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1 Introduction

Metabolic profiling, also known as metabonomics (Nicholson et al., 1999) or metabolomics
(Raamsdonk et al., 2001), is a rapidly developing field in biomedical science that combines the
application of spectroscopic techniques with multivariate statistical analysis in studies of the
molecular composition of biofluids, cells and tissues. The experimental focus is on profiling
metabolites the thousands of low molecular weight molecules which are the building blocks of
the cell. These compounds interact with macromolecules such as proteins and nucleic acids
in the fundamental metabolic processes that keep organisms alive. Thus, the metabolic state
of an organism, as delineated by its metabolic profile, can reveal information on the genetic,
physiological or functional status the system. In addition, in contrast to DNA or RNA,
metabolic profiles also reflect the entirety of internal and external influences on a organism
or tissue, including environment, behaviours, disease, drugs and interactions with parasitic
or symbiotic organisms (Nicholson et al., 2002; Nicholson and Wilson, 2003). This leads to
important applications in the molecular diagnosis and prognosis of disease, drug metabolism
and toxicity, functional genomics and the investigation of fundamental biological processes.
From the statistical point of view, however, metabolic profiles are complex and information
rich, presenting unique challenges to data analysis and modelling.

The term metabolome refers to the total metabolite complement of a cell, tissue or
organism. Whilst there are currently no methods capable of delivering an exhaustive mea-
surement of the metabolome, there are several technologies that can approach this ideal. A
gold standard technique would be one which is a) non-selective, in that it is not biased to-
ward particular chemical classes of compounds, b) quantitative and accurate, thus producing
data which can be meaningfully modelled by statistical procedures, c) sensitive to a wide
range of metabolite concentrations and d) able to resolve the complex mixture into separate
signals from each metabolite. These requirements are satisfied, though not perfectly, by the
techniques of nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS).

∗Order of authors is alphabetical.
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1.1 Spectroscopic Techniques

The two spectroscopic assay technologies, NMR and MS, are highly complementary and
therefore often used in parallel. NMR has the advantage that it is highly non-selective and
quantitative; it also requires little sample preparation, and is non-destructive thus permit-
ting multiple measurements on each sample. MS approaches are much more sensitive and
generally higher resolution than NMR, yet suffer from inaccuracies introduced by differential
ionisation efficiencies. These can be partially alleviated by preceding the MS detection with
a physical separation step using liquid or gas chromatography, leading to LC- or GC-MS
(Wilson et al., 2005). Figure 1 shows examples of NMR and LC-MS spectroscopic metabolic
profiles of urine.

Figure 1 about here

The resulting spectra (or profiles) consist of several thousands of individual measurements
at different resonances or masses. The spectra are complex and require dedicated analysis
procedures. The inherent high-dimensionality immediately precludes many conventional sta-
tistical analysis approaches. In common with other spectroscopic data, the spectral variables
are usually highly collinear, a characteristic that arises for both chemical analytic and bi-
ological reasons. For example, one metabolite may generate more than one spectral signal
(e.g. isotopic patterns in MS) leading to several highly correlated peaks. Alternatively, sig-
nals from different metabolites may show high correlations because they are involved in the
same biological process. While the above properties are typical of data from many so-called
“-omic” techniques such as those from transcriptomics and proteomics, metabolic profiling
poses its own challenges. The most important challenge is the problem of unidentified sig-
nals; while thousands of signals may be detected, typically only a very small fraction will be
identified with a known chemical structure - so such prior chemical information is extremely
helpful for correct interpretation and identification. Another difficulty is the sensitivity and
resolving power of the analytical technique, as well as the complexity of the analysed mix-
ture. A related problem is that the total number of detected analytes is in general unknown
and will vary between different biological conditions. Thus, in metabolic profiling, there is a
great emphasis on methods of exploratory data analysis and visualisation, which allow the
analyst to probe their data for the presence of poorly detected or resolved signals and help
in identifying unknown metabolites.

1.2 Data Preprocessing

Metabolic profiles generally undergo some preprocessing prior to more advanced statisti-
cal modelling, to account for spectral artefacts, and render profiles from different samples
more comparable. The preprocessing is necessary to achieve comparability between replicate
samples, to achieve some form of measurement noise reduction, and to more accurately dis-
tinguish the different chemical constituents by means of peak deconvolution and separation.
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In this chapter, we do not describe these issues in detail, but instead focus statistical feature
extraction and discrimination procedures. However, a brief discussion is given below.

One of the most serious problems affecting NMR profiles is that peak positions can
be affected by the pH or ionic strength of the sample. This phenomenon seriously affects a
minority of metabolites, and means that the spectral intensity at a given NMR chemical shift
(or wavelength) may be due to both changes in molecular concentrations as well as shifts
in resonance positions, making the interpretation of statistical models difficult. While there
exist techniques that account for or correct such shifts automatically (Holmes et al., 1992;
Stoyanova et al., 2004), these are most suited to correction of small spectral regions, and have
not yet been successfully applied to full-width NMR profiles. A similar difficulty occurs in
liquid chromatography (LC) where obtaining highly reproducible separation of metabolites
is difficult and peak alignment algorithms are often used to match LC profiles from different
samples. In mass spectrometry, various processes can lead to the signal from each metabolite
being broken up into multiple peaks. For example, the natural occurrence of multiple isotopes
of various nuclei leads to a characteristic isotopic pattern for each primary ion, while the
formation of adducts (e.g. the addition of metal ions to the primary ion) ensures each
metabolite is characterised by a pattern of different peaks. In MS approaches, differential
ionisation efficiency also complicates interpretation of the data. Finally, regardless of the
technique employed, the profiles will be affected by gross changes in sample concentration
which can obscure important but subtle treatment related changes. To alleviate this, profiles
are often normalised to unit total intensity, so that subsequent values for any given metabolite
relate to its concentration relative to the rest of the mixture, rather than an absolute measure.
In most cases, this does not detract from, and can even improve, the biological interpretation,
though when there are large changes between profiles, interpretation of profiles normalised
in this way is less clear.

Several metabolic profile analysis software packages are available. One popular and effec-
tive is the AMDIS software (Davies, 1998; Stein, 1999), which extracts individual component
spectra from LC or gas chromatography (GC) MS data files and then uses them to identify
compounds by matching the spectra to a reference library of chemical compounds housed
at the National Institute for Standards and Technology (NIST). The analysis proceeds in
four steps (noise analysis, component ”perception” (extraction), spectral deconvolution and
compound identification) in an automatic fashion using a variety of multivariate modelling
techniques and heuristic testing procedures. The entire approach has proved to be very
successful for analyzing data from these platforms.

The aims of data analysis in metabolic profiling will depend on the scientific objectives of
the study. However, the objectives of analysis typically fall into one or more of the following
categories. Firstly, we wish to visualize the relationships between groups of both samples
and spectral variables. For example, this could include clustering individuals, or detecting
significant correlations between variables. In addition, we wish to determine whether there is
a significant difference between groups related to the effect of interest. The latter is a classic
small n, large p inference problem (West, 2002), that is, each individual datum (metabolic
profile) consists of a large vector of inter-related (dependent) observations, yet the number
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of samples in the study is relatively small. Finally, and perhaps most importantly, we are
interested in finding out which metabolites are responsible for these changes. This chapter
introduces some of the current techniques used in the statistical analysis of metabolic profiles.
We give the basic principles and algorithms behind each method and illustrate their use with
example data sets. We will denote with X the n × p matrix of n metabolic profiles, where
p is the dimension of the spectrum (usually p is in the order of thousands). Therefore, each
row of X matrix represents a metabolic profile. We will define the sample covariance matrix
S = X ′X/n, assuming that each column of X is standardised to have zero mean, and take
y to be a n-dimensional vector of responses.

1.3 Example data

Several of the methods described in this chapter are illustrated with the help of data from a
study profiling the metabolic consequences of Hydrazine toxicity (Lindon et al., 2005) (figures
2, 3, 4, 8, 10). Thirty Sprague-Dawley rats were randomly and equally assigned to three
treatment groups (control, low dose and high dose) and hydrazine was administered orally at
doses of 0, 30 and 90 mg/kg respectively. Urine samples were collected at 10 time points over
8 days, including 2 pre-treatment samples. All procedures were carried out in accordance
with relevant national legislation and were subject to appropriate local review. 1H NMR
spectra were measured at 600 MHz and 300K using a robotic flow-injection system (Bruker
Biospin, Karlsruhe, Germany). After phasing and baseline correction, each NMR spectrum
was segmented into M=205 variables by integrating the signal in regions of equal width (0.04
ppm) in the chemical shift ranges δ 0.20-4.50 and δ 5.98-10.0, excluding spectral artefacts in
the region δ 4.50-5.98. All segmented spectra were then normalized to a constant integrated
intensity of 100 units to take account of large variations in overall urine concentration. The
PCA and PLS analyses shown were performed using SIMCA-P+ version 11 (Umetrics AB,
Umea, Sweden). Other analyses were computed using in house software written in the
MATLAB programming environment (version R2006a, The MathWorks, Natick, MA).

2 Principal Components Analysis and Regression

2.1 Principal Components Analysis (PCA)

Principal component analysis (PCA) is a well known method of dimension reduction (Massy,
1965; Jolliffe, 1986) which seeks linear combinations of the columns of X with maximal
variance, or equivalently high information. It is routinely applied in chemometrics with
the goal of providing the most compact representation of the data. The original p variables
X = [x1 . . . xp] are transformed in a new predictor set T = [t1 . . . tk], with k ≤ min(n−1, p).
The new variables tj, called scores, are a weighted average of the original X variables. The
principal components are the eigen-vectors, uj from the eigen-decomposition of X ′X (and
of the sample covariance matrix S, up to a constant). PCA sequentially maximizes the

4



variance of a linear combination of the original predictor variables

uj = arg max
‖u‖=1

Var(Xu)

subject to the constraint that u′iSuj = 0 for all 1 ≤ i < j. This ensures that tj = Xuj is
uncorrelated with all the previous linear combinations ti = Xui. The principal components
are ordered in terms of the amount of variation of the original data they account for. The
first principal component direction has the property that t1 = Xu1 has the largest sample
variance amongst all normalised linear combinations of the columns of X. Each subsequent
component gives combinations with as large as possible variance which are uncorrelated with
those which have been taken earlier.

There are various standard approaches to find the principal components, for example
taking the Singular Value decomposition of X. In chemometrics it is common to estimate
the principal components using the NIPALS (Nonlinear Iterative Partial Least Squares)
algorithm (Wold, 1966). This is because the number of required components is usually much
less than the total possible number (k ¿ p).

NIPALS algorithm for PCA

0. Standardize each xj to have mean zero.
1. Initialize j = 1, Xj = X and tj to any of the column of X.
2. Project Xj on tj to find the corresponding loadings uj: uj = X ′

jtj/‖tj‖.
3. Normalize uj to have unit length: uj = uj/‖uj‖.
4. Project Xj on uj to find the corresponding score vector tj: tj = Xjuj/‖uj‖
5. Check convergence: compare tj used in step 2 and tj calculated in step 4

(check if the difference is larger than a pre-defined threshold, e.g. 10−6).
If they are the same, the iteration has converged and continue to step 6.
Otherwise return to step 2.

6. Remove the estimated PCA principal component from Xj: Xj+1 = Xj − tju
′
j.

7. Let j = j + 1 and repeat steps 1 to 7 until j = k.

If k = min(n − 1, p), then we have found all the principal components. We can now form
the scores matrix T and the loadings matrix U with columns tj and uj, respectively. These
matrices are such that

X = TU ′

where U is an orthogonal matrix and the tj are orthogonal. Note that λj = ‖tj‖2 and uj are
eigenvalues and eigenvectors of X ′X, respectively. The NIPALS algorithm can be modified
to account for missing data (Christoffersson, 1970).

A key issue is the number of principal components are necessary to describe a dataset in
a parsimonious way but without loss of important information. After k runs of the NIPALS
algorithm the X matrix is decomposed as

X = t1u
′
1 + · · ·+ tku

′
k + Xk+1
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We want to choose k such that Xk+1 represents only noise (if k = min(n− 1, p), Xk+1 = 0)
and all the features of X are captured by the tju

′
j, j ≤ k.

The maximum number K of principal components is determined by the number of non-
zero eigenvalues, which coincides with the rank of S and K ≤ min(n − 1, p). However,
usually k is chosen through cross-validation (Stone, 1974; Wold, 1978). The proportion of
the total variance explained by a PCA model with k components, is quantified by the R2

parameter defined as

R2
k = 1−

n∑
i=1

‖x̂i − xi‖2/SS

where xi denotes a row of X, x̂i is the estimated xifrom the PCA model and SS is the total
sum of squares of X, i.e. SS =

∑n
i=1 ‖xi‖2.

R2 varies in the range zero to one, taking its maximum value when k = min(n − 1, p).
The cross-validation (CV) procedure quantifies how robust the model is to perturbation of
the data and thus avoids over-fitting. In each round of CV, a proportion (usually around
10%) of the data is held out Xo, the model computed with the remaining data X−o, and
the predicted values of the held out data points computed using X̂o =

∑k
i=1 tiui. This is

repeated until all data points have been held once. The parameter Q2 is the CV equivalent
of R2 using the predicted values of the data:

Q2 = 1− PRESS/SS

where PRESS =
∑

i∈O ‖x̂i − xi‖2, where O is the set of individuals left out . Q2 is bounded
above by the value of R2 and a high ratio of Q2/R2 indicates a robust model which is little
affected by perturbations. As more components are computed, both R2 and Q2 generally rise
as more of the variance is explained. However, a point will be reached where the structure
represented by the (m + 1)th component is mostly noise. At this point, the predicted data
will deviate from the true data and Q2 will start to decrease, indicating that a k = m is the
correct number of components to use in the model.

Figures 2 and 3 illustrate the use of PCA on the Hydrazine dataset. Figure 2 shows the
scores plot of the first two principal components. The plot shows the characteristic L shaped
trajectory of Hydrozine toxicity; high dose profiles initially resemble controls but over the
time course move to a well separated region of the plot. Figure 3 shows the PCA loadings of
the first two principal components. Spectral bins which have a high variance in the X space
are indicated by points lying far from the origin and can be used to interpret the distribution
of data on the scores plot.

Figures 2 and 3 about here

2.2 Principal Components Regression (PCR)

In most applications we are interested in predicting y from the sets of inputs xj, e.g. we
are interested in studying the relation between blood pressure and metabolic profile of an
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individual. From PCA we derive a representation of the data matrix X as score matrix T .
Principal Component Regression (PCR) uses the score vectors tj as explanatory variables
and regresses y on t1, . . . , tk for some k ≤ min(n− 1, p):

y = α +
k∑

i=1

βiti + ε

where α denotes the intercept, βi are the regression coefficients and ε is a Normal error
term. As the tj are orthogonal, PCR reduces to a sum of univariate regression (Hastie et al.,
2001). Usually only the first principal components are used and the p−k smallest eigenvalue
components are discarded. PCR has major advantages over standard multivariate regression
when X is singular and when n < p as a dimension reduction tool. In the latter case, the
eigenvalues λn = · · · = λp = 0 and so at most n− 1 components can be included.

3 Partial Least Squares and related methods

3.1 Partial Least Squares (PLS)

Partial Least Squares Regression (Wold, 1975) is extensively used in chemometrics as an
alternative to Ordinary Least Square in ill-conditioned problems (e.g. n < p). It is most
often used when the explanatory variables are highly collinear and when they outnumber
the observations.

PCA (and therefore PCR) finds, in some way uncritically, those latent variables (scores)
that describe as much as possible of the variation in X. In PCR, the latent variables are
calculated without consideration of the response and it is possible that useful predictive
information for y is discarded as noise. If there is a lot of variation in X not correlated
with the response then the latent variables found by PCR might not be adequate to describe
y. PLS tries to solve this problem by constructing latent variables that are relevant for
describing y. The goal of PLS is to construct linear combinations of the original variables
that have symultaneously high variance and high correlation with the response (Frank and
Friedman, 1993; Hastie et al., 2001):

uj = arg max
‖u‖=1

Corr2(y,Xu)Var(Xu) (1)

subject to the constraint that u′iSuj = 0 for all 1 ≤ i < j. Therefore the goal of PLS is
to find optimal weights uj to form a small number of latent variables that best predict the
response y.

PLS was introduced as a modification of the NIPALS algorithm for PCA (Wold, 1966)
but it is most often presented as a latent factor regression method and produces a sequence
of models yj. The algorithm to compute the first k latent variables is described below.
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PLS algorithm

0. Standardize each xj to have mean zero and variance 1.
Standardize y to have zero mean.

1. Initialize j = 1,Xj = X and yj = y.
2. Compute the univariate regression coefficient of y on each of the x: wj = X ′

jyj

3. Normalize wj to have unit length: wj = wj/‖wj‖
4. Project Xj on wj to find the corresponding score vector tj: tj = X ′wj

5. Regress y on tj to get the the ordinary least square regression coefficient b̂j: b̂j = t′jy/‖tj‖.
6. Project Xj on tj to find the corresponding loadings uj: uj = X ′

jtj/‖tj‖.
7. Orthogonalize Xj with respect to tj: Xj+1 = Xj − tju

′
j.

8. Let yj+1 = yj − b̂jtj.
9. Let j = j + 1 and repeat steps 2 to 9 until j = k.

Similarly to the NIPALS algorithm for PCA, the number of components k is usually deter-
mined by cross-validation procedures. The emphasis in PLS is not only on regression but
also in uncovering latent structure in X and y. This latent structure is made up of pairs of
latent vectors tj and uj. The latent vectors are determined through the process of estimating
the weights wj for the linear combination of the X variables. The weights wj correspond to
directions in the space of X with highest covariance with y and are such that large variation
in X are accompanied by large variation in y. Steps 2 and 3 of the algorithm show that
the wj are obtained by normalizing the covariance matrix between X and y. In step 4 we
construct the latent variable tj (also called partial least square direction) by reweighting the
xi by the strength of their univariate effect on y (the weights are given by the covariance
between xi and y). In step 5 the response y is regressed on tj to obtain the univariate OLS
estimate and then in step 6 we obtain the latent variables uj by regressing the columns of
X on tj. PLS produces a bilinear representation of the data (Martens and Naes, 1989):

X = t1u
′
1 + · · ·+ tku

′
k + Xk+1

y = b̂1t1 + · · ·+ b̂ktk + yk+1

where the tj are orthogonal, Xk+1 and yk+1 are the residuals. The uj and the b̂j are estimated
by regression and PLS fits a sequence of bilinear models by least squares, thus the name
of partial least squares. In step 7 and 8 the residuals Xj+1 and yj+1 are calculated and in
each iteration only the subspace of X that is orthogonal to the earlier linear combinations
developed in the X−space is used and the y−space is projected on the space orthogonal to
the previous X component. The basic PLS algorithm can be generalised to handle multiple
responses.

The maximum number K of components is ≤ min(n−1, p). The number of components k
should be chosen so that Xk+1 contains no information on yk+1 (i.e. they are uncorrelated)
and similarly to PCA, k is usually chosen through cross-validation. The first few PLS
components are retained as they account for most of the covariance between X and y and
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therefore lead to a more parsimonious representation of the data. We refer to Stone and
Brooks (1990), Frank and Friedman (1993), Breiman and Friedman (1997), Burnham et al.
(1999) and Butler and Denham (2000) for a review of the statistical properties of PLS.

3.2 PLS and Discrimination

In many applications it is common that the response variable y is categorical, representing,
say, class membership, e.g. control/dosed, affected/unaffected individuals etc. PLS Discrim-
inant Analyis (PLS-DA) consists of a classical PLS regression where the response variable
is a categorical one (replaced by the set of dummy variables describing the categories). The
goal of PLS-DA is to sharpen the separation between groups of observations, by hopefully
rotating PCA components such that a maximum separation among classes is obtained, and
to understand which variables carry the class separating information. Figure 4 shows the
application of PLS-DA to a subset of the Hydrazine data. To illustrate class discrimination,
we have restricted the analysis to samples from control and low dose animals obtained at
8 to 72 hours post dose. The separation between the groups is evident on the first latent
variable and metabolites responsible for such separation can be found by examining the
corresponding loadings.

Figure 4 about here

3.3 Orthogonal Projections to Latent Structure

The Orthogonal Projections to Latent Structure (O-PLS) is a modification of the original
PLS algorithm and was proposed with the goal of removing variation from X that is not
correlated with y (Trygg and Wold, 2002). Spectra often contain systematic variation that
is unrelated to the response y. This systematic variation may be due to experimental effects
(such as a temperature drift in the spectrometer) or systematic biological variation (e.g.
differences in diets between human subjects which are not easily controlled) and may often
constitute the major part of the variation of the sample spectra. It is important to deal
with the variation in X uncorrelated with y as it affects the construction and interpretation
of statistical models, may lead to unreliable predictions for new samples and also affect the
robustness of the model over time. In the analytical chemistry literature differentiation and
signal correction are commonly used to remove systematic variation from the sample (see,
for example, Savitsky and Golay (1964), Geladi et al. (1985)).

O-PLS provides a method to remove the variation in X orthogonal to y, therefore im-
proving the interpretation of PLS models and reducing model complexity. It analyzes the
disturbing variation in each regular PLS component. Also O-PLS produces a bilinear repre-
sentation of the data:

X = tu′ + to1u
′
o1 + · · ·+ toku

′
ok + Xk+1

y = b̂t + yk+1
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As in PLS t represents the score vector for X and y, u is the vector of orthonormal loadings,
b̂ is a scalar and Xk+1 and yk+1 are the respective residual matrices for X and y. toj are
the scores orthogonal to y and uoj are the corresponding loadings. The O-PLS method
requires only a small modification of the PLS algorithm and therefore can be embedded as
an integrated part of the regular PLS modelling. It provides similar predictions to PLS
(Cloarec et al., 2005), but leads to more parsimonious models. The number of correlated O-
PLS components is reduced to one in the case of a single response, thus making interpretation
of the model easier. Moreover, the structured noise is modelled separately from the variation
common to X and y and this gives the opportunity to analyse the uncorrelated variation
and possibly explain its presence. An extension of the O-PLS algorithm, known as O2-PLS
has been proposed by Trygg and Wold (2003). O2-PLS improves on the original algorithm
when dealing with multiple responses by allowing, for example, the calculation of orthogonal
latent vectors in the Y space.

Example We illustrate the use of O-PLS method with data from a study on paracetamol
(acetaminophen) toxicity (Coen et al., 2003). 26 rats, divided into dose (n = 17) and control
(n = 9) groups were exposed to 150 mg/kg and 0 mg/kg paracetamol respectively. Liver
tissue was extracted and 1H NMR spectra acquired to ascertain any metabolic difference
due to paracetamol toxicity. Figure 5 shows the scores plot from an initial PCA model and
shows poor separation between the groups, along with a clear drift over time. This drift was
found to be the result of temperature variations in the spectrometer over the course of the
experiment, introducing variation in the profiles which was unrelated to the toxicity effect.
O-PLS-DA was used to remove the confounding effect of the temperature drift. This is
shown in Figure 6 where variation orthogonal to the class difference has been removed from
the first component and a clear separation between the groups is now observed on the scores
plot. As mentioned above, a benefit of the O-PLS approach is that one may examine the
orthogonal part of the data to ascertain the reasons for the confounding variation. Figure
7 plots the scores on the first orthogonal component and a clear trend with run order is
seen, indicating that the time-ordered drift has been removed. The orthogonal loadings can
also be examined (data not shown) giving an indication of the metabolites which are most
affected by the time drift.

Figures 5, 6 and 7 about here

4 Clustering Procedures

Cluster analysis identifies subgroups or clusters in multivariate data, in such a way that ob-
jects belonging to the same cluster resemble each other, whereas objects in different clusters
are dissimilar. In two or three dimensions, clusters can often be visualized, but in higher
dimensions, we need some kind of analytical assistance.

Data sets for clustering of N observations can have either of the following structures:
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• an N × p data matrix, where rows contain the different observations, and columns
contain the different variables.

• an N × N dissimilarity matrix, whose (i, j)th element is dij, the distance or dis-
similarity between observations i and j that has the properties

– dii = 0

– dij ≥ 0

– dji = dij

• The most typical distance measures for between two continuously measured data points
i and j with measurement vectors xi and xj is the Euclidean distance

dij =

√√√√
p∑

k=1

(xik − xjk)
2 =

√
(xi − xj)

T (xi − xj)

Clustering algorithms fall into two categories:

1. Partitioning Algorithms: A partitioning algorithm describes a method that divides
the data set into k clusters, where the integer k needs to specified. Typically, bf the
algorithm is run for a range of k -values. For each k, the algorithm carries out the
clustering and also yields a quality index which allows selection of the ı̀best̂ı value of
k afterwards.

2. Hierarchical Algorithms:. A hierarchical algorithm yields an entire hierarchy of
clusterings for the given data set. Agglomerative methods start with the situation
where each object in the data set forms its own cluster, and then successively merges
clusters until only one large cluster (the entire data set) remains. Divisive methods
start by considering the whole data set as one cluster, and then splits up clusters until
each object is separated.

4.1 Partitioning Methods

Partitioning methods are based on specifying an initial number of groups, and iteratively
reallocating observations between groups until some equilibrium is attained. Several different
algorithms are available

1. The k-Means algorithm: In the k-means algorithm the observations are classified as
belonging to one of k groups. Group membership is determined by calculating the
centroid for each group (the multidimensional version of the mean) and assigning each
observation to the group with the closest centroid. The k-means algorithm iterates
between calculating the centroids based on the current group memberships, and reas-
signing observations to groups based on the new centroids. Centroids are calculated
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using least-squares, and observations are assigned to the closest centroid based on least-
squares. This assignment is performed in an iterative fashion, either from a starting
allocation or configuration, or from a set of starting centroids. The k-means algo-
rithm is essentially model free (though it assumes the clusters are compact and
spherically symmetric), and is heavily dependent on initial group assignments, the
use of the least-squares penalty.

2. Partitioning around medoids (PAM): The PAM method uses medoids rather
than centroids, that is, medians rather than means in each dimension. This approach
increases robustness relative to the least squares approach given above.

4.2 Hierarchical Clustering

Hierarchical clustering procedures can be carried out in two ways

• Heuristic Criteria The basic hierarchical agglomeration algorithm starts with each
object in a group of its own. At each iteration it merges two groups to form a new
group; the merger chosen is the one that leads to the smallest increase in the sum of
within-group sums of squares. The number of iterations is equal to the number
of objects minus one, and at the end all the objects are together in a single group.
This is known as Ward’s method, the sum of squares method, or the trace method. The
hierarchical agglomeration algorithm can be used with criteria other than the sum of
squares criterion, such as the average, single or complete linkage methods described
below.

• Model-Based Criteria Model-based clustering is based on the assumption that the
data are generated by a mixture of underlying probability distributions. Specifically, it
is assumed that the population of interest consists of k different subpopulations (usually
assumed multivariate normally distributed), and that the density of an observation
from the the subpopulation is specified by some unknown vector of parameters which
are to be determined.

In conventional hierarchical clustering, the method of agglomeration or combining clusters
is determined by the distance between the clusters themselves, and there are several available
choices. For merging two clusters Ci and Cj, with N1 and N2 elements respectively, the
following criteria can be used; (a) average linkage clustering, where the two clusters that
have the smallest average distance between the points in one cluster and the points in the
other are merged, (b) connected (single linkage, nearest-neighbour) clustering, where the
two clusters that have the smallest distance between any point in the first cluster and any
point in the second cluster are merged, (c) compact (complete linkage, furthest-neighbour)
clustering, where the two clusters that have the largest distance between any point in the
first cluster and point in the second cluster are merged. Efficient algorithms to achieve
hierarchical clustering exist, and are readily available in standard statistical packages such
as R.
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4.3 Model-Based Hierarchical Clustering

Another approach to hierarchical clustering is model-based clustering, which is based
on the assumption that the data are generated by a mixture of K underlying probability
distributions. Given data matrix X = (x1, ...,xN)T , let

γ = (γ1, ..., γN)

denote the cluster labels, where γi = k if the ith data point comes from the kth subpopula-
tion. In the classification procedure, a maximum likelihood procedure is used to choose the
parameters in the model.

Commonly, the assumption is made that the data in the different subpopulations follow
multivariate normal distributions, with mean µk and covariance matrix Σk for cluster k If

Σk = σ2Ip Ip = diag (1, ..., 1) , a p× p matrix.

then maximizing the likelihood is the same as minimizing the sum of within-group sums of
squares.

More general covariance models have been implemented in the statistical package R in
the library mclust. We give brief details; other forms of Σk yield clustering methods that
are appropriate in different situations. The key to specifying this is the eigen decomposition
of Σk, given by eigenvalues λ1, ..., λp and eigenvectors v1, ...,vp, as in Principal Components
Analysis. The eigenvectors of Σk, specify the orientation of the kth cluster, the largest
eigenvalue λ1 specifies its variance or size, and the ratios of the other eigenvalues to the largest
one specify its shape. Further, if Σk = σ2

kIp, the criterion corresponds to hyperspherical
clusters of different sizes; this is known as the spherical criterion. Another criterion results
from constraining only the shape to be the same across clusters. This is achieved by fixing
the eigenvalue ratios

αj =
λj

λ1

j = 2, 3, ..., p

across clusters; different choices for the specification yield ellipsoidal, linear or spherical
clusters.

4.4 Choosing The Number Of Clusters

A hierarchical clustering procedure gives the sequence by which the clusters are merged (in
agglomerative clustering) or split (in divisive clustering) according the model or distance
measure used, but does not give an indication for the number of clusters that are present in
the data (under the model specification). This is obviously an important consideration. One
advantage of the model-based approach to clustering is that it allows the use of statistical
model assessment procedures to assist in the choice of the number of clusters. A common
method is to use approximate Bayes factors to compare models with different numbers of
clusters. This method gives a systematic means of selecting the parameterization of the
model, the clustering method, and also the number of clusters. The Bayes factor is the
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posterior odds for one model against the other assuming neither is favored a priori. A
common approximation to the Bayes factor is the the Bayes Information Criterion, which
for model M is given by

BICM = −2 log LM + const ≈ −2 log LM(θ̂) + dM log N

where LM is the Bayesian marginal likelihood, LM(θ̂) is the maximized log likelihood of the
data for the model M , N is the number of data points, and dM isthe number of parameters
estimated in the model. The number of clusters is not considered a parameter for the
purposes of computing the BIC. The first term is a measure of fidelity to the data, the
second is a penalty for the number of parameters in the model. The more negative the value
of the BIC, the stronger the evidence for the model.

4.5 Displaying And Interpreting Clustering Results

The principal display plot for a clustering analysis is the dendrogram ,which plots all of
the individual data linked at successive levels by means of a binary “tree”. Such a plot
is displayed in Figure 8. The distance up the tree, or height, represents overall similarity
between the samples, can be useful in determining the number of clusters that are present
in the data.

Figure 8 displays the hierarchical clustering results for a subset of the Hydrazine dataset
(control and low dose 8 to 72 hours). The control samples are shown in black while the
dosed samples are shown in red. There are two main branches corresponding to control-like
samples and dosed samples. The two groups of subjects are almost perfectly delineated by
the clustering procedure if a similarity cut is made at similarity level 0.6 units.

Figure 8 about here

Hierarchical clustering has often been used to investigate metabolic profiling data. Some
studies have investigated relationships between the metabolic profiles themselves (Beckonert
et al., 2003) while others have applied the method to elucidate dependencies between metabo-
lite concentrations (by clustering the transposed data matrix X ′ (Dumas et al., 2002)). In
both cases, dendrograms generated intuitive visualisations of the hierarchy, allowing effects
such as outliers, misclassifications and chemical structure correlations to be observed. Clus-
tering approaches do not, of themselves, offer diagnostic information on the reasons for
classification of any given object. This can be important if one wishes to know, for example,
the metabolites which are critical to determining cluster membership. Mean cluster profiles,
and inter-cluster differences can be inspected, though information can still be lacking on the
extent of cluster overlap and the overall relationship between clusters. Finally, note that
validation of the results of a clustering exercise is recommended. This can take the form of
data peturbation and reclustering, to ensure that the removal of a minority of data points
is not pivotal to the clustering inferences or the number of clusters selected.
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5 Neural Networks, Kernel Methods and Related Ap-

proaches

An Artificial Neural Network (ANN) is a multi-layered statistical model that represents
the variation in a potentially highly complex response or output variable to a collection of
input variables via varying numbers of unobserved or latent variables linked through simple
mathematical functions and a series of probabilistic dependence assumptions. ANNs are
a member of a broad class of supervised learning algorithms that attempt to approximate
ground truth by mathematical models deduced from observation of cases essentially via
regression arguments. These models have been perceived as mechanistic approximations
to actual biological neural networks, although this interpretation is neither necessary nor
uniformly helpful. We summarize the nature of such models below; see, for example, (Ripley,
1996, Chapter 5) for a comprehensive description of statistical aspects.

5.1 Mathematical Formulation

The simplest mathematical formulation of an ANN involves three levels of interlinked vari-
ables;

• The outputs, Y (a q × 1 vector), interpreted as a single/collection of continuous or
categorical random variable(s).

• The inputs, X (p × 1), interpreted as a collection of random variables believed to
influence the variation in the response across an experimental sample of Y s.

• The hidden variables, Z (d × 1), interpreted as a collection of unobserved random
variables that form the hidden link between X and Y s.

This structure can be generalized to incorporate multiple hidden layers, but we restrict
attention to the single hidden layer case.

In a classical biological conception of the model, the hidden variables Z have some
physical interpretation as nodes in a neuronal network in the brain, but this interpretation
is not necessary. Mathematically, perhaps the most useful interpretation of the hidden layer
is that as a projection of the X onto a lower dimensional space (p > d) of features that
facilitates modelling of the variation in Y . These features may or may not have a physical
interpretation. Diagrammatically, such a network (with q = 2, p = 6 and d = 3 is represented
in Figure 9.

Figure 9 about here

The arrows connecting nodes in Figure 9 represent functional links encompassed through
mathematical functions. At the first stage, we represent the components of Z as weighted
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sums of functions of the input variables, typically

zj = Gj

(
αj +

p∑

k=1

wjkgjk(xk)

)
j = 1, . . . , d (2)

where αj, j = 1, . . . , d are unknown constants, wjk, k = 1, . . . , p, j = 1, . . . , d are weights
satisfying

0 ≤ wjk ≤ 1

p∑

k=1

wjk = 1

and Gj, j = 1, . . . , d and gjk, k = 1, . . . , p, j = 1, . . . , d are known link functions, the latter
often chosen to be identity functions for convenience. At the second stage we have a similar
structure modelling the dependence of Y on Z

yl = Hl

(
βl +

d∑
j=1

ωljzj

)
l = 1, . . . , p (3)

for parameters βl, l = 1, . . . , p and weights ωlj, j = 1, . . . , d, l = 1, . . . , p.
In summary, therefore, we have parameters α, β, wj, j = 1, . . . , d and ωl, l = 1, . . . , p

to estimate from the data. This is achieved by optimization of some objective function
characterizing discrepancy of fit, that is, for observed cases y1, . . . , yn, we choose parameters
θ̂ as

θ̂ = arg min
θ

n∑
i=1

D(yi, ŷi) (4)

where D measures the discrepancy between observation yi and fitted value ŷi given by using
parameters θ in equations (2) and (3). D is chosen to represent the continuous or categorical
nature of the response variables, and the minimization in equation (4) is achieved using
numerical methods.

As described above, ANNs are flexible non-linear regression models constructed from
simple mathematical functions that are learned from the observation of cases. As such, they
are ideal models for classification. However, their flexibility means that model parameters,
such as those determining the architecture (number of input, hidden and output nodes etc.),
are not predetermined and must be chosen based on the skill and experience of the user.
In addition, while good classification performance for metabolic profiles has been obtained
(El-Deredy, 1997), interpretation of the rules encoded by an ANN is not straightforward.
This has limited their application in the metabolic profiling arena in recent years, since
model interpretation is of prime importance in applications such as biomarker screening and
chemical structure elucidation. ANNs have found metabolic profiling applications in diverse
areas such as classification of tumours (Howells et al., 1992) pre-clinical toxicity prediction
(Anthony et al., 1995), and determination of herbicide mode of action in plants (Ott et al.,
2003). In all cases, the network weights could not be interpreted directly and other methods
had to be used to determine the biochemical reasons for classification.
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5.2 Kernel Density Estimates, PNNs and CLOUDS

Kernel density estimators (KDEs) are a well known class of probability density estimators
which have been extensively applied in many different areas of science (Parzen, 1962; Duda
et al., 2000). In classification problems, KDEs are usually applied to estimation of the class
density (the conditional probability of observing an object, given that it is a member of the
class). The estimators are especially useful when the class density deviates substantially
from standard (e.g. Normal) forms and allow us to estimate the density in an essentially
non-parametric way. Classification of test objects is then effected by calculation of the class
density at the coordinates of the test object, and assigning the object to the class whose
probability is highest. Using a Gaussian kernel leads to estimates of the form:

p (x | xi∈A) =
1

NA(2πσ2)M/2

∑
i∈A

exp

{
−‖x− xi‖2

2σ2

}
(5)

for the density of class A at point x, where NA is the number of training set objects xi in the
class, M is the number of dimensions and σ2 is the width of the kernel. The kernel width
regulates the smoothness of the density estimate and requires careful choice. It is often fixed
by cross-validation methods at the value which maximises the likelihood of class membership
for objects left out of the training set in each cross validation round.

Probabilistic neural networks (PNNs) are a special kind of ANN whose architecture
enables them to compute a kernel density estimate of the above form. Each input node
corresponds to a variable in the input space and when a test object is presented feeds
the corresponding value to each of the nodes in the second layer. Each second layer node
corresponds to one training set vector and computes the exponential of equation (5), feeding
its output to a final layer of nodes which compute the summation. Classification of Unknowns
by Density Superposition (CLOUDS) (Ebbels et al., 2003) uses the KDE / PNN framework to
both perform point-wise classification and detect similarity between the estimated densities.
The latter function uses the overlap integral of the two densities as a measure of similarity and
was developed to compare high dimensional distributions with complex shape and topology.

The potential of PNNs to model complex high dimensional metabolic data was first
recognised by Holmes et al. (2001) who developed a model to classify 1H NMR spectra of urine
from laboratory rats treated with well known toxins. When asked to classify test samples
into one of 18 toxicity-related classes, the PNN obtained higher classification accuracies than
back-propagation neural networks and soft independent modelling of class analogy (SIMCA).
In the area of food processing, PNNs were recently applied to classifying 1H NMR spectra
of fish tissue extracts according to different processing treatments (Martinez et al., 2005).
In order to avoid problems with the high dimensionality of the spectra, the scores from the
first 20 principal components were used as input to the network which successfully classified
80% of the spectra. In metabonomic toxicology, CLOUDS was applied to several thousand
1H NMR urine spectra from laboratory rats subjected to 19 different treatments known to
cause toxic or other metabolic effects (Ebbels et al., 2003). The approach was able to classify
samples according to liver or kidney toxicity with 77% and 90% success respectively, while
experiencing a low 2% rate of confusion between the classes. The class probabilities were
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further combined into two parameters, the confidence and uniqueness of the classification,
which allowed pre-selection of the best classified urinary profiles. Recently, the CLOUDS
methodology was employed in the construction of an ’expert system’ for pre-clinical toxicity
screening using a large database of 1H NMR urinary metabolic profiles from 80 different
treatments (Ebbels et al., 2006). A novel measure of similarity between classes was developed
based on the overlap integral of the density estimates. Although the system was unable to
judge the likely toxicity of some of the treatments, where a decision could be made, over 92%
were classified correctly. In addition, the system correctly determined the site of toxicity for
two blinded treatments.

The densities estimated by CLOUDS and similar techniques can be visualised by com-
puting contours or isosurfaces of constant probability density and viewing them with the
help of dimension reduction techniques such as PCA. Figure 10 illustrates this with the
metabonomic toxicology data of figure 2. The control class has a shape which might be well
summarised by a multivariate normal, while the high dose cloud extends away from the con-
trols in a hairpin-like trajectory. The part of the high dose density coinciding with controls
is due to samples from animals which have either yet to react or have already recovered from
the toxic episode.

Figure 10 about here

Overall, use of KDE methods, while versatile and well suited to the characteristics of
metabolic profiling data, are subject to some drawbacks. The most important of these is
the large amount of data required to accurately estimate the density when the number of
dimensions is high. Along with the high storage requirement and the need for the ability to
interpret models in terms of spectral features, these are areas which will be the subject of
further research in the near future.

6 Evolutionary algorithms

Evolutionary computations have attracted increasing interest as a method of solving complex
problems in medicine, industry and bioinformatics. Evolutionary algorithms (EA) are ideal
strategies for mining metabolite data to build useful relationships, rules and predictions. The
advantages of this methodology include conceptual simplicity, broad applicability, ability to
optimize complex multimodal objective functions and outperform standard optimization pro-
cedures in real world applications, flexibility and ease of hybridization with other methods
such as Neural Networks (Fogel and Corne, 2003). EAs are adaptive procedures, motivated
by genetic processes as they evolve a population of chromosomal structures (possible solu-
tions), in order to find the fittest individual. Candidate solutions to the optimization problem
play the role of individuals in a population, that is evolved through generations undergoing
processes inspired by biological evolution: reproduction, mutation, recombination, natural
selection and survival of the fittest. Broadly speaking, the evolutionary optimization tech-
niques use a population of possible solutions subjected to random variation and selection

18



until some termination criterion is satisfied. The fitness of each individual in the population
reflects the individual’s worth in relation to some objective function.

The aim of the EA is to progressively develop better solutions to the problem under study
by modifying previous solutions that exhibited good performance. Starting with an initial
population of individuals, generated through some randomized process, each individual is
then placed in a common environment where it competes and breeds with the other members
of the population. In many applications, the environment is usually referred to as the design
space and is the set of all possible solutions for a given problem. The individual’s fitness
shows how well it has adapted to its environment, i.e. larger fitness values correspond to
better solutions. The fittest individuals have more chance to survive in the next generation
and to be selected to reproduce. New individuals are generated through variation operators,
the most common of which are mutation, the introduction of one or more random changes
to a single parent individual, and recombination (commonly referred to as crossover), that
consists in randomly taking components/characteristics from two or more parent individuals
to create children. Variation operators are fundamental as they affect the algorithm’s search
power: when the search space has many local optima, large-scale mutations might be useful
for escaping local optima, but less radical mutations might be important to proceed towards a
global optimum. Following the application of variation operators, two sets of solutions exist:
the parent population and the child population. Thus a selection for survival stage is required
to form the new population. This step requires scoring each solution on its worth with respect
to given goal, i.e. according to their fitness. It is essential that the fitness function reflects
the problem characteristics although the specification of a suitable function can, in itself,
be a difficult task. Once the solutions have been scored, then the new generation is formed
according to various schemes: some schemes require that the new generation is formed
only by child solutions, while in other cases the new population is formed by combining
individuals from both the parent and the child population. Selection for survival is often a
deterministic process, in which the best solutions are selected, however stochastic schemes
are also possible. Most EAs work on a generational base, applying variation and selection
operators to all members of the population at a given time and iterating this process for a
pre-specified number of generations or until convergence to a local or global optimum has
been reached.

EAs are becoming increasingly popular in chemometrics as they are useful supervised
learning techniques that can be utilized in many scenarios, e.g. to identify metabolites as-
sociated with a particular phenotypes (Goodacre, 2005). These include genetic algorithms,
evolution strategies, genetic programming and genomic computing. Amongst the evolu-
tionary techniques, genetic programming (GP) has been most commonly used in metabolic
profiling applications. In the GP framework, the solution is structured as a parse tree. For
example, in symbolic regression the parse tree specifies the regression relationship between
the response and the predictors. One of the earliest applications of GPs to metabolic data
can be found in Gray et al. (1998) who proposed a genetic programming (GP) algorithm to
classify tumours based on 1H NMR spectra of biopsy extracts. Following successful use of
genetic programming algorithms for the analysis of pyrolysis mass spectral data of fruit juice
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(Gilbert et al., 1997), similar strategies have been developed to analyse metabolic profiling
and fingerprinting data from several other spectroscopic and chromatographic techniques
including FT-IR (Johnson et al., 2000; Goodacre, 2005), HPLC (Kell et al., 2001), nonlinear
dielectric spectroscopy (Woodward et al., 1999) and various types of MS (Taylor et al., 1998;
Goodacre et al., 2000, 2003). In most applications the authors highlight the ability of the GP
to combine small numbers of explanatory metabolites in simple prediction rules to classify
the response of interest. For example, as a test of the GP approach to modelling complex
mixtures such as metabolic profiles, Goodacre (2005) developed a GP to quantify the levels
of the antibiotic ampicillin in cultures of the bacterium E. Coli. Ampicilin was added to
E. Coli cultures at different concentrations, observed with FT-IR spectroscopy and the GP
used in ’symbolic regression’ mode to quantify the ampicillin level using the FT-IR profiles
as input. The GP was able to identify the 1767cm−1 vibration (corresponding to the beta-
lactam ring of ampicillin) as the important variable corresponding to ampicillin despite large
signals from other E. Coli metabolites, thus highlighting its promise as a method for data
mining complex metabolic profiles. Figure 11 shows the frequency of the number of times
each input (wavenumber) was used for 10 evolved populations, i.e. 10 runs of the GP algo-
rithm. The area of the spectra corresponding to vibration 1767cm−1 is clearly dominating
for E. Coli treated with ampicilin, but absent from E. Coli alone.

Figure 11 about here

7 Conclusions

In this chapter we have described the nature of metabolic profiling data and some of the
statistical approaches which are typically used to model it. Due to space considerations
we have not undertaken a comprehensive review of all methods used in the field, but have
highlighted the salient ones which have seen wide application. The reader is referred to
Lindon et al. (2007) for a more thorough description of both the chemical and data analytic
techniques used, along with in-depth reviews of many different application areas of the tech-
nology. It is clear that there are many problems still to be solved in the statistical analysis
of metabolic profiles, such as peak shifts in NMR and the proper treatment of differential
ionisation efficiencies in MS. The lack of structural identification of a large proportion of
the signals remains a huge impediment to biological interpretation and given the diversity of
the metabolome throughout the various kingdoms of life, it seems clear that this situation
is unlikely to change any time soon. Therefore statistical approaches which can deal with a
mixture of identified and unidentified peaks are likely to have a large impact in this area.
Approaches based on mixed-models and wavelet approaches have proved extremely useful
(Morris et al., 2006; Brown et al., 2001; Clyde et al., 2005). For example, the sparse repre-
sentation of the NMR spectrum in terms of wavelet coefficients makes them an excellent tool
in data compression and hence feature extraction. In addition, the wide range of chemical
analytic techniques used in the generation of metabolic profiles will require statistical models
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which can integrate and combine information across multiple platforms. Overall, the field
is a young but rapidly developing one, and looks set to reap many benefits from input of
researchers in other fields, including those of machine learning and statistical analysis.
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Figure 1: Typical metabolic profiles of rat urine. The top panel shows a one dimensional 1H
NMR spectrum, while the bottom panel shows a two dimensional contour plot of an LC-MS
profile. Both the higher number of signals and level of noise are clear in the LC-MS profile.
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Figure 2: Scores plot of the first two principal components for the Hydrazine dataset. Each
point represents one urine sample (metabolic profile) from one animal at one time point.
The different colours indicate different treatment groups (green control, red low dose, blue
high dose). The plot shows the characteristic L shaped trajectory of Hydrozine toxicity; high
dose profiles initially resembles controls but over the time course move to a well separated
region of the plot. The ellipses identify regions associated with control-like profiles (on the
right) and profiles showing maximum toxicity (on the left).
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Figure 3: PCA loadings plot of the first two principal components for the Hydrazine dataset.
Each point represents one spectral bin. Points lying far from the origin indicate those bins
characterised by a high degree of variation in the data and thus explaining the pattern on
the scores plot. Some analytes of interested are labelled on the plot.
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Figure 4: PLS-DA scores of the first two latent variables for a subset of the Hydrazine dataset
(control and low dose 8 to 72 hours). The plot shows a clear separation between the two
subgroups on the first latent variable. The metabolites responsible for the separation can be
found from the corresponding loadings (results not shown).
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Figure 5: Scores plot of the first two principal components of the paracetamol dataset. The
PCA score plot shows no separation and a clear trend due to run order is highlighted by the
arrow.
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Figure 6: Scores plot of the first orthogonal component (y−axis) versus the first correlated
component (x−axis) for the paracetamol dataset. The systematic variation visible in figure
5 has been captured by the orthogonal component and it is no longer confounding the
interpretation of the correlated component.
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Figure 7: The plot shows the a strong relationship between the first orthogonal component
scores (y−axis) and the experimental run order (x−axis). The orthogonal filtering captures
most of the systematic variation due instrumental drift, visible in figure 5.
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Figure 8: Hierarchical clustering for a subset of the Hydrazine dataset (control and low dose
8 to 72 hours). The control samples are shown in black while the dosed samples are shown in
red. There are two main branches corresponding to control-like samples and dosed samples.
Note some dosed samples appeared to be similar to controls because the relevant animals
have either recovered from or not yet responded to the toxin.
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Figure 9: Three-level neural network with q = 2, p = 6 and d = 3. The hidden layer
Z = (Z1, Z2, Z3)

′ links inputs X to outputs Y . Arrows indicate positive weights.

Figure 10: Visualisation using CLOUDS. The figure shows the toxicity data of figure 1 (first
3 PCs) superimposed with iso-surfaces of constant probability density estimated through
CLOUDS. The surface for the high dose class (blue) has been rendered transparent so as to
enable viewing of the control density (green). One can clearly see how irregular distributions
can be modelled in this way.
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Figure 11: Summed frequency plot from GP analysis of the number of times each input
(wavenumber) was used for the 10 evolved populations. Also shown are the normalized FT-
IR spectra from E. Coli (blue trace) and E. Coli+5000 µg.ml−1 ampicillin (red trace), and
the structure of ampicillin. (Reproduced with permission from Goodacre (2005). Copyright
2005 Oxford University Press)
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