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Despite the growing popularity of propensity score (PS) methods in epidemiology, relatively little has been
written in the epidemiologic literature about the problem of variable selection for PS models. The authors present
the results of two simulation studies designed to help epidemiologists gain insight into the variable selection
problem in a PS analysis. The simulation studies illustrate how the choice of variables that are included in a PS
model can affect the bias, variance, and mean squared error of an estimated exposure effect. The results suggest
that variables that are unrelated to the exposure but related to the outcome should always be included in a PS
model. The inclusion of these variables will decrease the variance of an estimated exposure effect without in-
creasing bias. In contrast, including variables that are related to the exposure but not to the outcome will increase
the variance of the estimated exposure effect without decreasing bias. In very small studies, the inclusion of
variables that are strongly related to the exposure but only weakly related to the outcome can be detrimental to
an estimate in a mean squared error sense. The addition of these variables removes only a small amount of bias
but can increase the variance of the estimated exposure effect. These simulation studies and other analytical
results suggest that standard model-building tools designed to create good predictive models of the exposure will

not always lead to optimal PS models, particularly in small studies.

confounding factors (epidemiology); effect modifiers (epidemiology); models, statistical; propensity score;
regression analysis; simulation; subset selection; variable selection

Abbreviations: MSE, mean squared error; PS, propensity score.

Propensity score (PS) methods, as formalized by Rosen-
baum and Rubin (1), are becoming standard techniques for
controlling confounding in nonexperimental studies in med-
icine and epidemiology. Unlike conventional statistical ap-
proaches that depend on a model of the outcome under
study, PS methods rely on a model of the exposure or treat-
ment (termed “‘the PS model”’). A central issue facing re-
searchers using PS methods is how to select the variables to
be included in the PS model. Ideally, specification of the

model will be guided by knowledge of the subject matter—
for example, a detailed understanding of how a particular
treatment is assigned to patients. Frequently, however, the
researcher does not have the benefit of such knowledge and
instead is confronted with a large collection of pretreatment
covariates and many derived functions of these covariates
(e.g., interactions) and must decide which of these terms
to enter into a regression model of the exposure. The bias
and variance of the estimated exposure effect can depend
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strongly on which of these candidate variables are included
in the PS model.

Despite the growing popularity of PS methods, relatively
little has been written about the variable selection problem
for PS models. In the context of multivariate normal con-
founders, Rubin and Thomas (2) derived approximations for
the reduction in the bias and variance of an estimated expo-
sure effect from PS-matched analysis. They suggest includ-
ing in a PS model all variables thought to be related to the
outcome, whether or not they are related to exposure (2). In
a later paper, Rubin (3) suggests that including variables that
are strongly related to exposure but unrelated to the outcome
can decrease the efficiency of an estimated exposure effect;
but he argues that if such a variable had even a weak effect
on the outcome, the bias resulting from its exclusion would
dominate any loss of efficiency for a reasonable-sized study.
Some of these guidelines are repeated by Perkins et al. (4).
Robins et al. (5) derived analytical results showing that the
asymptotic variance of an estimator based on an exposure
model is not increased and is often decreased as the number
of parameters in the exposure model is increased. These
results suggest that the size of a PS model should increase
with the study size. Hirano and Imbens (6) proposed a vari-
able selection strategy for use with a multivariable outcome
model employing PS weighting.

In practice, variables are often selected in data-driven
ways—for example, by using stepwise variable selection al-
gorithms to develop good predictive models of the exposure
(7). Furthermore, in many PS analyses, investigators report
the c statistic (the area under the receiver operating charac-
teristic curve) for the final PS model as a means of assessing
the model’s adequacy (7, 8). Implicit in this practice is the
assumption that PS models that are better predictors or dis-
criminators of the exposure status result in superior estima-
tors of exposure effect. According to this criterion, any
variable that increases the c statistic or predictive ability of
the PS model should be selected for inclusion in the model.
Despite the widespread use of such variable selection strat-
egies, there has been little discussion of their appropriate-
ness. In a recent editorial, Rubin (9) expressed doubt over the
usefulness of such diagnostics in a PS analysis.

We conducted the present work to illuminate this issue
and to help researchers gain some practical insight into the
variable selection problem in a PS analysis. We present the
results of two Monte Carlo simulation experiments designed
to evaluate how different specifications of a PS model affect
the bias, variance, and resulting mean squared error (MSE)
of an estimated exposure effect under a variety of assump-
tions about the data-generating process.

MATERIALS AND METHODS
Brief overview of PS methods

In many nonexperimental cohort studies in medicine and
epidemiology, the relation between an exposure A and an
outcome Y may be confounded by a set of measured baseline
variables X = (X;, X,, .. ., X,,). As potential confounders, the
elements of X can be both predictors of the exposure and
independent risk factors for the outcome. As an illustration,

consider an observational cohort study in which the expo-
sure of interest is the use of a particular cholesterol-lowering
drug at the start of the study and the outcome is having
a myocardial infarction during the follow-up period. The
potential confounders that are measured at the start of the
study include age, gender, lipid levels, comorbid conditions,
previous drug exposures, and diet and exercise habits. For
such studies, statistical methods based on the PS can be used
to estimate exposure effects.

The PS is the conditional probability that a subject re-
ceives a treatment or exposure under study given all mea-
sured confounders, that is, Pr[A = 1|X]. The PS has been
termed a balancing score, meaning that among subjects with
the same propensity to be exposed, treatment is condition-
ally independent of the covariates (1). This balancing prop-
erty suggests that estimates of the exposure effect that are
not confounded by any of the measured covariates can be
obtained by estimating the effect of exposure within groups
of people with the same PS. Within such a group, any dif-
ference in outcome between the exposed and unexposed
subjects is not attributable to the measured confounders. If
treatment assignment is strongly ignorable and other spe-
cific assumptions hold, estimates derived from a PS analysis
can be interpreted causally (1).

In most nonexperimental research, the true PS will not be
known and therefore will need to be estimated, typically
according to an assumed model. The bias and variance of
the estimated exposure effect can depend strongly on how the
model of Pr[A = 1|X] is specified. The model specification
problem includes selecting variables from X to be included
in the model and deciding how the variables are to be trans-
formed, categorized, and interacted with one another.

Given an estimated PS, exposure effects are usually esti-
mated by either 1) matching exposed subjects with unex-
posed subjects on the PS to create two comparable groups,
2) including the PS and the exposure in a multivariable model
of the outcome under study, or 3) conducting an analysis
stratified across categories of the PS. It is also possible to
use the PS to generate inverse-probability-of-exposure
weights that are then used in a weighted regression (10).
The weighting approach generalizes naturally to longitu-
dinal data with time-varying treatments and confounders.
More detailed discussions of PS methods can be found else-
where (1, 11, 12).

Monte Carlo simulation study

To explore the variable selection problem in PS models,
we performed two Monte Carlo simulation experiments.
The first examined how the inclusion of three different types
of covariates in a PS model affected the estimated exposure
effect (see figure 1): 1) a variable related to both outcome
and exposure—a true confounder (X;); 2) a variable related
to the outcome but not the exposure (X5); and 3) a variable
related to the exposure but not the outcome (X3). In the
second experiment, we considered how the addition of a
single confounder to a PS model changes the bias and vari-
ance of an estimated exposure effect under varying assump-
tions about the strength of the confounder-outcome and
confounder-exposure relations.
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FIGURE 1. Causal diagram for simulation experiment 1.

Both simulation experiments employed the same basic
data-generating process. The simulated data consisted of
realizations of a dichotomous exposure, an outcome with
a Poisson distribution, and continuous confounders. The
data were generated in the following order according to
the specified probability models:

1. The covariates X;, X,, and X3 are independent standard
normal random variables with mean 0 and unit variance.
2. The conditional distribution of the dichotomous expo-
sure A given X;, X,, and X3 follows a Bernoulli dis-
tribution with a conditional mean given by the function

Pr[A = 1[X1, X2, X3] = ®(By + B1 X1 + B2 X2 + B3X3),

where O is the standard normal cumulative distribution
function.

3. The conditional distribution of Y given X and A follows
a Poisson distribution with two possible specifications of
the mean. The first specification (used in the first simu-
lation experiment) is given by

E[Y|A, X1, X2, X3] = exp{oig + oy (1 +exp(—3 X X))~
—0.5)+0pXp + 03 X3 +0yA}.

This specification creates a nonlinear (S-shaped) relation
between the confounder X; and the log of the expected
value of the outcome. The second specification (used in
the second simulation experiment) is given by

E[Y|A, X1, X2, X3] = exp{og + a1 X1 + 02X
+o3X3+oyA}.

This model specifies a standard log-linear relation be-
tween the covariates and the outcome.

Within both simulation experiments, the effect of expo-
sure is held constant (oy = 0.5). The simulations differ in
how the covariates are related to the exposure and outcome.

We considered two approaches for using the PS to esti-
mate exposure effects. In the first, the exposure effects were
estimated by adjusting for the PS in a multivariable Poisson
model of the outcome in which the effect of the estimated
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PS was flexibly modeled through a cubic regression spline
with three interior knot points placed at quartiles of the
estimated PS. The model is given by

E[Y|PS, Al =exp{h+ > yB(PS)+yA},
k

where A is the baseline rate, the B)’s are the B-spline basis
functions (13), and vy is the treatment effect. The second
approach that we employed was based on subclassification.
Exposure effects were estimated within strata defined by
quintiles of the PS and then averaged across strata to yield
an estimate of v.

Evaluation of PS model performance

The simulation studies presented in this paper compare
the performance of various specifications of PS models. To
evaluate each PS model, we use the simulation results to
determine the variance, bias, and MSE of the corresponding
estimator of the exposure effect. Because we have used a
log-linear model of the outcome, the parameter estimate ¥
from both estimation approaches is consistent for the pa-
rameter o, from our data-generating distribution at the true
PS (14). Therefore, we can estimate the bias of a given
estimator with the equation

S
Bias= > (3(5) o)

s=1
and estimate its MSE with the equation

S

—— 1 R 2

MSE = ¢ >~ (3(s) — )’
s=1

where Y(s) is the estimated effect of exposure in the sth

simulated data set according to a particular PS model and

S is the total number of simulations.

Simulation experiment 1

For this experiment, exposure was confounded through
X1, X5 predicted treatment but was unrelated to the outcome,
and X, predicted the outcome but was unrelated to treatment
(CX():O.S,O(I :4,0(2: 1,0(320, BOZO, [31:0.5, Bzzo,
3 = 0.75). This scenario is depicted graphically in figure 1.

We simulated 1,000 data sets for both n = 500 and n =
2,500. For each simulated data set, we estimated seven dif-
ferent PS’s corresponding to all possible combinations of
X1, X5, and X3 in a probit regression model. These models
are given by

PS model 1: Pr[A = 1|X] = ®(Bo + B1X1).

PS model 2: Pr[A = 1|X] = ®(Bo + B1Xo).

PS model 3: Pr[A = 1|X] = ®(Bo + B1X3).

PS model 4: Pr|A = 1|X = (D(BO + BIXI + BzXz).

PS model 5: Pr[A = 1|X] = ®(Bo + B1X; + B2X3).

PS model 6: Pr[A = 1|X] = ®(Bo + B1 X2 + B2X3).
A=1|

PS model 7: Pr X] = O(Bp + B1X1 + B2X2 + B3X3).

For each PS model, we report the estimated bias, variance,
and MSE of the corresponding estimator. We also report
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TABLE 1. Simulation experiment 1, with results based on an analysis in which the propensity score is
entered into an outcome model as a parametric spline term*

Variable(s) in propensity score model

X4 Xo X3 X1, Xo X1, X3 Xo, X3 X1, Xo, X3 None
n =500
Bias X 10' —0.03 5.97 7.34 —0.03 —-0.07 7.36 —0.06 5.94
Var x 10° 0.32 0.22 0.46 0.22 0.44 0.36 0.31 0.39
MSE x 10° 0.32 3.79 5.85 0.22 0.44 5.77 0.31 3.92
Average c statistic 0.67 0.52 0.76 0.67 0.82 0.76 0.82
n = 2,500
Bias x 10' 0.00 5.93 7.33 —0.01 —0.04 7.33 —0.03 5.95
Var X 102 0.66 0.53 0.96 0.49 0.89 0.79 0.69 0.80
MSE x 102 0.66 35.65 54.72 0.49 0.89 54.56 0.70 36.16
Average c statistic 0.67 0.51 0.76 0.67 0.81 0.76 0.81

* The table shows the estimated bias, variance (Var), and mean squared error (MSE) of all possible estimators
and the average c statistic for the corresponding propensity score model.

these statistics for the simple estimator corresponding to the
crude log relative rate. To assess the predictive ability of
each PS model, we additionally report the average c statistic
for the model across simulations. The c statistic is computed
by forming all discordant pairs of observations (exposed and
unexposed combinations) and computing the proportion of
these pairs in which the exposed subject had a higher esti-
mated PS than the unexposed subject (15).

We conducted a variety of sensitivity analyses with n =
500. These analyses were carried out by holding all param-
eters at their default values while a single parameter was
altered. The following sensitivity analyses were performed:
The standard deviation of each covariate was both increased
by 50 percent and decreased by 50 percent; the treatment
effect was decreased to oy = 0.25 and increased to oy = 1;
and the baseline prevalence of the exposure was decreased
from approximately 50 percent to approximately 20 percent

(Bo = —D).
Simulation experiment 2

In the second simulation experiment, we examined how
the inclusion of a single true confounder in a PS model
affected the bias and variance of an estimated exposure
effect under varying assumptions about the strength of as-
sociation between the single confounder and both the out-
come and the exposure. For each simulated data set, two
estimators were considered: The first was derived from the
crude log relative rate, and the second was derived from
a PS-adjusted estimate of the effect of A on Y in which the
PS model contained only the confounder X;. In this simu-
lation experiment, the adjustment for the PS used the spline
approach. We denote the crude estimator of the log relative
rate with ¥, and the PS-adjusted estimator with ;.

The parameter o, the strength of association between X
and ¥, took values in the set {0, 0.01, ..., 0.20}, correspond-
ing to relative rates ranging from 1.00 to 1.28. The param-
eter B, the strength of association between X; and A, took
values in the set {0.00, 0.05, ..., 1.25}. For all possible

combinations of these values of ao; and B;, we simulated
1,000 data sets of n = 500 and n = 2,500. In this simulation,
the covariates X, and X3 are not used. For each set of 1,000
data sets, we computed the estimated bias, variance, and
MSE of each of the two estimators.

Computation

All simulations were performed in R, version 1.9.1 (16,
17), running on a Windows XP platform, using software
created by one of the authors (M. A. B.).

RESULTS
Simulation experiment 1

For the simulations controlling for the PS through a spline,
we report the estimated bias, variance, and MSE of all esti-
mators in table 1. We also report the average c statistic for
each candidate PS model. The sole confounder was the co-
variate X; therefore, any estimator that did not contain X in
the PS model was biased. For both study sizes, the unbiased
estimator with the smallest variance was the one that con-
tained the confounder X; and the covariate related to the
outcome only, X,. This estimator had approximately 30 per-
cent (n = 500) and 25 percent (n = 2,500) less variance than
the estimator containing just the confounder X;. Adding X3,
the covariate related only to exposure, increased the vari-
ance of the estimated effect for both study sizes. The esti-
mator with all covariates in the PS model had a variance that
was approximately 40 percent greater (for both study sizes)
than the estimator with just the covariates X; and X,. The
c statistic of the PS model with X; and X, was smaller (0.67)
than the c statistic of the less efficient PS model with all
covariates (~0.8). For both study sizes, the PS models with
the highest average c statistic contained all variables related
to the exposure.

Table 2 shows the results obtained when this simulation
experiment was repeated using subclassification instead of
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TABLE 2. Simulation experiment 1, with results based on an analysis using
subclassification in which strata are defined by quintiles of the estimated propensity

score*
Variable(s) in propensity score model
X X5 X3 X1, Xo X1, X3 Xo, X3 X1, Xo, X3 None
n =500
Bias X 10' 0.29 6.07 7.96 0.24 0.24 7.93 0.24 5.94
Var X 10! 0.22 0.14 0.62 0.16 0.71 0.43 0.69 0.39
MSE x 10" 0.23 3.82 6.95 0.17 0.71 6.71 0.70 3.92
n = 2,500
Bias X 10’ 0.28 5.96 7.61 0.29 0.55 7.60 0.56 5.95
Var X 102 0.43 0.31 1.02 0.27 1.12 0.87 0.96 0.80
MSE x 10> 0.51 3582 58.90 0.35 1.43 58.63 1.27 36.16

* The table shows the estimated bias, variance (Var), and mean squared error (MSE) of all

possible estimators.

spline adjustment. The results were qualitatively similar, but
there were some notable differences. The effect of adding X3
was more detrimental in a relative MSE sense. In addition,
all unbiased estimators were considerably less variable than
the corresponding estimators based on spline adjustment.
Finally, all estimators admit some bias due to residual con-
founding within strata of the PS.

The results of the sensitivity analysis are presented in
table 3. In all of the sensitivity analyses, the same essential
pattern prevailed: The inclusion of the variable related only
to exposure increased the variance of the estimator without
altering bias; inclusion of the variable related only to the out-
come decreased variance without affecting bias; and failure
to include the confounder yielded a biased estimator. How-
ever, the perturbation of simulation parameters changed ab-
solute and, in some cases, relative numbers.

Simulation experiment 2

In figure 2, we plot the estimated variance of the PS-
adjusted estimator ¥, and the unadjusted estimator ¥, across
values of B; for both n = 500 and n = 2,500. Because the
parameter B; in the probit model is not directly interpret-
able, we transform it into a “‘relative risk’ (relative expo-
sure prevalence). This is done by computing the probability
of treatment at the 75th percentile of X; and dividing it by
the probability of treatment at the 25th percentile of X;—in
other words, the probability of treatment for someone with
a moderately large value of X divided by the probability of
treatment for someone with a moderately small value of X;.
For both sample sizes, increasing the value of B, (i.e., in-
creasing the strength of association between X; and A) in-
creased the variability of the estimated exposure effect ¥,
(the PS-adjusted estimator). The increase in variance did not
depend on the strength of association between X; and Y
(data not presented). The bias of ¥, increased as the associ-
ation between either X; and Yor X; and A increased, unless
there was no association between either X; and A or X;
and Y.

Am J Epidemiol 2006;163:1149-1156

In figure 3, we plot contours of the MSE of ¥, relative to
the MSE of ¥, on a grid of values of a,; and ;. The values of
B, are transformed into relative risks as described previ-
ously. This plot indicates values of o and B; for which
the addition of the confounder X; to a PS model is detri-
mental in an MSE sense; that is, the MSE of ¥, is greater
than the MSE of ¥,,. The region between the contour lines at
0.9 and 1.1 represents a zone for which the addition of X; to
a PS model would have only a moderate effect on the MSE.
The region above and to the left of the contour line at 1.1
indicates the region where the analyst might choose to ex-
clude X, from the PS, as it would increase the MSE of the
estimated exposure effect by more than 10 percent. This
region is characterized by large values of B, (strong associ-
ation between X; and A) and small values of o; (weak asso-
ciation between X; and Y). Here the increase in the variance
of ¥, is not offset by a large enough decrease in bias to
reduce the MSE of 9, relative to ¥,. Similarly, the region
below and to the right of the contour line at 0.9 represents
the region where the analyst would want to add the con-
founder to the PS, as it would decrease the MSE by more
than 10 percent. Here the bias of an estimator excluding X,
overwhelms any resulting increase in variance. For n =
2,500, the same pattern prevailed, but the region for which
Yo vielded a smaller MSE than ¥, was greatly reduced.

In figure 4, we plot the contours of the MSE of ¥, relative
to the MSE of J, from the simulation in which exposure
effects were estimated using subclassification on the esti-
mated PS. This plot is similar to that seen in figure 3; how-
ever, the relative MSE is increased for large values of B;.
This is consistent with the results from simulation experi-
ment 1 and suggests that the variance of a PS estimator-
based subclassification may be slightly more sensitive to
the strength of the confounder-exposure relation.

DISCUSSION

Our first simulation experiment revealed that the model
that best predicted exposure (as measured by the c statistic)
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TABLE 3. Sensitivity analysis of simulation study 1*

Variable(s) in propensity score model
Parameter change

X4 Xo Xs X1, Xo X1, Xa  Xo, Xa X1, Xo, X3 None
Original
Bias X 10' —-0.03 5.97 7.34 -0.03 -0.07 7.36 —0.06 5.94
Var X 10! 0.32 0.22 0.46 0.22 0.44 0.36 0.31 0.39
MSE x 10' 0.32 3.79 5.85 0.22 0.44 5.77 0.31 3.92
Decrease in the variance of X;
Bias X 10' 0.13 294 3.81 0.12 0.13 3.80 0.12 2.99
Var X 10 0.27 0.21 0.47 0.19 0.38 0.38 0.28 0.35
MSE x 10' 0.27 1.07 1.92 0.19 0.38 1.82 0.28 1.24
Increase in the variance of X;
Bias X 10’ 0.06 846 10.1 0.02 0.07 10.04 0.02 8.49
Var X 10 0.38 0.28 0.50 0.27 0.51 0.41 0.38 0.44
MSE x 10' 0.38 744 10.71 0.27 0.51 10.50 0.38 7.64
Decrease in the variance of X5
Bias x 10' 0.02 5.96 7.38 0.02 0.00 7.38 0.01 5.97
Var X 10 0.07 0.13 0.19 0.05 0.12 0.17 0.10 0.16
MSE x 10' 0.07 3.69 5.64 0.05 0.12 5.62 0.10 3.72
Increase in the variance of X,
Bias x 10' 0.23 6.16 7.59 0.19 0.24 7.53 0.18 6.16
Var x 10° 1.20 0.60 1.57 1.00 1.62 1.32 1.32 1.25
MSE x 10' 121 4.39 7.33 1.00 1.62 7.00 1.32 5.04
Decrease in the variance of X3
Bias X 10' 0.08 6.89 7.35 0.03 0.04 7.30 0.02 6.94
Var x 10° 0.34 0.25 0.46 0.23 0.39 0.36 0.28 0.42
MSE x 10' 0.35 5.00 5.86 0.23 0.39 5.70 0.28 5.24
Increase in the variance of X3
Bias x 10' 0.10 5.07 7.53 0.07 0.05 7.49 0.01 5.1
Var X 10 029 0.23 0.55 0.21 0.49 0.46 0.39 0.38
MSE x 10' 0.29 2.80 6.21 0.22 0.49 6.07 0.39 2.98
Decrease in a4, decrease in the
treatment effect
Bias X 10' 0.08 5.98 7.46 0.03 0.11 7.41 0.04 6.02
Var X 10 0.32 0.24 0.47 0.22 0.43 0.37 0.31 0.39
MSE x 10' 0.32 3.82 6.03 0.22 0.43 5.86 0.31 4.01
Increase in oy, increase in the
treatment effect
Bias x 10' —-0.12 5.68 6.92 -0.08 -0.16 6.99 —0.10 5.62
Var X 10! 0.34 0.21 0.52 0.23 0.49 0.39 0.33 0.38
MSE x 10' 0.34 343 5.32 0.23 0.49 5.27 0.34 3.54
Decrease in Bo, decrease in
exposure prevalence
Bias x 10' 0.03 6.02 7.34 0.00 0.01 7.35 0.00 5.99
Var x 10° 0.32 0.27 0.51 0.23 0.46 0.41 0.34 0.43
MSE x 10' 0.32 3.90 5.89 0.23 0.46 5.81 0.34 4.01

* We consider nine different perturbations of the simulation parameters. Results are from 1,000 simulations of
data (n = 500), using a parametric spline to adjust for the estimated propensity score. For each simulation, we report
the estimated bias, variance (Var), and mean squared error (MSE) of the estimators corresponding to all possible
specifications of the propensity score model.
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Variance of estimator

1.0 1.5 2.0 2.5 3.0
Association between X and A (relative risk)

FIGURE 2. Variance of the unadjusted estimator ¥, and the pro-
pensity score-adjusted estimator ¥, as a function of the strength of
association between X; and A for n = 500 and n = 2,500.

did not yield the optimal PS model (in terms of MSE). The
optimal model was the one that included the confounder and
the variable related only to the outcome. This finding is
consistent with the advice of Rubin and Thomas (2) that
one should include in a PS model all variables thought to
be related to the outcome, regardless of whether they are
related to the exposure. It might seem unnecessary to in-
clude in a PS model a covariate that is known to be un-
associated with the exposure. However, for any given
realization of a data set, there will usually be some small,
statistically insignificant association between such a covar-
iate and the exposure. If that covariate is also related to the
outcome, then it is an empirical confounder for that partic-
ular study. Including such a covariate in a PS model removes
the nonsystematic bias due to the chance association be-
tween the covariate and exposure. Across various realiza-
tions of a study (or simulated data sets), the removal of this
nonsystematic bias tends to bring the estimator closer to its
mean, thereby decreasing its variance. This finding is related
to the theoretical finding that it is better to use an estimated
PS than a known PS (5, 18).

The simulation study also revealed that if a variable un-
related to the outcome but related to exposure is added to a
PS model, it will increase the variance of an estimated expo-
sure effect without decreasing bias. Including such a variable
in a PS model adds noise to the estimated PS and causes
an unnecessary increase in the correlation between the esti-
mated PS and the exposure. In the context of an analysis in
which the PS is included as a covariate in an outcome model,
increasing the covariance between the exposure and the
estimated PS increases the variance of the estimated expo-
sure effect. In the context of a stratified or matched PS anal-
ysis, adding noise to the estimated PS may cause subjects to
be randomly misclassified or mismatched with respect to
important confounders.
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FIGURE 3. Contours of the mean squared error (MSE) of the
propensity score (PS)-adjusted estimator relative to the unadjusted
estimator, MSE(74)/MSE(7,). For these simulations, the PS is entered
into an outcome model as a parametric spline term. This plot shows
how the MSE of an estimated exposure effect changes when
a variable (X;) is added to a PS model, according to its association
with exposure (A) and outcome (Y).
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FIGURE 4. Contours of the mean squared error (MSE) of the
propensity score (PS)-adjusted estimator relative to the unadjusted
estimator, MSE(7;)/MSE(},). For these simulations, the exposure
effects are estimated within strata defined by quintiles of the PS. This
plot shows how the MSE of an estimated exposure effect changes
when a variable (X;) is added to a PS model, according to its as-
sociation with exposure (A) and outcome (Y).

¥T02 ‘¥z 3unt uo ssikelq i AisieAiun 199N e /Bio'seuinolpiojxosfe//:dny woly pspeojumod


http://aje.oxfordjournals.org/

1156 Brookhart et al.

The second simulation experiment revealed that if one
seeks to minimize the MSE of an estimate, then in very
small studies there are situations in which it might be ad-
vantageous to exclude true confounders from a PS model.
This occurs when a covariate is only weakly related to the
outcome but very strongly related to the exposure. The in-
crease in variance due to the inclusion of such a covariate
is not offset by a large enough decrease in bias to improve
the MSE of the estimator. However, as the study size in-
creases, the variance of the estimator decreases at a rate pro-
portional to 1/n, yet the bias due to an omitted confounder
remains. Therefore, in moderate-sized studies, one would
not want to exclude any covariate related to exposure from
a PS model unless it was known a priori to be unrelated to
the outcome.

Although the results presented in this paper are consistent
with theoretical results (e.g., see Rubin and Thomas (2)), the
specific numbers are dependent on the specification of the
data-generating process and the choice of parameter val-
ues considered. Through sensitivity analysis, we varied the
parameters that seemed to be the most relevant; however,
the probability distributions and other structural elements of
the study remained unaltered (e.g., using only three covariates,
assuming a constant exposure effect). It is also important to
point out that matching and other PS methods can be used
in conjunction with standard multivariable outcome models
containing additional covariates (19). The variable selection
problem in these situations is more complex, as variables
can appear in the PS model, the outcome model, or both.
The results presented in this paper do not offer insight into
the variable selection problem for such hybrid analytical
methods.

Our findings and the analytical results presented by Rubin
and Thomas (2) and Robins et al. (5) raise questions about the
optimality of standard model-building strategies for the con-
struction of PS models, particularly in the setting of small
studies. Iterative model-building algorithms (e.g., forward
stepwise regression) are designed to create good predictive
models of exposure. Similarly, the c statistic, which is com-
monly used to assess the quality of a PS model, is a measure
of the predictive ability of the model. The goal of a PS model
is to efficiently control confounding, not to predict treatment
or exposure. A variable selection criterion based on predic-
tion of the exposure will miss variables related only to the
outcome and could miss important confounders that have
a weak relation to the exposure but a strong relation to the
outcome. Future work in this area should focus on develop-
ing and evaluating practical strategies or formal methods
(e.g., approaches based on cross-validation (20, 21)) that
researchers can use to help them select variables for inclusion
in a PS model with an aim of decreasing both the bias and
the variance of an estimated exposure effect.
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