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To reduce bias by residual confounding in nonrandomized database studies, the high-dimensional propensity
score (hd-PS) algorithm selects and adjusts for previously unmeasured confounders. The authors evaluated
whether hd-PS maintains its capabilities in small cohorts that have few exposed patients or few outcome events.
In 4 North American pharmacoepidemiologic cohort studies between 1995 and 2005, the authors repeatedly
sampled the data to yield increasingly smaller cohorts. They identified potential confounders in each sample
and estimated both an hd-PS that included 0–500 covariates and treatment effects adjusted by decile of hd-PS.
For sensitivity analyses, they altered the variable selection process to use zero-cell correction and, separately, to
use only the variables’ exposure association. With >50 exposed patients with an outcome event, hd-PS-adjusted
point estimates in the small cohorts were similar to the full-cohort values. With 25–50 exposed events, both
sensitivity analyses yielded estimates closer to those obtained in the full data set. Point estimates generally did
not change as compared with the full data set when selecting >300 covariates for the hd-PS. In these data, using
zero-cell correction or exposure-based covariate selection allowed hd-PS to function robustly with few events.
hd-PS is a flexible analytical tool for nonrandomized research across a range of study sizes and event frequencies.

algorithms; comparative effectiveness research; computing methodologies; confounding factors (epidemiology);
epidemiologic methods; pharmacoepidemiology; propensity score

Abbreviations: ‘‘coxib,’’ cyclooxygenase-2 inhibitor; hd-PS, high-dimensional propensity score; MI, myocardial infarction; PACE,
Pharmaceutical Assistance Contract for the Elderly; SSRI, selective serotonin reuptake inhibitor.

Nonrandomized studies of drug treatment effects carried
out in longitudinal health-care databases often suffer from
bias due to residual confounding. Among the many strate-
gies for mitigating bias—including sensitivity analyses, ex-
ternal adjustment, instrumental variables, and self-controlled
designs (1–10)—perhaps the most intuitive solution is to
improve measurement of confounders. One way to accom-
plish this is to measure proxies for important confounder
constructs, such as disease prognosis and severity, comorbid-
ities, and cognitive and functional status. The high-dimen-
sional propensity score (hd-PS) algorithm is an automated
technique that empirically identifies potential confounders
or proxies for confounders in longitudinal data sets; the al-
gorithm assesses thousands of diagnosis, procedure, and
drug-dispensing codes recorded in administrative databases

and then selects the several hundred of those codes, as trans-
formed into binary covariates, that appear most like
confounders (11). The algorithm then uses these newly iden-
tified covariates alongside or in place of investigator-
selected variables to estimate a propensity score, a number
that indicates each patient’s expected probability of expo-
sure as predicted by his or her measured covariates (12). The
propensity score is used to control for confounding via
matching or stratification (13).

Although in several pharmacoepidemiologic analyses
hd-PS yielded adjusted point estimates closer to estimates
observed in randomized trials and observational studies
(14–18), as compared with standard modeling (19–22), at
least 2 key questions remain. First, because the algorithm
functions by assessing thousands of covariate-exposure and
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covariate-outcome associations, it needs to be evaluated in
situations of small sample sizes and consequently few out-
come events. Second, one modifiable parameter is how
many empirically selected covariates—covariates chosen
by the algorithm—are included in its propensity score;
a number that is too small will not provide maximal con-
founding adjustment, while a number that is too big could
run the risk of introducing bias from adjusting for instru-
ments or colliders (11, 23, 24). Using 4 pharmacoepidemio-
logic cohort studies, we sought to both verify small-sample
covariate selection and determine an optimal number of
empirically selected covariates.

MATERIALS AND METHODS

The hd-PS algorithm

The hd-PS algorithm takes recorded health service utiliza-
tion events as input; these events are coded with consistent
terminology (including nationally standardized diagnosis,
procedure, and pharmaceutical product codes) along a series
of data dimensions. Each dimension describes an aspect of
care. In insurance claims data, common data dimensions in-
clude pharmacy claims, outpatient diagnoses, outpatient ser-
vices, and inpatient diagnoses. From each dimension, the top
n most prevalent codes are transformed into binary covariates
and then individually considered for selection into a propen-
sity score. With 5 dimensions and the default n ¼ 200, and
considering 3 levels of within-patient frequency of occur-
rence of each code (code occurred once, sporadically, or
frequently), there are a possible 3,000 indicator variables that
could be added to a propensity score. The hd-PS algorithm
then prioritizes each of these variables by its potential to bias
the exposure-outcome relation under study, using the formula
by Bross (25). By default, the algorithm will then include the
top k ¼ 500 of these covariates in a propensity score.

Although some of the covariates identified will undoubt-
edly be strongly correlated with covariates selected by the
investigator a priori, certain of them may be new informa-
tion gleaned from the observed data. These covariates could
be proxies for constructs that are complex and difficult to
measure even in highly controlled settings; the underlying
condition of ‘‘frailty’’ among elderly patients (26, 27) might
be indicated by codes for use of oxygen canisters, use of
skilled nursing care, or the lack of a prescription for statins
or other preventive medications (28). It is important to
screen out variables that predict only exposure but not out-
come (‘‘instruments’’), as including them may bias the treat-
ment effect estimate in the presence of strong unmeasured
confounders (11, 23, 24).

Example studies and data dimensions

We readdressed 4 previously published pharmacoepi-
demiology studies with strong confounding by indication.
We used an incident user design in which we excluded any
patients who had recorded use of the study drug or referent
treatment in the 365 days prior to the beginning of follow-up
(29). Among many other advantages of this study design,
the approach ensured that all covariates considered by the

hd-PS algorithm were measured prior to the time of expo-
sure and thus were potential confounders, rather than pos-
sible intermediates (30, 31).

In the first cohort study (known as the Coxib Study),
we examined the effect of cyclooxygenase-2 inhibitors
(‘‘coxibs’’) versus nonselective nonsteroidal antiinflamma-
tory drugs on the outcome of hospitalization for gastrointes-
tinal hemorrhage (19). The study cohort was drawn from
a population of elderly adults enrolled in Pennsylvania’s
Pharmaceutical Assistance Contract for the Elderly (PACE)
program, which serves low-income residents aged �65
years. On the basis of randomized trial findings, we ex-
pected to observe a protective effect of ‘‘coxibs’’ (14, 15).

In the second cohort study (the Statin Death Study), also
in the PACE population, we examined whether statin drugs
provided an expected protective effect against all-cause
mortality (16–18) as compared with glaucoma drugs (26).
Patients filling prescriptions for glaucoma drugs demon-
strate usage of the health-care system but are not specifically
expected to be at elevated cardiovascular risk. The third
cohort study extended the second to outcomes of myocardial
infarction (MI) or noncancer death (the Statin MI/Death
Study), again with the expectation of a protective effect
(16–18). In this case, we counted death as an outcome only
in patients not treated for cancer in the 180 days prior to
follow-up.

In the fourth cohort study (the Selective Serotonin
Reuptake Inhibitor (SSRI) Study), we assessed the safety
of SSRIs versus tricyclic antidepressants for the outcome
of suicidal acts, with no difference between the 2 drug
classes expected. We included all residents of British Co-
lumbia aged 17 years and under who utilized British Co-
lumbia’s Pharmacare Program (22).

We performed cumulative risk analyses in which the
baseline exposure was assumed to continue over a fixed
length of time, similar to an intention-to-treat approach;
we followed patients for 120 days in the Coxib Study and
180 days in the other analyses (32). The hd-PS input data
dimensions were codes for medications; hospital in- and
outpatient diagnoses and procedures; physicians’ office di-
agnoses and procedures; and, in the PACE studies only,
nursing home diagnoses.

All studies were approved by the institutional review
board of the Brigham and Women’s Hospital and were car-
ried out under established data use agreements.

Investigator-selected covariates

For each study, we defined 2 sets of investigator-selected
covariates: 1) a basic set of demographic and health service
usage intensity covariates and 2) an extended set of cova-
riates akin to what an investigator would use in a usual
analysis of the exposure and outcome in question. The basic
covariates were indicators for age in 5-year categories, sex,
an indicator for white versus nonwhite race, and an indicator
for calendar year of index exposure. Over a 6-month cova-
riate assessment period preceding the index exposure, we
also created indicators for the number of outpatient visits
and number of unique medication entities filled (0–1, 2–3,
4–7, 8–12, 13–20, �20).
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The extended covariates included study-specific variables
describing the patient’s condition at baseline. These vari-
ables are described fully in other works (9, 21, 27) and are
listed in the Appendix. They included prior diagnoses of
diabetes, hypertension, and heart failure; prior use of statins,
proton pump inhibitors, warfarin, and stimulants; and prior
hospitalization for myocardial infarction, gastrointestinal
bleed, and stroke.

Sampling the cohorts to generate data with few
exposed patients and outcome events

To assess the algorithm in situations with few exposed
patients and outcome events, we sampled each of the 4
studies without replacement to 5%, 10%, 15%, 20%, and
50% of their original sizes. First, to establish an expected
treatment effect for each study, we applied hd-PS with the
default k ¼ 500 covariates to each study’s full cohort and
used the resulting effect estimate as the study’s referent
standard. The full cohort provides our best available effect
estimate and the most information available for covariate
selection. Thus, although the estimate in the full cohort
may have been biased, it does offer a reasonable reference
value within the context of the study against which to com-
pare the results from the smaller samples.

We then sampled each study’s full cohort 100 times at each
sampling frequency. In order to standardize the number of
events in each sample, we fixed the margins from the full
cohort’s exposure/event 2 3 2 table and sampled each of
the 4 separately. Thus, for each study and sampling frequency,
over the 100 runs, we had a constant number of exposed cases
and noncases with which to assess hd-PS’s reliability at given
numbers of exposed patients and events. The distribution of
confounders and the adjusted relative risk varied from sample
to sample.

We executed the hd-PS algorithm and, as in previous work
(11), considered the default n ¼ 200 most frequent codes
per data dimension as candidate covariates for the variable
selection process. With 3 levels of within-patient frequency
assessment, the algorithm assessed 4,200–4,800 candidate
dichotomous variables per sample. For each run, we includ-
ed from k ¼ 0 to k ¼ 500 of the variables screened in the
resulting hd-PS, with the variables with the most potential to
confound the exposure-outcome relation selected first at the
lower values of k. We evaluated variables one at a time using
the formula by Bross (25), which considers the differential
prevalence among the exposed and unexposed alongside the
covariate-outcome relative risk (25, 32).

Statistical analysis and measures recorded

For each sample, we recorded the following: 1) the crude
odds ratio and its 95% confidence interval; 2) the odds ratio
and confidence interval after adjusting for basic covariates
only; 3) the odds ratio and confidence interval after adjust-
ing for deciles of a propensity score including the basic and
extended covariates; and 4) the odds ratio after adjusting for
deciles of a propensity score including the basic covariates
and k ¼ 0–500 empirically selected covariates but no ex-
tended covariates. On the basis of prior research (11), we

expected that the algorithm’s empirically selected variables
would include items similar to the extended covariates
specified by the investigator. By not including the extended
covariates explicitly, we retained the ability to observe whether
small cohort sizes hampered the algorithm’s ability to select
and adjust for these important variables.

We modeled the outcome using logistic regression with
outcome dependent on exposure and on the individual co-
variates or deciles of propensity score, as appropriate. We
chose propensity score decile adjustment over matching
or trimming because it allowed for comparison of identical
populations across different analyses. At each sampling fre-
quency and in each study, and at each value of k, we com-
puted the geometric mean of the 100 observed odds ratios
as adjusted per item 4 above.

Because studies with few outcome events are subject to
small-sample bias when an excessive number of variables
are added to an outcome model (33, 34), we conducted
a sensitivity analysis in which we entered the continuous
hd-PS rather than the 9 indicators of hd-PS decile into
the outcome model. Separately, we used the samples as de-
scribed above but added 0.1 to each cell of the covariate-
exposure and covariate-outcome 2 3 2 tables in order to
make the confounders’ associations with exposure and out-
come consistently computable when there were cells with
0 patients. For the hd-PS variable selection process, we
favored sensitivity over specificity in identification of po-
tential confounders; we therefore chose 0.1 instead of the
more commonly used value of 0.5 (33), which would have
introduced more shrinkage toward the null and could have
led to fewer selected confounders. We then again reused
the samples but ranked the empirically selected variables
only by the strength of the covariate-exposure association
(‘‘exposure-only selection’’), as measured by the ratio of the
prevalence of the confounder in the exposed versus the un-
exposed. Others have utilized a selection method that ranked
variables by prevalence rather than prevalence ratio (35, 36).

In the primary analysis, we recorded 2 additional mea-
sures. First, ‘‘variable coverage’’ was the proportion of vari-
ables selected in the sample that were also selected in the
full data set at that level of k. For example, if on average in
the 10% sample at k ¼ 50, 20 of the 50 variables selected
were also selected in the full data set at k ¼ 50, the variable
coverage would be 40%. Second, the ‘‘ratio of odds ratios’’
was computed as the ratio of the geometric mean of the odds
ratios observed in the 100 samples at a given level of k
versus the odds ratio observed in the full cohort.

The hd-PS version 2 algorithm and its associated Statis-
tical Analysis System (SAS) macro or R template code are
available at www.hdpharmacoepi.org. Version 2 of hd-PS
incorporates the sensitivity analyses described here and of-
fers greatly improved computation speed and memory effi-
ciency. It also includes automated generation of health
service utilization variables, but for consistency with earlier
reports, we did not make use of this option.

RESULTS

The populations followed the general characteristics ob-
served in prior studies: The 3 PACE cohorts were older and
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sicker than the British Columbia cohort observed in the
SSRI Study (Table 1). There was substantial imbalance be-
tween the exposed and referent groups in each study, and
confounding adjustment led to large changes in point esti-
mates (Table 2).

The results for the resampling experiments are presented
in Table 3 and Figure 1. In the figure, the sampling frequen-
cies are presented across the columns of charts, and the 4
studies are shown in the rows. Point 1 in each plot indicates
the crude odds ratio, and point 2 indicates the basic cova-
riates-adjusted odds ratio. Point 3 indicates the odds ratio
adjusted by all investigator-selected covariates. The thick
line in each plot illustrates the primary analysis, the odds
ratio estimated with deciles of propensity score with the
basic covariates and k ¼ 0 to k ¼ 500 empirically selected
covariates but no extended covariates. (In all cases, in the
sampled cohorts, the value plotted is the geometric mean of
the observed odds ratios across the 100 runs at the indicated
value of k and sampling frequency.) The thin solid line
shows the odds ratio from the sensitivity analysis in which
a 0.1 correction was added to each 2 3 2 table cell during
covariate prioritization. The thin dashed line shows the odds
ratio from the sensitivity analysis in which the variable se-
lection procedure considered only the covariate-exposure
association. The dotted line is the referent value—the odds
ratio from the full cohort—and is plotted for comparison.

Web Figure 1, which is posted on the Journal’s Web site
(http://aje.oxfordjournals.org/), is similar to Figure 1, but in
Web Figure 1 the solid line shows the geometric mean of the
odds ratios from the sensitivity analysis in which the con-
tinuous value of propensity score was used in the outcome
model. As before, the dotted line shows the referent values
from the full cohort. Web Figure 2 illustrates the 2 qualita-
tive measures we used: The thick line shows the average
variable coverage percentage (100% is best), while the thin
line shows the average percentage change in odds ratio in-
dicated by the ratio of odds ratios (0% change is best; 0%
change is a ratio of the odds ratios ¼ 1.0).

Web Tables 1–4 display the codes and descriptors for the
500 variables chosen for each of the 4 studies. Many of these
codes represent variables that would have been selected by
the investigator as extended covariates; others indicate vari-
ables that we as investigators would not have considered for
adjustment and thus could be proxies for previously unmea-
sured confounders.

The Coxib Study and 2 statin studies showed odds ratios
that converged upon the referent value in the 50% and 20%
samples, respectively (thick lines of Figure 1). We observed
wide and unpredictable variation of the odds ratio in the
SSRI Study, as compared with the referent value. The SSRI
Study had about half as many patients and a much smaller
number of events than the statin studies.

We further observed the following trends in the Coxib
Study and 2 statin studies:

� At approximately k ¼ 300 empirically selected variables,
the maximal level of confounding adjustment was reached
in the example studies (thick lines of Figure 1). In the
smaller study sizes, the algorithm was not always ableT
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to select more than 250 variables to adjust for, because of
low exposure and event frequencies.

� The hd-PS-adjusted odds ratio was most sensitive to the
addition of extra empirically selected covariates at the
lower values of k (thick lines of Figure 1).

� The hd-PS-adjusted odds ratio (thick lines of Figure 1)
was most divergent from the full-cohort referent value
(dotted lines) in the smaller sample sizes of the Coxib
Study. The Coxib Study had the largest population
(32,042 exposed patients) but the fewest number of ex-
posed patients with an event (n ¼ 367) of the 3 non-SSRI
studies.

� In the 5% and 10% samples of the Coxib Study, the analysis
that used the 0.1 zero-cell correction factor (thin lines of
Figure 1) generally yielded results closer to the full cohort’s
referent values (dotted lines) than did the approach without
the correction factor, but yielded a result farther from the
referent value in the larger samples. In the statin studies, the
correction factor did not meaningfully affect the point esti-
mate.

� The variable selection method that used only the covari-
ate-exposure relation (dashed lines of Figure 1) yielded
results closer to the referent value (dotted lines) in certain
instances—the 5% and 10% samples of the Coxib Study
and, to a lesser extent, the 5% samples of the statin stud-
ies—as compared with both the primary technique (thick
lines) and the zero-cell correction method (thin lines).
These instances each had fewer than 50 exposed patients
with an event. In other instances, the primary and zero-
cell correction techniques yielded results closer to the
referent value.

� The variable coverage was stable after approximately
50 empirically selected covariates (thick lines of Web
Figure 2).

� The ratio of odds ratios trended toward 1.0 (0% change) as
the sampling frequency, and thus study size was increased
(thin lines of Web Figure 2). At 50% sampling, the ratio of

odds ratios was always nearly 1.0, indicating little differ-
ence from the referent point estimate.

� The sensitivity analysis that used the continuous propen-
sity score rather than deciles of propensity score (solid
lines in Web Figure 1) generally did not yield point esti-
mates closer to the referent value (dotted lines) than did
the decile technique (thick lines in Figure 1).

� The hd-PS algorithm did as well as or better in adjusting
for confounding than did the method with only investiga-
tor-selected covariates, as compared with values from
published trials and observational studies (14–18).

DISCUSSION

With the creation and employment of empirical covari-
ates, the hd-PS algorithm has been successful in adjusting
for previously unmeasured confounders in nonrandomized
studies. In this paper, we evaluated the original algorithm
and several newly developed variants to test functionality in
small study populations with few exposures and events. We
observed that the original hd-PS algorithm functioned well
in our studies except in cases where there were fewer than
approximately 50 exposed patients with an event. Below
this number, hd-PS yielded estimates similar to those ob-
tained from standard covariate adjustment, but by using
a selection technique that considered only the covariate-
exposure association, we improved the algorithm’s ob-
served performance when the number of exposed patients
with an event fell below this threshold. We further observed
that, in all but the smallest study sizes, the algorithm
reached its full potential to adjust for confounding after
the addition of approximately 300 empirically selected co-
variates. Because of the very small number of exposed
patients with events (n < 10), the hd-PS algorithm did
not perform consistently in the SSRI Study; in all other
cases, hd-PS appeared to perform as well as or better than
did adjustment by standard investigator-selected variables,

Table 2. Application of the hd-PS Algorithm in 4 North American Studies

Confounding
Adjustment Method

Coxib Study
(1999–2002)

Statin Death Study
(1995–2002)

Statin MI/Death Study
(1995–2002)

SSRI Study
(1997–2005)

OR 95% CI OR 95% CI OR 95% CI OR 95% CI

Unadjusted 1.09 0.91, 1.30 0.56 0.51, 0.62 0.77 0.70, 0.85 0.55 0.26, 1.16

Basic covariatesa 0.96 0.80, 1.16 0.76 0.69, 0.85 1.02 0.91, 1.13 0.60 0.28, 1.30

Propensity score with basic and
extendedc covariates

0.94 0.78, 1.13 0.78 0.69, 0.88 1.03 0.91, 1.16 —b

hd-PS with basic, extended, and
empiricald covariates

0.87 0.72, 1.05 0.84 0.74, 0.97 1.04 0.91, 1.20 —b

hd-PS with basic and
empirical covariates

0.87 0.72, 1.05 0.85 0.74, 0.97 0.93 0.81, 1.06 0.71 0.32, 1.55

Abbreviations: CI, confidence interval; Coxib, cyclooxygenase-2 inhibitor; hd-PS, high-dimensional propensity score; MI, myocardial infarction;

OR, odds ratio; SSRI, selective serotonin reuptake inhibitor.
a Basic variables included gender, race, and categories of age, number of generic drugs, and number of office visits.
b —, propensity score did not converge.
c Extended variables included those covariates adjusted for in published studies of the example exposure and outcome.
d Empirical variables were 500 variables identified by the hd-PS algorithm.
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and it did so across a range of study sizes and event
frequencies.

We chose to test the zero-cell correction and exposure-
only selection techniques because the hd-PS algorithm eval-
uates and ranks variables by their potential for confounding
by using 2 3 2 tables. The potential is driven by 2 factors:
1) the ratio of the prevalence of the confounder in the ex-
posed to that of the unexposed and 2) the covariate-outcome
risk ratio. If either of these values is 0 or undefined, then the
confounder cannot be considered for inclusion. In studies
with few events, it is likely that there will be a large number
of confounder-event association 2 3 2 tables with 0’s in
the a or c cells and thus undefined confounder-event risk
ratios. We sought to remedy this problem by adding 0.1 to
each of the 4 cells; while doing so will cause some shrinkage
of the confounder-event risk ratio toward the null, it will
also allow many confounders to remain under consideration
for inclusion in the propensity score rather than be passed
over (37). The zero correction aids computation but does not

add information, so with small numbers in the 2 3 2 table, it
remains possible that confounder-event risk ratios are high
or low solely due to chance and, thus, that confounders are
inappropriately selected or omitted.

We observed that the original hd-PS algorithm with no
correction performed optimally when there were 50 or more
exposed patients with an event. In cases when there were
25–49 exposed events, adding the zero correction in certain
cases aided the selection of variables for the hd-PS and
consequently seemed to improve confounding adjustment,
but using the exposure-only selection technique in these
situations provided more reliable results across all exam-
ples. The SSRI Study, which had only 7 exposed events
overall, did not have sufficient information for hd-PS adjust-
ment to function optimally in the samples. The full cohort
estimate may also be underadjusted.

A second issue with few events is that small sample bias
may result in overestimation (38). Including indicator terms
for each decile of propensity scores yields 9 variables in the

Table 3. Application of the hd-PS Algorithm in 4 North American Studies and in 100 RandomSamples of Each Study at 4 Sampling Frequenciesa

Coxib Study
(1999–2002)

Statin Death Study
(1995–2002)

Statin MI/Death Study
(1995–2002)

SSRI Study
(1997–2005)

Full cohort

Unadjusted OR 1.09 0.56 0.77 0.55

OR adjusted by
basic covariatesb

0.97 0.76 1.01 0.60

hd-PS-adjusted OR 0.878 0.825 0.915 0.710

5% sample

Mean hd-PS-adjusted ORc 0.888 0.789 0.934 0.400

Mean variable coverage percentage 52.87 44.34 46.02 13.33

Mean OR ratiod 1.015 0.950 1.016 0.000

10% sample

Mean hd-PS-adjusted OR 0.908 0.820 0.963 0.949

Mean variable coverage percentage 52.34 52.55 52.92 15.79

Mean OR ratio 1.032 0.988 1.039 1.336

15% sample

Mean hd-PS-adjusted OR 0.872 0.829 0.944 0.592

Mean variable coverage percentage 56.09 59.43 59.93 24.57

Mean OR ratio 0.997 0.997 1.024 0.834

20% sample

Mean hd-PS-adjusted OR 0.895 0.848 0.964 0.430

Mean variable coverage percentage 59.01 64.03 63.94 25.83

Mean OR ratio 1.026 1.017 1.053 0.605

50% sample

Mean hd-PS-adjusted OR 0.870 0.814 0.920 0.735

Mean variable coverage percentage 72.32 79.74 78.96 65.98

Mean OR ratio 0.997 0.979 1.000 1.035

Abbreviations: Coxib, cyclooxygenase-2 inhibitor; hd-PS, high-dimensional propensity score; MI, myocardial infarction; OR, odds ratio; SSRI,

selective serotonin reuptake inhibitor.
a In all cases, the table displays results for k ¼ 500 empirical variables.
b Basic variables included gender, race, and categories of age, number of generic drugs, and number of office visits.
c Geometric mean of the odds ratio observed in 100 samples at this sampling frequency.
d Ratio of the geometric mean of the odds ratios observed in the 100 samples at a given level of k versus the odds ratio observed in the full

cohort.
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outcome model, which by usual calculations would call for
90 or more exposed patients with an event (34). We attemp-
ted to address this issue in a sensitivity analysis in which we
used continuous propensity scores rather than decile indica-
tors in the outcome model. This approach makes strong
assumptions about the functional relation between propen-
sity score and outcome, but in line with findings that the
assumptions are likely to be more of a theoretical concern
than a practical one, (39, 40) we observed results closer to
the referent value in the smallest sizes of the non-SSRI
studies. Overall, however, the decile-based exposure-only
selection still offered equal or better performance in these

small studies. The flexible functional form of the 9 indica-
tors leads us to favor a decile-based approach where
possible.

We also sought to find an optimal number of empirically
selected covariates to include in the propensity score model.
We observed that at k � 300, we had achieved the majority
of the confounding control that the algorithm had to offer,
particularly in the larger studies. In these larger studies, addi-
tion of more empirically selected covariates had no appre-
ciable effect on estimation. One concern about using large
values of k—overfitting of propensity score models—is not
warranted, as the propensity score is meant to be descriptive
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Figure 1. High-dimensional propensity score (hd-PS)-adjusted odds ratios with increasing sample size in 4 North American cohort studies
between 1995 and 2005. The sampling frequencies are presented across the columns of charts, with the 4 studies in the rows. Point 1 indicates
the crude odds ratio, and point 2 indicates the odds ratio adjusted by basic covariates. Point 3 shows the odds ratio adjusted for all investigator-
selected covariates. The thick line indicates the odds ratio adjusted by the basic covariates plus deciles of hd-PS estimated by using k ¼ 0 to
k ¼ 500 empirically selected covariates. The thin solid line shows the odds ratios from the sensitivity analysis in which a zero-cell correction
was used. The thin dashed line shows the resulting odds ratios when only the covariate-exposure association is considered. The dotted line shows
the referent odds ratio obtained from the full cohort. The odds ratios reported for sample sizes of <100% are geometric means of observed odds
ratios over the runs at the indicated sampling frequency. Exp., exposure; ‘‘Coxib’’, cyclooxygenase-2 inhibitor (Study); MI, myocardial infarction;
SSRI, selective serotonin reuptake inhibitor (Study).
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of the data at hand but not to be generalizable to other data
sets (41). Another concern—including instruments in the
propensity score that may amplify the effect of unmeasured
confounders (‘‘Z-bias’’) (42, 43)—was allayed by evaluat-
ing the output produced by the algorithm that alerts to vari-
ables that have a strong association with the exposure but
a very weak association with the outcome. On the basis of
this output, we removed several potential instruments before
beginning the analyses described in this paper. If any in-
struments remained, their potentially harmful effect was
likely to have been outweighed by the beneficial effects of
improved confounding control.

A third concern—that the selected variables may have
been intermediates or colliders—was mitigated in part by
our choice of an incident-user design (29). This design im-
poses the constraint that all observed exposures are the first
observed exposures after at least 1 year of nonuse and, thus,
that all covariates measured at or before baseline have oc-
curred prior to any exposure. An incident-user design or its
equivalent should be considered in any study utilizing hd-
PS. However, it is possible that colliders remained. Condi-
tioning on a collider associated with 2 or more unmeasured
confounders, but not itself a confounder for the exposure/
disease association under study, could lead to ‘‘M-bias’’
(44). Although preliminary research shows that the resulting
bias may be small (45), removing all colliders is not possible.
In either an automated or investigator-driven approach, it is
virtually impossible to distinguish colliders from con-
founders: There is no test to distinguish the 2 cases, and in
a complex study, a variable that is a collider on one pathway
may well be a confounder on another. In our study, we
opted to take a pragmatic approach and acknowledge but
not act upon this potential bias. We feel that hd-PS adjust-
ment can be an important source of bias reduction, with
the vast majority of selected covariates serving to improve
validity.

The goal of our study was to describe the functionality of
hd-PS in 4 real-world pharmacoepidemiology studies with
varying cohort sizes. The empirical nature of the resampling
experiment is a strength and limitation; although it uses real-
world settings to explore the reliability of hd-PS in small
samples, a fully specified simulation could have explored
more extreme settings than those that we observed and
would have provided true odds ratios. Any such simulation
would require the multilevel interdependency of covariates
present in data collected from health-care settings. Further,
when evaluating the overall performance of the hd-PS, we
had to rely on subject matter expertise to judge whether the
hd-PS-adjusted point estimates were closer to the true value
of the association than was the conventionally adjusted
point estimate. We believe that using the odds ratios ob-
served in the full cohort as referent values provided reason-
able evaluations of the variable identification and
prioritization process at smaller sample sizes.

This study furthered our understanding of how the hd-PS
algorithm functions in real-world study situations, and it
strengthened the evidence that hd-PS is a valuable addition
to the epidemiology toolbox. With the results of this evalu-
ation, we feel confident in recommending hd-PS for many
study situations. The approach that considered just the co-

variate-exposure association and, to a lesser extent, the zero-
cell correction was beneficial in cases of small study sizes.
Both are now options in version 2 of the hd-PS algorithm.
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APPENDIX

Extended Covariates

The extended covariates for the Coxib Study were as
follows:

� History of hospitalization, nursing home residence,
gastrointestinal bleeding, ulcer, coronary procedure,
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a coronary condition, heart failure, hypertension, osteoar-
thritis, rheumatoid arthritis

� Prior use of corticosteroids, proton pump inhibitors or H2

receptor antagonists, warfarin
� Charlson score, a measure of disease state and health

services usage

The extended covariates for the Statin and Statin/Death
studies were as follows:

� History of hip fracture, cardiovascular hospitalization, elec-
trocardiogram, heart failure, lipid tests ordered, MI, nursing
home residence, hospitalization, preventive care, osteopo-
rosis, Parkinson’s disease, renal disease, angina, diabetes,
hypertension, peripheral vascular disease, stroke or tran-
sient ischemic attack, Alzheimer’s disease, hyperlipidemia,
chronic obstructive pulmonary disease, cancer, coronary
artery bypass graft, or percutaneous coronary intervention

� Prior use of hormone replacement therapy, loop diuretics,
nonsteroidal antiinflammatory drugs

� Charlson score, a measure of disease state and health
services usage

The extended covariates for the SSRI Study included the
following:

� History of attention-deficit/hyperactivity disorder
(ADHD), atherosclerotic disease, anxiety, mania, ar-
rhythmia, congenital heart disease, chronic lung disease,
cardiomyopathy, poisoning, nonpoisoning injury, other
injury, diabetes, dyslipedemia, glaucoma, hypertension,
hypothyroidism, osteoarthritis, malignancy, pain requir-
ing high-potency opiate, pain requiring mid-potency
opiate, pneumonia, seizure disorder, urinary inconti-
nence, psychotic disorder, personality disorder delirium,
substance abuse, psychiatric hospitalization, other
hospitalization, suicide attempt

� Number of psychiatric visits with attention-deficit/
hyperactivity disorder diagnosis, psychiatric visits with
suicide diagnosis, psychiatric drug classes taken

� Prior use of stimulants
� Charlson score, a measure of disease state and health

services usage
� Socioeconomic status

Covariate Selection in Analyses of Treatment Effects 1413

Am J Epidemiol. 2011;173(12):1404–1413

 at M
cG

ill U
niversity L

ibraries on June 24, 2014
http://aje.oxfordjournals.org/

D
ow

nloaded from
 

http://aje.oxfordjournals.org/

