E[Yi(d)], or the dose-response
function, can be derived as

E[Yi(d)] = EX [E(Yi(d)|Xi)] = EX

[
E(Yi(d)|IDi

(d), Xi)
]

= EX

[
E(Yi |IDi

(d), Xi)
]
, (1)

where the second equality follows from ignorability, the third
from the SUTVA, and the overlap assumption ensures that the
APO is estimable since there are comparable units across treat-
ment levels. In the literature, the subsample of observations
trimmed to ensure overlap in covariate distributions is referred
to as the “common support region.” Average treatment effects
(ATEs) can then be calculated by comparing the APO at differ-
ent treatment levels. Note that since observations in the com-
mon support region may not be representative of the overall
population, and since treatment effects may be heterogeneous
across individuals, causal parameters (i.e., ATEs and APOs) es-
timated under imposition of common support will not in general
be equivalent to the corresponding population parameters (see,
e.g., Crump et al. 2009).

For continuous treatments Hirano and Imbens (2004) showed
that we can use a GPS in place of covariates Xi to adjust for
confounding. Let r(d, xi) = fD|X(d|xi) denote the conditional
density function for receiving a particular level (dose) of the
treatment (d) given pretreatment variables Xi = xi . The GPS for
dose d is then defined as a random variable, which we denote
Rd,i = r(d,Xi), a scalar function of Xi for fixed d. We may
also define the GPS for observed doses, Ri = r(Di,Xi), which
is evaluated at the level of treatment actually received and is a
random variable defined with respect to the joint distribution for
observed (Di ,Xi). Clearly when Di = d, Ri ≡ Rd,i .

Two key properties of the GPS are (i) that balancing follows
directly from its definition: IDi

(d) ⊥⊥ Xi |r(d,Xi); and (ii)
given balancing, ignorability can be established conditional
on the scalar GPS rather than the potentially high-dimensional
covariate vector Xi : Yi(d) ⊥⊥ IDi

(d)|r(d,Xi). Using these two
properties Hirano and Imbens (2004) showed that if ignorability
holds, and the model is correctly specified, the GPS provides a
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bias-removal strategy in the context of continuous treatments:

μ(d) ≡ E [Yi(d)] ≡ EX [E (Yi(d)|Xi)]
= EX [E [Yi(d)|r(d,Xi)]] = EX

[
E

[
Yi |IDi

(d), r(d,Xi)
]]

.

(2)

In practice, the following algorithm can be used to estimate
the dose-response curve via the GPS:

1. Estimate a model for the conditional density of D given X
with parameter vector θ : fD|X(di |xi ; θ ).

2. Use estimated θ̂ , with the assumed density function used
for Step 1, to calculate the observed and unobserved GPS
values: R̂i = fD|X(di |xi ; θ̂ ) and R̂d,i = fD|X(d|xi ; θ̂ ), for
all d of interest.

3. Using R̂d,i find a region of common support C ⊆ D, and
check that balance holds for this region. We denote the
number of observation in the common support region by
S.

4. Estimate E(Yi |Di, R̂i) using a flexible regression model
with parameters α: m(yi |di, R̂i ; α).

5. Average over predicted values from step 4., evaluated at
dose d, to obtain a point estimate of the expected response
at d: μ̂(d) = S−1 ∑S

i=1 EY |D,R[Yi(d)|d, R̂d,i , α̂]. Repeat
for all doses of interest.

6. Use a single bootstrap resampling scheme over Steps 1 to
5 for variance estimation.

Details on each step of the algorithm are included in the online
supplementary materials.

2.2 PS Construction

The success of PS estimators relies on having an observed
covariate vector which is sufficient to represent confounding.
Ignorability and the balancing property of the PS will not nec-
essarily hold given only a subset of confounders, and conse-
quently, the PS may not eliminate all sources of bias (e.g., Pearl
2000, 2009). In the context of binary treatments, Rubin (1997)
argues against inclusion of nonconfounding covariates in the PS,
even if they have an important influence on assignment, because
it can have an adverse effect on efficiency of causal models. In
this subsection, we consider this issue in relation to the GPS as
it has important implications for the mixed model approach that
we propose below.

We refer to a GPS that conditions on confounding and non-
confounding covariates as a fully conditional GPS (FCGPS). Let
r∗(d, xi, ui) = fD|X,U (d|xi, ui) represent a value from the con-
ditional density of Di = d given both Xi and Ui , which can be
used to form the FCGPS random quantities R∗

i = r∗(Di,Xi, Ui)
and R∗

d,i = r∗(d,Xi, Ui) for fixed d. There are five properties of
the FCGPS relevant for dose-response estimation that we state
here. Detailed results and proofs for each of these are available
in supplementary material.

i. The FCGPS retains the balancing property such that:
IDi

(d) ⊥⊥ Xi,Ui | r∗(d,Xi, Ui).
ii. Ignorability can be established conditional on the

FCGPS rather than covariate vector Xi : Yi(d) ⊥⊥
IDi

(d)| r∗(d,Xi, Ui).

iii. If assignment to the treatment is ignorable given base-
line characteristics Xi , then conditioning on the FCGPS
eliminates biases associated with differences in those
confounding covariates. Consequently, the dose-response
function can be computed

μ(d) = E[Yi(d)] = EX [E[Yi(d)|Xi]]

= EX,U

[
E[Yi(d)|IDi

(d), r∗(d,Xi, Ui)]
]

= EX,U

[
E[Yi |IDi

(d), r∗(d,Xi, Ui)]
]
.

iv. Estimates of the dose-response function based on the true
(data generating) GPS will be at least as efficient as those
based on the FCGPS.

v. The FCGPS is drawn from a conditional density for d
that has smaller variance than the conditional density
from which the GPS is drawn. The implication of this
result is that, at any level of the treatment, the FCGPS
conditional density will have greater mass concentrated
over a smaller range of units. Consequently, the common
support region established using the GPS will be at least
as large as that using the FCGPS.

In short, the FCGPS retains the properties of balancing and
ignorability and will therefore still provide unbiased, although
potentially less efficient, estimates of the dose-response function
under correct model specification. However, redundant condi-
tioning may reduce the size of the sample available to estimate
causal quantities because it will be more difficult to find com-
mon support over the covariate distributions.

2.3 Mixed Models for PS Estimation in the Multi-Period
Setting

So far we have assumed that the vector of observed covari-
ates Xi is sufficient to represent confounding but in practice
some confounding covariates may be unobserved, or even un-
known. In these cases, and particularly when longitudinal data
are available, we propose use of a mixed model approach to ad-
just for time-invariant unobserved confounding. We focus here
on the case of a Gaussian treatment where a linear mixed model
(LMM) is appropriate. Similar results for non-Gaussian treat-
ments can be derived using the same principles for generalized
linear mixed models (GLMMs).

A LMGPS model for a longitudinal data structure, com-
prising N units (or subjects), i = 1, . . . , N , each of which
has ni measurements made over times t, t = 1, . . . , ni , giv-
ing a total of n = ∑N

i=1 ni sample observations, takes the
form Dit = XT

it θ1 + ZT
it θ2i + eit , where XT

it θ1 is the fixed ef-
fects part of the model with p-dimensional design vector Xit

and parameter vector θ1, Zit is the q-dimensional design ma-
trix for the vector of random effects (RE) θ2i ∼ N (0, G), and
eT
i = (ei1, . . . , eini

) ∼ N (0, Hi) is a vector of random errors.
Using bold to denote matrices, G and Hi are (q × q) and
(ni × ni) positive definite covariance matrices of RE θ2i and
error vector ei for unit i respectively, and we assume that θ2i

and ei are independent within subjects and θ2i and eit are inde-
pendent across subjects given the covariates (see Diggle et al.
2002, for a discussion of these assumptions and the conditions
under which they may be violated).
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The RE component of LMMs can essentially be used as a
target of inference in one of two ways: in relation to the popula-
tion from which the RE is drawn, or in relation to the prediction
of the realized value of the RE for unit i (for a discussion
of this distinction see Ruppert, Wand, and Carroll 2003; Mc-
Culloch, Searle, and Neuhaus 2008; Fitzmaurice and Molen-
berghs 2009; Raudenbush 2009). The former model may be
interpreted via marginalization as Di |Xi ∼ N (Xiθ1, ZiGZT

i +
Hi) and for the latter the interpretation is Di |θ2i , Xi , Zi ∼
N (Xiθ1 + Ziθ2i , Hi), where DT

i = (Di1, . . . , Dini
) is an ni di-

mensional vector of observed doses, Xi is (ni × p) and Zi is
(ni × q).

2.4 A Random Intercepts GPS Model to Address
Time-Invariant Confounding

For GPS estimation in the presence of unobserved con-
founding, we propose a subject-specific interpretation of the
mixed model, Dit = XT

it θ1 + bi + eit , where bi ∼ N (0, σ 2
β ) is

a random intercept. By specifying random unit level inter-
cepts within the GPS, rather than the outcome model, they
are by construction rendered correlated with treatment assign-
ment and therefore potentially useful in representing sources
of time-invariant unobserved confounding. The LMGPS ap-
proach can be further generalized in two ways. First, we can
relax the implicit assumption that the RE are uncorrelated with
the covariates (i.e., E[bi |Xit ] = 0) by using a mean centered
model, which adds time-averaged values of the covariates (i.e.,
X̄i,1 = n−1

i

∑ni

t=1 Xit,1) to the model yielding individual corre-

lated RE bi = X̄i
T
ξ + ωi with parameter vector ξ and random

component ωi ∼ N (0, σ 2
ω), such that E[bi |Xit ] = x̄i

Tξ . Sec-
ond, we can introduce dynamics to allow confounding from
lagged doses by specifying a potentially autoregressive error
term εit = ρεit−1 + νit , with |ρ| < 1 and νit ∼ N (

0, σ 2
)
. This

dynamic model, with either correlated or uncorrelated RE, is
equivalent to an autoregressive distributed lag (ADL) model of
order (1,1), that is

Dit = XT
it θ1 + bi + εit

= ρDit−1 + XT
it θ1 − ρXT

it−1θ1 + bi(1 − ρ) + νit ,

from which we can recover an estimate of dynamic confound-
ing (ρ). If appropriate the response history through time t − 1,
which we denote HY

i (t − 1), can be added as an exogenous
predetermined covariate in the LMGPS models.

Specification of RE in the GPS model can help capture time-
invariant unobserved confounding and therefore improve the
plausibility of the ignorability assumption. Using the GPS algo-
rithm, with a mixed model specification for Step 1, we can
estimate two key parameters of interest: the APO, μ(d) =
Eit [Yit (d)], and the ATE, τ (d) = Eit [Yit (d)] − Eit [Yit (0)].
However, since the predicted RE in the LMM cannot distinguish
between sources of variation that arise from time-invariant con-
founding or nonconfounding characteristics, adverse effects on
efficiency and evaluation of common support may arise as dis-
cussed in Section 2.2. It is also worth noting that in adopting an
LMM approach we are obliged to assume a model for the RE,
which if misspecified can adversely effect estimation of random
and fixed parameters. In applied work, for instance, normal-
ity of RE is typically assumed for computational convenience

but in some applications could result in a misspecified model.
A summary of the consequences of misspecification and some
potential solutions via nonparametric methods were reviewed
by Huang (2011) while Abad, Litire, and Molenberghs (2010)
proposed some useful diagnostics tests.

2.5 Comparable Approaches

There are other prominent approaches for estimation of con-
tinuous treatment effects in the longitudinal setting that have
been discussed in the literature and that could potentially ad-
dress time-invariant unobserved confounding.

1. Outcome regression (OR)—standard longitudinal OR ap-
proaches, using correlated RE or fixed effects, can be used
to address time-invariant confounding (see Diggle et al.
2002). If the OR model is correctly specified and there is
overlap in the sample such approaches will tend to be more
efficient that the multistep GPS approach. Key advantages
of the GPS over OR models arise in working with a scalar
value rather than a potentially high-dimensional covari-
ate vector. This allows for effective use of flexible ap-
proaches in modeling potentially nonlinear dose-response
functions, for instance via semiparametric and polynomial
regressions with interaction terms. Moreover, it is highly
effective in isolating the region of common support, a task
that is difficult using multiple covariates (for discussion
see Joffe and Rosenbaum 1999). The GPS approach is of
course more involved, with multiple modeling steps, but
these generate additional statistical summary information
which can be highly informative both for the inference
procedure and for substantive or policy issues.

2. Difference-in-differences (DID) GPS (DIDGPS)—Flores
et al. (2012) implemented a difference-in-differences GPS
estimator which transforms the response into before-after
outcomes and then applies the GPS approach for con-
founding adjustment. This is a continuous treatment coun-
terpart to the conditional generalized DID estimator for
binary treatments proposed by Heckman, Ichimura, and
Todd (1997) and Heckman et al. (1998). Differencing out-
comes allows for time-invariant unobservable factors to
influence selection and consequently reduces bias when
the data are contaminated by temporally invariant com-
ponents. Since the RE are differenced out rather than
explicitly specified, DID approaches do not require an
assumed model for RE as in the LMM approach. Un-
like the LMGPS, however, this estimator requires that
the time-invariant unobserved confounders be related to
the response linearly and that there be pretreatment ob-
servations available. Furthermore, the extension to lon-
gitudinal treatments is not straightforward, and also the
approach sacrifices some efficiency via data loss through
differencing.

3. Multivariate GPS (MGPS)—Moodie and Stephens (2012)
proposed a repeated measures, or multivariate, longitudi-
nal generalization of the GPS approach which analyses the
effect of treatments applied over time allowing for con-
founding from lagged doses and responses. They showed
that sequential conditional independence (i.e., by-period
conditional independence of treatment and response given

D
ow

nl
oa

de
d 

by
 [

D
al

ho
us

ie
 U

ni
ve

rs
ity

] 
at

 0
9:

12
 1

4 
Ju

ne
 2

01
5 



1444 Journal of the American Statistical Association, December 2014

response and treatment histories) can be established us-
ing the MGPS. The MGPS approach is not explicitly de-
signed to address time-invariant confounding but since
the lagged doses and responses are in turn influenced by
time-invariant RE it could reduce bias from these sources.

4. Marginal structural models (MSMs)—MSMs (Hernán,
Brumback, and Robins 2001) have been used extensively
to analyze treatment effects in the longitudinal setting. The
approach is explicitly formulated to address the problem
of time varying confounding using the underlying prin-
ciple of inverse probability weighting to create pseudo-
populations. Primarily, MSMs have been used to estimate
the total effect of a treatment regime on an end-of-study
outcome, but they can also be used to estimate the direct
treatment effect as an average value over all periods (for
a discussion see VanderWeele 2009). Weighting-based
approaches such as MSMs, are quite different from the
regression-based approaches that we adopt. As we have
shown, the mixed model approach can help to account for
unmeasured confounding in regression, yet to incorporate
such structures into weighting-based approaches requires
further methodological investigation.

In the next section, we present simulations to illustrate the
properties of the LMGPS approach in relation to other compa-
rable longitudinal estimators for continuous treatments.

3. SIMULATIONS

Our simulations are conducted on samples of 1000 observa-
tions comprising 100 subjects each observed at 10 time points.
We index subjects by i, i = (1, . . . , N) and time points by t, t =
(0, . . . , ni) giving a total of n = ∑N

i=1 ni sample observations.
There are three normally distributed independent covariates:
X1it ∼ N (0.2, 0.1), X2i ∼ N (1.0, 0.6), and Ui ∼ N (0.2, 0.1).
Covariate X1it varies over time, but is not a function of time,
while X2i and Ui are time-invariant.

We specify the following relationships between the covariates
and the treatment assignment D and response Y:

Yit (d)|X1it , X2i ∼ N (
20 exp(d[X1it − 0.25X2i]), σ

2
Y

)
Dit |X1it , X2i , Ui ∼ N (

1.0 + 4.0X1it + 2.0X2i + Ui, σ
2
D

)
.

Thus, X1 and X2 are confounders for D in a nonlinear relation-
ship with Y , while U is a nonconfounding covariate. Note that
due to the nonlinear nature of the relationship between Y and
X2, differencing will not eliminate time-invariant confounding.

The simulation set up is chosen to demonstrate the dual
challenge of addressing time-invariant unobserved confound-
ing with a nonlinear dose-response relationship. We assume
that the analyst is ignorant of the data-generating process. The
following models for the dose-response are tested

1. μ̂(d)OR1 —a linear OR model based on an incorrectly
specified generalized linear model (GLM), with erro-
neous exclusion of the time-invariant confounder X2i :
E[log(Yit)|Dit, X1it] = β0 + β1Dit + β2X1it. The dose-
response is derived by taking the mean of the predicted
values of this model evaluated at Dit = d.

2. μ̂(d)OR2 —as model OR1 but with RE (ηi) specified
for each subject: E[log(Yit)|Dit, X1it, ηi] = β0 + β1Dit +
β2X1it + ηi .

3. μ̂(d)OR3 —as model OR2, but estimated using a flexible
generalized additive mixed model (GAMM) specification

4. μ̂(d)GPSt —a GPS dose-response estimator based on a
correctly specified linear GPS model: E[Dit|X1it, X2i] =
θ0 + θ1X1it + θ2X2i .

5. μ̂(d)GPSf —a GPS dose-response estimator based on a in-
correctly specified GPS model, with erroneous exclusion
of the time-invariant confounder X2i .

6. μ̂(d)FCGPS —a GPS dose-response estimator based on a
incorrectly specified GPS model, with inclusion of covari-
ates X1it, X2i, and Ui .

7. μ̂(d)LMGPS —a linear mixed GPS model dose-response
estimator, with exclusion of covariate X2i , but inclusion
of unit level RE.

8. μ̂(d)MGPS —multivariate GPS Markov model which
excludes time-invariant confounder X2i , but ad-
justs for lagged values of dose and response :
E[Dit|X1it, Yit−1,Dit−1] = θ0 + θ1X1it + θ2Yit−1 +
θ3Dit−1.

The parameters being estimated are population APOs. We im-
pose common support in the GPS based models to illustrate the
effects of conditioning on sample size, but in our particular set up
it does not affect the value of the estimated parameters. For GPS
models, the conditional density of the treatment given the covari-
ates is estimated using a Gaussian GLM or GLMM, observed
and unobserved GPSs are calculated via the normal density, and
the conditional expectation of the log of the outcome given D and
R̂ is approximated using a GAM approximation, with smooth
main effect functions for D and R and a smooth interaction.
Using a method detailed in the supplementary materials we se-
lected the largest common support region in which the estimated
probability of assignment to each dose ≥0.01. All models are
specified with a log transformation of the outcome and results
are presented on the scale of the (log) response. The simulations
are run on 1000 generated datasets of size 1,000. The mean dose
is 4.0 and APO estimates are calculated for doses 3, 4, and 5.
Table 1 reports average estimates (Av Est), average estimated
variances (Av Est Var), empirical variances (Emp Var) calcu-
lated via 1000 bootstrap replications, mean squared error (MSE),
coverage based on bootstrap bias-corrected adjusted 95% con-
fidence intervals, and the size of common support regions (S).

The first column of numbers in Table 1 confirms that the size
of the common support region will tend to reduce with more
extensive conditioning (i.e., FCGPS and LMGPS) relative to the
true GPS (GPSt), and is underestimated by GPSf and MGPS.
Note that average estimated variances and empirical variances
are much the same for models OR1, OR2, OR3, and GPSf; but
not for the remaining models. This is because the imposition of
common support reduces sample size and consequently inflates
estimated variances, but it does not affect bias in this particular
simulation set up and so the empirical variance of estimates
across datasets is unaffected.

The OR dose-response estimates are biased and correspond-
ingly have poor coverage. There are two effects at play here.
For all specifications (OR1, OR2, and OR3) the effect of the
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Table 1. Simulation results for a Gaussian nonlinear dose* response
function: average estimate, average estimated variance, empirical

variance, MSE, and coverage (nominal level is 95%)

S dose = 3.00 dose = 4.00 dose = 5.00

truth 2.846 2.796 2.746
OR1 Av Est 3.290 2.903 2.517

Av Est Var 0.006 0.007 0.013
Emp Var 1000 0.007 0.008 0.014

MSE 0.205 0.019 0.067
Coverage 0.3 76.8 41.7

OR2 Av Est 3.159 2.903 2.647
Av Est Var 0.008 0.009 0.014
Emp Var 1000 0.007 0.008 0.014

MSE 0.106 0.020 0.024
Coverage 1.8 81.4 67.0

OR3 Av Est 3.016 2.779 2.593
Av Est Var 0.008 0.009 0.014
Emp Var 1000 0.009 0.011 0.017

MSE 0.038 0.011 0.041
Coverage 23.9 92.3 58.3

GPSt Av Est 2.814 2.802 2.795
Av Est Var 0.021 0.026 0.050
Emp Var 638 0.016 0.022 0.039

MSE 0.017 0.022 0.041
Coverage 94.2 96.2 94.6

GPSf Av Est 2.926 2.767 2.497
Av Est Var 0.015 0.023 0.023
Emp Var 994 0.014 0.024 0.024

MSE 0.021 0.025 0.085
Coverage 90.3 92.3 63.2

FCGPS Av Est 2.814 2.802 2.793
Av Est Var 0.023 0.026 0.053
Emp Var 602 0.017 0.022 0.042

MSE 0.018 0.022 0.044
Coverage 95.8 95.7 94.7

LMGPS Av Est 2.823 2.794 2.742
Av Est Var 0.025 0.027 0.056
Emp Var 608 0.017 0.022 0.045

MSE 0.017 0.022 0.045
Coverage 96.2 95.7 94.6

MGPS Av Est 2.853 2.787 2.676
Av Est Var 0.019 0.024 0.040
Emp Var 743 0.015 0.022 0.037

MSE 0.015 0.022 0.041
Coverage 95.8 95.4 92.6

treatment is confounded due to the erroneous omission of the
time-invariant confounder X2. The inclusion of RE in OR2 and
OR3 fails to adjust for this source of confounding, since by con-
struction, the RE are independent of the covariates and therefore
capture time-invariant unobserved variables that are strictly non-
confounding. The second effect, relevant to OR1 and OR2, is
that the semi-log-linear model specification fails to provide a
good approximation to the true nonlinear nature of the dose-
response function. With a high-dimensional covariate vector
this effect may be evident due to the limited potential for use of
highly flexible functional forms.

With the exception of model specification GPSf, the GPS
models generally perform well in estimating the dose-response
and coverage is good, even though these model still involve

approximations to the true nonlinear dose-response function.
This is because they offer a high degree of flexibility in ap-
proximating the unknown function while providing adequate
adjustment for confounding covariates. Note that use of a best
linear unbiased predictor (BLUP) to calculate the LMGPS gives
similar results to those obtained for the FCGPS, even though this
model does not include the time-invariant confounder explicitly.
This is because the RE in LMGPS are correctly located in the
sense that they do adjust for confounding, in addition to other
sources of unit level variance. Through inclusion of lags in both
treatment and response the MGPS is reasonably robust to the ex-
clusion of time-invariant RE, but this estimator is not designed
to address this particular issue directly and consequently we
find that it does not perform as well as the LMGPS far from the
mean dose. Excluding time-invariant confounding covariates
from GPS estimation, as in the GPSf specification, produces
poor estimates of the dose-response.

4. CASE STUDY: QUANTIFYING CAUSAL EFFECTS
OF ROAD NETWORK CAPACITY EXPANSIONS

ON TRAFFIC VOLUME AND DENSITY

We now apply the method outlined above to our longitudinal
case study on the effect of road network capacity expansion
on aggregate traffic volumes. The data available for analysis
describe mobility and traffic conditions for 101 major U.S. cities
over the period 1985 to 2010. They are collated by the Texas
Transportation Institute (TTI) at the University of Austin Texas
and are publicly available with full documentation at http://
mobility.tamu.edu/ums/. A description of the data and a table of
summary statistics is provided in the supplementary materials.

The available longitudinal data allow us to represent three
key features of our problem: response (yit), treatment (dit), and
confounding covariates (xit). We define our response variable as
annual proportional change in aggregate urban traffic volume,
with volume measured by annual vehicle miles traveled (vmt)
in each city i: yit = vmtit/vmtit−1. Our “treatment” variable is
a measure of the proportional change in urban road lane miles
(lms) in each year: dit = lmsit/lmsit−1. The advantage of using
proportional changes for treatment and response is that, since
we can condition on initial scale in the GPS regression, we
can obtain APO estimates that have an intuitive and general
interpretation as the proportional change in vmt caused by a
proportional increase in capacity.

The previous literature offers guidance on likely sources of
confounding. To model time-varying confounders we use the
available longitudinal data to construct the following covari-
ates, each measured in the year immediately prior to the treat-
ment: (i) lagged-response (to allow for reverse causality), (ii)
congestion (annual hours of delay per vmt), (iii) traffic volume
(vmt), (iv) network scale (lms), (v) network composition (free-
way lms / arterial lms), (vi) traffic composition (arterial vmt /
freeway vmt), (vii) mode share (annual passenger miles traveled
by public transport), (viii) productivity (metropolitan wage rate
in dollars per annum), (ix) economic structure (metropolitan
share of manufacturing jobs), (x) employment and population
distribution and growth (covariates measuring the levels and
proportional growth), (xi) personal income (average metropoli-
tan personal income in dollars per annum), and (xii) state fuel
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price (dollars per gallon). Further detail on the hypotheses un-
derpinning inclusion of these covariates, and summary statistics
for the data, can be found in the supplementary materials.

As discussed in the introduction, the previous literature tends
to use model specifications that allow for confounding from un-
observed time-invariant city level characteristics. These could
include physical layout, topography, climate, geography, cul-
tural factors, and features of network engineering. Thus, in addi-
tion to the time-varying confounders we draw on a mixed model
framework for the GPS. We use a mean centered LMGPS which,
as explained in Section 2, provides the most general specifica-
tion in that it allows for correlation between the time-invariant
RE and the time varying covariates. By virtue of the fact that
a lagged response features as a covariate in the GPS model,
correlation with the RE should be assumed. Our mean centered
LMGPS thus accommodates the key issues surrounding induced
demand estimation raised in the literature. For comparison and
testing, a number of other GPS based models and conventional
longitudinal models are estimated. We summarize these results
below and provide full tables and statistics in the appendix.

The LMGPS approach was illustrated through simulation in
the previous section. In the application an identical procedure is
followed. We first estimate the conditional density of treatment
given covariates. To allow flexibility of form, we use a Gaussian
penalized spline model with smooth main effect functions for
each covariate and automatic knot selection, estimated using
the GAMM4 package in R. Estimation is by restricted estimation
maximum likelihood (REML) and approximate results on sig-
nificance are given in Table 2. The p-values, which derive from
a Wald test of individual smooth terms for equality to zero, are
based on a statistic with an approximate F distribution. As de-
scribed by Wood (2006) the p-values should be interpreted with
caution as they are typically lower than they should be when the
null is true creating a tendency toward over-rejection of the null.
Using the Bayesian information criterion (BIC) of this model
as a guide we found that a more parsimonious specification
could be achieved by dropping some covariates related to pop-
ulation and employment distribution and growth. The final set
of covariates used is shown in Table 2.

Using the method detailed in the appendix we select a re-
gion of common support in which the estimated probability of
assignment to dose ≥ 0.01. This yields a region of 1353 compa-
rable observations. The large exclusion of observations (≈ 45%)
required to achieve comparability implies that estimated APOs
and ATEs will likely differ from the corresponding population
parameters. Tables A1 and A2 in the appendix provide detail
on differences in characteristics between the common support
region and the full sample. Most noticeable is that smaller cities
are somewhat under-represented in the common support region
and consequently we find that the mean values for traffic vol-
ume, network scale, productivity, population, and employment
are larger than for the full sample.

We next test for the balancing property of the GPS. In a
similar manner to Hirano and Imbens (2004) and Flores et al.
(2012), we regress the treatment on the covariates, the GPS, and
a set of indicator variables corresponding to the following treat-
ment discretization: [1,1.005], (1.005,1.01], (1.01,1.015],
(1.015,1.02], (1.02,1.025], (1.025,1.03], (1.03,1.035],
(1.035,1.04], (1.04,1.045], (1.045,1.05], (1.05,1.1]. The

Table 2. REML Gaussian penalized spline model results for the
conditional density of the treatment given covariates. Columns
contain test statistics and p-values for terms in the spline model

F p-value

Lag response 10.844 2.56E-12
Congestion 11.488 0.000
Traffic volume 2.895 3.00E-02
Network scale 10.775 2.61E-05
Network composition 2.315 0.12823
Traffic composition 4.599 6.11E-05
Economic structure 1.775 0.183
Productivity 2.855 0.034
Mode share 1.850 0.121
Employment 3.182 0.008
Fuel price 3.398 0.020
Personal income 2.606 0.011
Population growth 1.924 0.082
Year 7.604 1.65E-08
Deviance 1.28E-04
BIC −14245
n 2474

BIC values obtained from the linear regression models with
and without covariates, −21371 and −21414, respectively,
indicate that the inclusion of covariates leads to a deterioration
in model adequacy. We also conduct an F -test between the
restricted (without covariates) and unrestricted models giving
an F statistic (p-value) of 1.250 (0.264). These results suggest
that the balancing property has been achieved for our GPS
specification.

Next, we approximate the conditional mean of the outcome
given treatment level and the estimated GPS. We do so using a
Gaussian penalized spline GAM estimated by REML, with auto-
matic knot selection and smooth main effect functions for d and
R̂. To test the validity of this simple specification, rather than use
a rectangular grid of knot points in the (d, R̂) plane, we choose
knots for the R̂ component tailored to a range discretization of d
into 10 strata. The BIC of this model (–6416) does not support
the need for separate smooths, and in fact the model generates
very similar dose-response estimates to those obtained with a
single smooth. This test provides only a rudimentary check for
model specification, but it does also demonstrate the consider-
able flexibility in form offered via the GPS approach relative to
OR approaches with many covariates.

We do not observe the set of potential outcomes across doses
of interest. Instead, we construct the dose-response function us-
ing the conditional mean-response model by taking the mean of
its predicted values on the response scale, evaluated at D = d

and R̂d,it = r(d, xit ). We calculate the dose-response for incre-
ments of 0.0025 over the range of doses from 1.0 to 1.05 (i.e.,
from 0% to 5% capacity expansion). Results for selected doses
are shown in Table 3 with bootstrap standard errors. The boot-
strap calculations are based on 500 block replications given both
the GPS estimation and the averaging required to estimate the
dose-response. In addition to the dose-response estimates, we
also report ATEs defined as the expected proportional change
in response under any given capacity expansion net of the ex-
pected proportional change that would occur under no capacity
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Table 3. Estimates of the dose-response function and associated
ATEs with bootstrapped standard errors

Dose μ̂(d) S.E. τ̂ (d) S.E. Elasticity S.E.

1.000 1.014 (0.003) — — — —
1.005 1.020 (0.001) 0.007 (0.003) 1.393 (0.539)
1.010 1.026 (0.001) 0.012 (0.003) 1.217 (0.295)
1.015 1.028 (0.001) 0.015 (0.003) 0.997 (0.206)
1.020 1.030 (0.002) 0.017 (0.003) 0.827 (0.147)
1.025 1.032 (0.002) 0.018 (0.003) 0.720 (0.125)
1.030 1.033 (0.003) 0.019 (0.004) 0.645 (0.129)
1.035 1.034 (0.003) 0.020 (0.004) 0.577 (0.117)
1.040 1.034 (0.004) 0.021 (0.004) 0.518 (0.112)
1.045 1.035 (0.005) 0.021 (0.005) 0.472 (0.117)
1.050 1.035 (0.005) 0.022 (0.006) 0.435 (0.112)

expansion. We estimate ATEs using

τ̂ (d) = 1

n

N∑
i=1

ni∑
t=1

[
Ŷit (d)

] − 1

n

N∑
i=1

ni∑
t=1

[
Ŷit (1)

]
,

which with yit = vmtit /vmtit−1 is a discrete approximation to
E[∂ log vmtit (d)] − E[∂ log vmtit (1)].

Table 3 shows our estimated responses and ATEs at a selection
of doses. The response value corresponding to dose 1.000 rep-
resents average “natural growth” in traffic (i.e., average growth
under no treatment), which we estimate to be 1.4% per annum.
All other average response estimates shown in the table, which
are associated with network capacity increases of various doses,
indicate evidence of induced road traffic demand having ad-
justed for observed time-varying and unobserved time-invariant
confounders and having ensured common support. The boot-
strapped standard errors indicate statistically significant effects
pointwise at all doses.

Figure 1 illustrates the ATEs graphically with bootstrapped
95% pointwise confidence intervals. Note that the ATEs are in-
creasing with dose across the range of treatment considered, and
the effect is statistically significant at all doses. This implies that
city dwellers have tended to experience larger traffic volumes
due to network expansions with potentially adverse implications
for pollution and the incidence of collisions.

We can transform our ATEs to the elasticity scale typically
reported in the existing literature by dividing the ATE estimate
by the corresponding proportional change in lane miles. For our
LMGPS model, this gives a range from 1.393 (0.539) to 0.435
(0.112) with a mean of 0.772 (0.170). The elasticities decrease
from the smallest to largest dose. Existing empirical studies
quote single point elasticity estimates, typically under 0.700,
although the recent study by Duranton and Turner (2011) which
uses IV as a causal method reports a larger elasticity of around
1.000. Our results indicates that there may be considerable het-
erogeneity in response across different doses, and therefore that
there is value in adopting a causal dose-response approach rather
than a conventional OR approach for a single point estimate.

The results can also be used to indicate the effect of capacity
expansions on traffic densities by taking the ratio of response to
doses. Our estimates suggest that, given the combined effects
of natural growth and induced demand, increases in network
capacity of less then 3.5% may not cause traffic densities to
reduce. Furthermore, for our original sample of 101 cities over

26 years, only 533 observation (20%) have experienced annual
growth in lane miles greater than 3.5%. So, the induced demand
effect suggested by our estimates really is substantial, implying
that even major network capacity expansions may not actually
cause traffic densities to fall, and by extension, may do little to
ameliorate urban congestion.

For illustrative purposes and to provide further insight into
the LMGPS methodology, we generate additional results from
alternative model specifications proposed in the literature. These
results are summarized below and presented in full in the
appendix.

Alternative GPS model specifications. We estimate a GPS
model with covariates but without adjustment for time-invariant
confounding, and an MGPS model as described above. These
models, which do not adjust directly for time-invariant con-
founding, give substantially similar results to the LMGPS esti-
mates, but the estimated induced demand effects is larger. The
GPS model gives a mean elasticity of 0.804 (0.163) and the
MGPS model 1.128 (0.166).

Models using conventional panel OR approaches. We esti-
mate the following models: pooled OLS (POLS) with and with-
out covariates, RE, fixed effects (FE), first difference (FD), and
dynamic-panel generalized method of moments (DPGMM) (see
Hall 2005). In all cases, the treatment is specified in quadratic
form. If we assume that the covariate vector correctly repre-
sents time-varying confounding, then the POLS model without
covariates will give inconsistent estimates, the POLS with co-
variates and the RE models will give consistent estimates if there
is no time-invariant confounding, and the FE and FD models
will give consistent estimates in the presence of both time-
varying and time-invariant confounding, as will the DPGMM
model but it also allows for confounding from lagged values
of the response. Note that common support is not imposed in
these conventional approaches implying two important points
for interpretation and comparison: first, the causal parameter
being estimated may differ from the corresponding value for the
common support region; second, parameter estimates are calcu-
lated without concern for the comparability of units and thus a
key requirement of the potential outcome framework for causal
inference is not met.

The POLS model without covariates makes no adjustment for
confounding and gives a mean elasticity of 1.121 (0.064), some-
what higher than values typically reported in the literature. The
POLS model with covariates and the RE model give mean elas-
ticities that are broadly similar to the mean value for the LMGPS
model, 0.769 (0.096) and 0.785 (0.086) respectively, but in fact
the pattern of ATE estimates from these models is substantially
different indicating considerably less heterogeneity in treatment
effect by dose. The FE, FD, and DPGMM models, which adjust
for time-invariant confounding, produce results that are simi-
lar in magnitude to those reported in the literature with mean
elasticities of 0.530 (0.084), 0.597 (0.090), and 0.611 (0.296)
respectively, but again show less heterogeneity in ATEs than
indicated by the GPS based models.

All estimates from the additional models indicate evidence
of induced road traffic demand from network expansion, but
the magnitude of estimated effects varies. Adjustment for time
varying confounding appears to produce lower estimates and
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Figure 1. Average treatment effects (%) by “dose”—network capacity expansion—in the traffic volume example.

additional adjustment for time-invariant confounding appears to
reduce the estimates still further. The FD and FE panel data mod-
els show improved explanatory power, as measured by adjusted
R2, and the Hausman test selects the FE over RE model. These
diagnostics are consistent with the existence of time-invariant
confounding. However, while the panel models provide a useful
perspective which is broadly supportive of the LMGPS approach
we propose, since they do not address common support and are
based on a restrictive a priori assumption about the form of the
dose-response, direct comparison of results in inhibited.

In summary, under the assumptions of our model, we find evi-
dence of a positive causal relationship between network capacity
expansions and traffic volumes. The scale of the effect indicates
that network capacity expansions may do little to reduce traffic
densities other than in extreme cases (i.e., expansions of 3.5%
and above). This implies that as a remedy for congestion, ca-
pacity expansion is at best a risky strategy and city authorities
should be aware of the potential scale of the induced demand
effect.

5. CONCLUSIONS

In this article, we have studied the effect of road network
capacity expansions on aggregate traffic volumes and densities
in U.S. cities using a linear mixed model GPS approach for
continuous dose-response estimation. Given the assumptions of
our model, our results suggest that capacity expansions can give
rise to a direct increase in aggregate urban traffic volumes, and
we find that the effect may be substantial such that even major

capacity increases can actually lead to little or no reduction in
network traffic density. One implication is that by building more
roads in major urban areas we may create increasing pollution,
congestion, collisions, and other negative consequences of urban
motoring. On the other hand, we may also permit more mobility
for urban dwellers.

GPS based estimators are attractive because they permit the
use of flexible approaches that make minimal a priori assump-
tion on the form of the dose-response relationship and they can
be used to find a sample comprising observations that are broadly
comparable for treatment effect estimation. The methodologi-
cal key insight in this article is that by specifying RE within a
GPS rather than mean-response model, they are rendered corre-
lated with treatment assignment and therefore potentially useful
in representing sources of unobserved time-invariant confound-
ing. Our proposed estimator provides a general specification
that could be useful in other areas of applied statistics as it ac-
commodates three prevalent features of longitudinal problems:
confounding from measured time-varying and unobserved time-
invariant sources and bi-directionality between treatment and
response.

Some limitations of our approach should be noted. First, since
the predicted RE cannot distinguish between time-invariant
unobserved heterogeneity that arise from confounding or non-
confounding characteristics, their use in the PS model can po-
tentially lead to more extensive conditioning than is strictly
necessary for causal comparison. We have shown that while the
inclusion of non-confounding characteristics in the PS model
does not induce bias in the estimation of the dose-response, it
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does give potentially less efficient estimates and can render the
task of finding overlap in the covariate distribution more chal-
lenging. Second, in contrast to IV methods, we require “ignora-
bility” to hold given the covariates, and while our approach will
help address unmeasured time-invariant confounding, it will not
eliminate bias from unmeasured time-varying confounding. Fi-
nally, two limitations that could be addressed in future research
relate to the need for appropriate test statistics for model fit that
are applicable for multistep estimation procedures, and the issue
of measurement error and the propagation of error through the
model components.

SUPPLEMENTARY MATERIALS

The supplementary material provides detail on the algorithm
used for dose-response estimation, proofs for the properties of
the mixed model GPS, a description of the data used in our
application, and some additional results.

[Received April 2013. Revised July 2014.]
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