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Summary. In a longitudinal study of dose-response, the presence of con-

founding or non-compliance compromises the estimation of the true effect

of a treatment. Flexibility in modelling confounding is essential in order to

capture the treatment effect when the causal model is not fully understood,

so that observed treatment effect is not due to the imposition of a rigid

model for the relationship between response, treatment and other covariates.

A semiparametric additive linear mixed (SPALM) model (Ruppert et al.,

2003) provides a tractable and flexible approach to modelling the influence
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of potentially confounding variables. However, this approach does not on

its own remove the bias introduced due to patient-selected treatment level,

that is, it does not permit the estimation of the causal effect of dose. Using

an approach based on the Generalized Propensity Score (GPS) (Hirano and

Imbens, 2004), a generalization of the classical, binary treatment propen-

sity score, it is possible to construct instrumental variables that provide a

more meaningful (and less biased) estimation procedure for the true effect of

dose. In this paper, we present Bayesian versions of the SPALM model and

of the GPS where the propensity score relies on a novel formulation of the

treatment density. The use of Bayesian methods are readily implementable

and allow cohesive propagation of uncertainty in the models. The method-

ology is applied to the Monitored Occlusion Treatment of Amblyopia Study

(MOTAS) which investigated the dose-response relationship between occlu-

sion and improvement in visual acuity. This analysis quantifies the beneficial

effect of occlusion for the first time.

Key words: Semi-parametric Modelling, Confounding, Non-compliance,

Generalized Propensity Score, Bayesian Analysis

1. Introduction

In observational studies of the efficacy of a treatment, if the treatment dose

level is influenced by subject-specific covariates, then there is the potential

for bias in the estimation of the treatment effect. Furthermore, many ran-

domized trials, particularly those where treatment is given over time, must

contend with partial or total non-compliance, which effectively renders the

trial observational. Statistical analyses in the face of non-compliance have

often relied on intention-to-treat or as-treated analyses, which, respectively,
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ignore the dose actually received or do not account for the non-random na-

ture of non-compliance. The aim of this paper is to provide a framework for

examining the effect of treatment given over time in the presence of “infor-

mative” non-compliance due to the influence of measured covariates.

In this paper, we analyze the data from a recent observational study of the

treatment of childhood amblyopia - a common ophthalmological condition,

where the visual acuity of one eye is compromised - by occlusion (patching

of the fellow eye); in this study, there is clear scope for confounding, as

the amount of occlusion dose received is potentially highly influenced by

child-specific factors. We use semiparametric additive linear mixed (SPALM)

models as tools for estimating potentially non-linear covariate effects, and

a balancing score approach to account for the effect of confounding/non-

compliance.

1.1 Quantifying dose-response over time: an analysis strategy

Two related models are of interest when analyzing longitudinal data. The

first (absolute-level) model assumes a repeated measures structure; each par-

ticipant provides repeated time-varying covariate data over a number of in-

termediate measurements as well as a final, end-of-study measurement. The

second (interval-level) model focuses on an interval-by-interval analysis, and

takes as the response the change in response between successive measure-

ments.

In this paper, we focus on the interval-level data, although the methods

described could be employed in either context. With data in this form, a

linear mixed-effects regression model provides a good means of initial analy-

sis, with model selection (selection of influential covariates and interactions,
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residual error correlation structures, random effects components) carried out

using the Bayes Information Criterion (BIC). Potentially confounding rela-

tionships between covariates and treatment are next modelled flexibly using

semiparametric additive linear mixed (SPALM) models (see, for example,

Ruppert et al., 2003).

The regression strategy above takes no account of subject-controlled treat-

ment level which is a potential source of bias in the estimation of treatment

effect. Therefore, finally, we adopt the Generalized Propensity Score (GPS)

(Hirano and Imbens, 2004), a balancing score approach for continuous treat-

ment, to construct an instrumental variable that controls for this source of

confounding.

The analysis methods are demonstrated in the context of the MOTAS

data. First, a frequentist approach is taken. In the SPALM analysis, estima-

tion of the covariate effects is carried out using maximum likelihood/REML

methods. In the balancing score analysis, an approach utilizing plug-in ver-

sions of the balancing score to model the expected response for different dose

levels is used. Secondly, the Bayesian versions of these methods are described

and implemented; in the SPALM analysis, this necessitates the use of a novel

prior structure on the mixed effects components, and in the balancing score

analysis this facilitates a full assessment of uncertainty in the estimation

under the specified model.

1.2 Structure of Paper

The paper is structured as follows: Section 2 provides details of our mo-

tivating example. Section 3 describes linear and semiparametric mixed mod-

els, and section 4, the balancing score approach. Bayesian versions of the
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approaches are described in 5. The methods are discussed in section 6.

2. The Monitored Occlusion Treatment of Amblyopia Study (MO-
TAS)

2.1 Amblyopia and its Treatment

Amblyopia is the most common childhood vision disorder, affecting 1-5%

of children. The condition is characterized by reduced visual functions, and

usually affects only one eye. It has been associated with up to a three-fold

increased lifetime risk of serious vision loss of the fellow eye (Rahi et al.,

2002). A standard treatment for the condition is occlusion therapy, that is,

patching of the functioning fellow eye. Perhaps surprisingly, the apparent

beneficial effect of occlusion therapy has never been well quantified, partly

due to difficulty in the accurate measurement of the occlusion dose. The

Monitored Occlusion Treatment of Amblyopia Study (MOTAS) (Stewart,

Moseley, Stephens and Fielder, 2004) was the first clinical study aimed at

determining the dose-response relationship of occlusion. The study, for the

first time, measured occlusion precisely using a dose monitor. We present

the first comprehensive analysis of these data.

2.2 Study Design and Implementation

The MOTAS design and a full description of the study base have been

published previously (Stewart, Fielder, Stephens and Moseley, 2002, Stew-

art et al., 2004). Prior to study entry, all children had a full ophthalmic

assessment. Those who required spectacles entered the refractive adapta-

tion phase; the remainder entered the occlusion phase directly. Children in

refraction were prescribed to full-time spectacle use for 18 weeks, and sched-

uled for vision re-assessment at six week intervals. Children still considered
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amblyopic began occlusion and were prescribed six hours of occlusion daily.

That is, the same dose was assigned to all individuals in the occlusion phase

of the study.

Visual acuity was measured on the logarithm of Minimum Angle of Res-

olution (logMAR) scale; improvement is indicated by a decrease in logMAR.

Occlusion doses were recorded to the nearest minute by an occlusion dose

monitor (ODM) (Fielder, Auld, Irwin, Cocker, Jones and Moseley, 1994). Vi-

sual function and monitored occlusion dose were recorded at approximately

two-week intervals until acuity ceased to improve.

2.3 Study Participants

The study enrolled 116 children aged between 36 and 100 months, 29 of

whom were excluded from the analysis as they did not meet the inclusion

criteria or were lost to follow-up after a small number of clinic visits. Of the

87 patients that were suitable for inclusion in the statistical analysis, 15 saw

their amblyopia resolved in the refractive adaption phase and did not enter

the occlusion phase of the study. The remaining 72 were prescribed occlusion

for six hours a day, but received different occlusion doses over different follow-

up periods because of non-compliance. We assume that the loss to follow-up

is not informative.

Profile plots of individual visual acuity trajectories over successive visits

to the clinician are depicted in Figure 1. These indicate that a piecewise linear

model of response is a reasonable foundation for our statistical models.

[Figure 1 about here.]

Time spent in occlusion was considered as a potential effect modifier,

separate from the therapeutic effect of refraction or occlusion treatment,
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or the developing age of the child whilst in the study. There also may be

some adaption to the visual acuity testing procedures that could confound

the relationship between treatment and visual acuity, and a time in study

variable will be included in the model.

3. Linear and Semiparametric Mixed Model Analysis

Let the N = 87 patients in the study be indexed by i and the ni+1 clinic

visits by j, so that V a
ij is the visual acuity for patient i on visit j at day

tij into the study. Similarly, let Dij be the (random) occlusion dose (in

hours) observed in interval j; Dij = 0 for the baseline observation in the

occlusion phase. Let Aij be the child’s age in months at the start of interval

j. Let Lij, Pi and Si denote the visual acuity at the start of interval, start

of phase and start of study, respectively, and Ti denote the amblyopia type

(anisometropic, mixed, strabismic), for patient i. For interval-level data,

response is the change visual acuity in interval j between visit j−1 and visit

j for patient i: Yij = V a
ij − V a

ij−1 for j = 0, 1, ..., ni, i = 1, 2, ..., N .

3.1 Linear Mixed Effects Models Analysis

We begin with the assumption that variation in visual acuity has both a

systematic and random component. Specifically, we assume an individual-

specific random intercept at interval zero. That is

Yij = XT
ijβ + ηi + εij, (1)

and a presumed autocorrelation in the residual errors, ε, of a child.

3.1.1 Inference for the Linear Mixed Model Inference for the linear mixed

model in equation (1) is achieved using penalized least-squares or likelihood
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procedures under an assumption of Gaussianity of the residual errors; we give

this version for ease of interpretation. Suppose, in conjunction with equation

(3), u ∼ N(0, G) and ε ∼ N(0, R) with u and ε independent. This model

can be interpreted as Y |β, u ∼ N(Xβ + Zu,R), u ∼ N(0, G), yielding the

marginal model Y |β ∼ N(Xβ, ZGZT + R). Let V = ZGZT + R. Then esti-

mates can be found using the penalized maximum likelihood or the restricted

maximum likelihood (REML), obtained by first integrating out β from the

likelihood Y ∼ N(Xβ, V ).

This model has a (model-based) Bayesian interpretation where the un-

known parameters β and u are assigned independent prior distributions, with

β having an improper uniform prior on Rncol(X), and u assigned the Gaussian

prior described above. In a fully Bayesian approach, G is set as a fixed hyper-

parameter, or assigned an informative prior distribution. Here, an empirical

Bayes approach is used where G and the parameters in R are estimated us-

ing ML/REML. In section 5.1, the fully Bayesian approach is described, and

the results of using a diffuse and an informative prior specification for G are

compared.

3.1.2 Linear Mixed Model Results for MOTAS The model was fit in R

using the nlme library. The BIC was used to select an optimal model. The

optimal model for the refraction phase was L + P + T , and for the occlusion

phase was D+A+L+P +D.A+D.L+A.L; residual plots raised no concerns

about the fit of the model for the mean. Time on study, t, time in refraction,

tR, and time in occlusion, tO, added little to the fit of the model.

Using the models and covariates identified above, residuals were explored
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to help determine a suitable covariance structure amongst the repeated mea-

surements. All models for the refraction and occlusion phases assume random

intercepts at the individual level, as in equation (1), and for the occlusion

phase, the addition of a random slopes model was also considered (see Dig-

gle et al., 2001 for terminology). Autoregressive correlation structures were

considered for the observed data, as in section 3.1; here, we retain the AR(1)

model, where Corr[Yij, Yij′ ] = ρ|j
′−j|.

Using the BIC, it was apparent that a model with random intercepts and

AR correlation provided a better fit to the data than the model without

random effects; random slopes were not necessary. Table 1 gives parameter

estimates for the terms in the final models using REML. The fit of this model

yielded estimates of the residual error standard deviation and the correlation

of σ̂ = 0.0735 and ρ̂ = −0.1708.

[Table 1 about here.]

In the refraction phase, visual acuity measurements suggests that prior to

occlusion, the vision of anisometropic children given spectacles decreases on

the logMAR scale (i.e. improves) on average by 0.085 (0.023,0.147) between

each visit. Strabismic children exhibit a lesser degree of improvement while

children of mixed type do not exhibit significant improvement. Children who

were younger, and/or had higher logMAR at the start of occlusion and at

the start of an interval all improved further for the same occlusion dose.

3.2 Semiparametric Additive Linear Mixed Models Analysis

We now fit a semiparametric additive linear mixed (SPALM) model to

attempt to capture non-linearity in the covariate effects. The model we fit is
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of the form

Yij = XT
ijβ +

K∑

k=1

fk (Xij) + εij, (2)

where the fk, k = 1, ..., K, are functions of the covariates modelled semipara-

metrically; see, for example, Ruppert et al. (2003). We use the linear mixed

model formulation,

Y = Xβ + Zu + ε (3)

where

E

[
u
ε

]
= 0 V ar[θ] =

(
G 0
0 R

)

and the matrix X contains the fixed effects predictors, Z is the (basis func-

tion) design matrix in the semiparametric representation of the function of

f1, . . . , fK . Details of estimation procedures for this model are given in Web

Appendix A.

3.2.1 Specification of the Semiparametric Design: The Truncated Spline Ba-

sis In the semiparametric additive model, the matrix Z contains the trun-

cated spline basis terms, with columns corresponding to knots κk1, . . . , κkM

for k = 1, . . . , K. Typically, the random effects coefficients for function k are

assigned a common Gaussian distribution so that the matrix G is diagonal;

however this is not necessary (see Web Appendix B).

We use truncated spline basis functions to construct the semiparametric

specification. Generically, for scalar x varying across a data-dependent range,

we specify fixed (but data-dependent) knot positions κk1, ..., κkM , and model

function fk as

fk(x) =
M∑

m=1

ukm(x− κkm)q
+ (4)
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where uk1, ..., ukM are (random effects) coefficients for function k, and the

basis function component (x−κkm)q
+ = max{0, (x−κkm)q}, so that a typical

row of Z (an N ×KM matrix) in equation (3) takes the form

[(x− κ11)
q
+ (x− κ1M)q

+ . . . (x− κKM)q
+] .

We take q = 1 and use 10 knots at the covariate quantiles, with a knot

also placed at zero, giving M = 11. For convenience, we transform (by

translation) the covariates such that they are non-negative. The function fk

in equation (4) has vector of coefficients uk of length M , which are assumed

to be independent random effects with common variance σ2
k, k = 1 . . . , K.

We also assume independence between u1, . . . ,uK , and thus retain a block

diagonal structure for the entire random effect matrix.

The semiparametric model can be fit using lme in R for some choices of the

residual error covariance R, and more generally using numerical procedures

for general covariance specifications.

3.2.2 Semiparametric Mixed Model Results for MOTAS Three semipara-

metric components were used when considering MOTAS; a component for

dose, D, a component for the interaction between D and (translated) Age

at Interval, A − 36, and a component for the interaction between D and

visual acuity at start of interval, L + 0.175. We used 10 fixed knots, with

positions determined by covariate quantiles, but the results were robust to

specifications with up to 50 knots. We examined three covariance structures

for the repeated measures - an uncorrelated error model, an AR(1) model in

interval number and an exponential decay-in-time covariance. We found that

there was effectively no difference in the results in the resulting estimates of
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the semiparametric components, nor in the BIC values for the two covari-

ance models. Plots of the curves for the three predictors estimated under the

uncorrelated error model are given in Figure 2.

[Figure 2 about here.]

3.3 Comments on the Linear and SPALM analyses

When looking for a dose-response effect, the associations between out-

come and individual characteristics or treatment and these characteristics

are not of interest in themselves. The splines used in SPALM models offer

a much higher degree of adaptability to the data than linear models, and

perhaps provide better control of confounding effects. The pattern of results

from both the linear and the semi-parametric analyses of MOTAS are in line

with ophthalmological opinion and practice: higher doses give greater im-

provement in vision and the impact is greater in children with inferior vision,

but the effect is moderated by increasing age of the child.

A potential problem with the analyses of section 3 is that the (obser-

vational) study design makes interpretation of the results more complicated

than it would be for an equivalent experimental study. In the next section

we develop methods that address issues of confounding/non-compliance that

are based on the Generalized Propensity Score (GPS) (Hirano and Imbens,

2004). While the GPS does not provide a causal parameter, it does allow us

to construct an instrumental variable that facilitates meaningful inference on

the treatment effect. We assert that if common results are found by apply-

ing two highly flexible but very different approaches, the analyst has likely

eliminated bias due to non-compliance by effectively capturing confounding

effects.
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4. A Balancing Score Approach to Estimating the Dose-Response
Relationship

The modelling approaches of section 3 do not recognize the observational

nature of the occlusion dose received, raising the possibility that the effect of

occlusion is misrepresented by the estimates presented due to confounding.

It is plausible a priori that factors that influence the improvement in visual

acuity in a treatment interval (for example, the age of the child, or current

visual acuity) also affect the amount of occlusion dose received during the

interval, which represents a classic confounded dependence structure.

To ascertain the true effect of dose, a causal analysis which accounts

for the potential confounding between dose levels and other covariates is

desirable. We present an approach approximating a causal analysis in this

section. The principal tool used is the Generalized Propensity Score (see,

for example Imai and Van Dyk, 2004, Hirano and Imbens, 2004) to account

for possible confounding relationships between occlusion treatment and other

covariates. We note here that the GPS does not provide a parameter that

may be interpreted causally; see discussion below. The balancing property

of the GPS may provide greater confidence that the analysis has successfully

eliminated potential bias due to confounding.

4.1 The Generalized Propensity Score

We adopt the notation and terminology of causal modelling, and denote

the response Y , occlusion dose D and covariates X. For child i in the study,

we further denote Yi(d) for d ∈ D (the set of possible doses) as the set

of potential outcomes that describe the dose-response function. Following

Hirano and Imbens (2004) we define the (observed) Generalized Propensity
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Score (GPS), r(d, x) for dose d and covariate values x by

r(d, x) = fD|X(d|x). (5)

That is, r(d, x) is the conditional density function for D given X = x eval-

uated at D = d; R = r(D,X) is the corresponding random quantity. The

GPS is an extension of the propensity score defined by Rosenbaum and Rubin

(1983) to continuous treatments.

Generically, the average causal effect of dose D is defined formally as the

difference in expected outcomes for two dose levels d0, d1 for fixed covariate

values X = x, that is

E[Yi(Di = d1, Xi = x)]− E[Yi(Di = d0, Xi = x)] (6)

or the expectation of this quantity over the distribution of different X values

in the study population. Our analysis does not return an estimate of this

quantity, but instead returns an estimate of

E[Yi(Di = d1, Ri = r)]− E[Yi(Di = d0, Ri = r)] (7)

where the GPS random quantity Ri acts as a balancing score, such that,

given R, D and X are conditionally independent. Note that, in general, if

d1 6= d0, then we may have R(d1, x1) = R(d0, x0) whether x1 = x0 or oth-

erwise. However, equation (7) does facilitate consistent estimation of the

dose-response relationship, as we may average each conditional expectations

over the distribution of R if the balancing property holds. Whether the de-

fined GPS has indeed the required balancing property (in that, within strata

of approximately equal R values - based on, say, quintiles of the empirical
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distribution of R - the conditional density value for D = d does not depend

on X) is a checkable assumption for any proposed scoring procedure.

The GPS quantity R acts as an instrumental variable in the regression for

Y that, as equation (5) implies, is constructed by modelling D as a function of

X. This yields a bias-removal strategy: we may examine the conditional dis-

tribution of Y given D and R, rather than the conditional distribution given

D and X, and recover a consistent estimator of the dose-response relation-

ship. Practically, this implies a two-step strategy: build first a (regression)

model to predict D given X that yields R, then a (regression) model for Y

given D and R that has a built-in balancing of possible confounding between

D and X that may bias the estimate of the effect of D on Y .

4.2 Average and Conditional Potential Outcomes

A key quantity of interest is the Average Potential Outcome (APO) at

dose level d,

µ(d) = E[Y (d)] = EX [E[Y (d)|r(d,X)]],

which traces the average dose-response relationship across covariate values

for a given dose level. When considered as a function of d, this function

can be interpreted as reflecting the causal relationship between dose and

response.

The APO at D = d can be estimated using the sample data; the estima-

tion procedure depends on plug-in prediction of the dose effect. In section 5.2,

we demonstrate how a simple Bayesian procedure can be used to propagate

uncertainty through the model in a coherent fashion.

The approach to estimating the APO at dose level d, µ(d), is outlined

by Hirano and Imbens (2004) and summarized in Web Appendix C. This
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procedure produces an approximation to the expectation of the potential

outcome at a specified dose value d; the “average” is over the distribution

of covariate values. A similar procedure can be used to approximate the

expected conditional potential outcome (CPO), ξ(d, x), at a specified pair

(d, x) a quantity that may be of equal interest. Furthermore, bootstrap

procedures that re-sample with replacement from (x1, . . . , xn) can be used to

produce uncertainty bounds for µ(d), and for ξ(d, x) if sufficient replicates at

predictor values X = x are available.

4.3 Applying the GPS to the MOTAS data

4.3.1 The GPS model In the MOTAS study, dose is a continuous vari-

able, so the GPS approach is appropriate. However, even in the occlusion

phase, a non-negligible proportion of intervals (63 out of 411, around 15%)

had a corresponding zero dose. The predictive model fD|X(d|x, β) must ac-

knowledge the mixture nature of the dose distribution, so we assume that,

given X = x,

D
L
= π(x, γ)δd=0 + (1− π(x, γ))D+

where δd=0 is a unit mass on zero, D+ is a strictly positive random variable

whose distribution depends on X = x and β, and π(x, γ) is a mixing weight

depending on X = x and parameters γ. Estimation in this model is straight-

forward when a parametric distribution is used for D+; we select the Weibull

model, with scale parameter modified by X, although the log-logistic or log

Gaussian distributions are suitable two parameter alternatives. To estimate

γ, we fit a logistic regression model to the binary (D = 0/D > 0) dose data.

Any such general regression model that induces a balancing property can be

used; the Weibull-based model is convenient, and, it transpires, suitable.
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On exploring possible dose/covariate relationships suitable for inclusion

in the GPS model, we discovered that time in occlusion was influential in

predicting D = 0. In the logistic regression model, logit{P [D = 0]} =

γ0 + γ1tO, the estimates (standard errors) for the two parameters were γ̂0 =

−2.632(0.244) and γ̂1 = 7.282e-3 (1.398e-3) respectively. In the Weibull

model, interval number, visual acuity at start of interval, L, length of interval

(in days), and amblyopic type, T , were all useful in explaining the variability

in D+. The first three of these variables had coefficient estimates (s.e.) in a

Weibull proportional hazards model of 0.036(0.014), 0.537(0.175) and 6.68e-3

(3.21e-3) respectively. Thus, we have for the (estimated) GPS

r̂(d, x) =

{
π̂(x, γ̂) d = 0

(1− π̂(x, γ̂))f(d|x, φ̂, β̂) d > 0

where

f(d|x, φ, β) =
φdφ−1

exp{φxTβ} exp

{
− dφ

exp{φxTβ}
}

d > 0.

For the GPS to act as a balancing score, the distribution of D should not

depend on X within strata of R. A check of the distribution within quintile

categories of r̂ reveals no apparent relationship between D and X.

4.3.2 The Observable Model The predictive model for change in visual

acuity, Y , is required as a function of occlusion dose, D, and the GPS, R. In

Hirano and Imbens (2004), only the expected value of Y given D and R is

considered; we follow that strategy here, modelling

EY |D,R[Y |D = d,R = r(d,X), α] = α0 + α1d + α2r + α12d.r (8)

and estimate the parameters using least-squares, although a model assum-

ing independent Gaussian residual errors appears sensible and facilitates a
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likelihood analysis. The model for the expectation in equation (8) could be

replaced by a piecewise constant “partition” model defined on a tesselation

of the (D, R) space without complicating the inference to any great degree.

Using the model in equation (8), we obtain α̂0 = -1.865e-2 (1.195e-2), α̂1 =

-2.744e-4 (1.078e-4), α̂2 = 3.478e-2 (6.323e-2) and α̂12 = -9.247e-2 (4.104e-2)

respectively. Thus, the empirical average over the 411 interval observations,

using estimated (potential) GPS values, r̂(d,Xi), returns a consistent esti-

mate of the average potential dose-response for each d.

4.3.3 Results A plot of the dose-response curve is presented in Figure 3.

This plot indicates that the association between dose and visual acuity, when

confounding between dose and the covariates is adjusted for using the GPS

approach, is appreciable; the average potential effect on logMAR measure-

ment Y is significantly negative (corresponding to vision improvement) over

the entire range of positive doses considered. A numerical summary for the

(frequentist) APO is found in Table 2. The GPS analysis gives an estimated

effect of dose that is somewhat less than that found by the SPALM analysis,

although direct comparisons are difficult.

[Figure 3 about here.]

The model used, for example, in equation (8) can be readily extended to

a more flexible model; here, qualitative changes in the inferences made after

the inclusion of quadratic terms in the linear predictor were minimal.

[Table 2 about here.]
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5. Bayesian Approaches

The results of the likelihood-based analysis above have identified key predic-

tors in the model for changes in visual acuity and quantified the influence of

occlusion does on improvement in vision. However, the models are complex

and often require plug-in procedures. Therefore, we implemented a Bayesian

analysis that propagates the uncertainty in the inference in a fully coherent

fashion. We perform inference using Markov chain Monte Carlo. In the in-

terests of brevity, Bayesian linear mixed model results are omitted in order

to devote greater attention to the novel aspects of the analysis: the Bayesian

SPALM model and the Bayesian Generalized Propensity Score. Furthermore

we omit details of the posterior summaries and focus only on the semipara-

metric components in the SPALM model.

5.1 Bayesian Semiparametric Modelling Analysis and Results

A semiparametric model similar to the one described in section 3.2 can be

fitted in the Bayesian framework. Most importantly, the model is fundamen-

tally unchanged from that described in section 3.2; the principal difference

in the model specification is the prior used for the random effects coefficients

that are used to construct matrix G. In an initial analysis, a non-informative

prior specification is used, where the diagonal elements of G are set to be

1.0e+10. The results for this prior specification, the empirical Bayes specifi-

cation implied by the classical analysis, and the analysis based on an infor-

mative prior specification (Web Appendices B and D) are depicted in Figure

4. Qualitatively, the differences between the prior specifications, and the in-

teraction between dose and the other predictors are evident. It is clear, for

example, that the empirical Bayes prior appears to shrink the magnitude of
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effect more towards zero relative to the informative prior. Figure 5 depicts

the Bayesian estimates and 95% credible interval for the informative prior.

[Figure 4 about here.]

[Figure 5 about here.]

5.2 The Bayesian Generalized Propensity Score

The analysis of section 4 can be recast in a Bayesian framework that

retains the dual regression model aspect, but uses a fully Bayesian procedure

to report the uncertainty in the estimated APO function via its posterior

distribution.

Recall the components of the GPS model, namely the two conditional den-

sities that give the model specification, fD|X(d|x, γ, β) and fY |D,R(y|d, r, ν).

We obtained ML estimates for γ, β and ν, and then used a plug-in approach

to estimate the APO function µ(d) for a range of values of d. The paral-

lel Bayesian procedure replaces the plug-in approach with an approach that

averages over the posterior distribution of the unknown parameters. For typ-

ical model specifications, MCMC-based procedures are straightforward; due

to the model structure, conditional updating of the model parameters in the

two stages of the model given the observed data is readily achieved (see Web

Appendix E).

5.2.1 Obtaining the Bayesian APO and CPO A suitable quantity to re-

port in the Bayesian framework is the posterior predictive expected response,

pointwise for different values of d. For the Bayesian CPO, this computa-

tion is done for a fixed value of x, whereas for the APO, we must aver-

age the responses over the distribution of all possible values of X. In the
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model described in section 4, the conditional expected value for Y , given

(D, R) = (d, r) and α is available directly as the Gaussian mean. Comput-

ing r given d, x and (β, γ) is straightforward. It also is straightforward to

produce a sampled value of the conditional expectation at iteration m, given

any d, x and (α(m), β(m), γ(m)), and appeal to Rao-Blackwellization to obtain

the expectation with respect to the joint posterior distribution. When such

analytic results are not available, computation of the expected response can

be carried out in a number of ways; the simplest method involves Monte

Carlo approximation. For the Bayesian APO, computing the expectation

over the distribution of covariate values is more problematic but achievable

using bootstrap methods; for MCMC iteration m, we carry out bootstrap

re-sampling of the covariate values, obtaining xresb for b = 1, . . . , B, and

compute the conditional expectation

µ̂(m)(d) =
1

B

B∑

b=1

E[Y |d, xresb , α(m), β(m), γ(m)].

This quantity can then be averaged over the MCMC iterations to produce

the Bayesian APO. For the CPO, conditioning on a single given x value

is more straightforward. The Bayesian approach yields the entire posterior

distribution for the CPO, which can be summarized via quantile summaries

for, say, 95% credible intervals at different values of d.

5.2.2 Results An MCMC-based Bayesian analysis of the Weibull-mixture/Gaussian

model described in section 4.3 was implemented in R. We again focus only

on the APO, using the form in equation (8) as the model for mean effect.

The results are depicted in Figure 3, with the frequentist APO from section
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4.3 included for comparison. A numerical summary is provided in Table 2.

In this example, there appears to be little qualitative difference between the

frequentist and Bayesian inferences.

6. Discussion

In a longitudinal study of dose-response, full compliance is the exception

rather than the expected. To estimate the dose-response relationship with

confidence, modelling potentially confounding relationships flexibly is key.

Semiparametric additive linear mixed (SPALM) models and Generalized

Propensity Scores are of practical value: each is tractable and flexible, partic-

ularly when implemented in a Bayesian framework. We presented Bayesian

versions of the SPALM model and of the GPS, and implemented the GPS

with a mixture model.

In this paper, we quantified the dose-response relationship between im-

provement in vision and occlusion of amblyopic children. Our analysis is

just one example where the relationships between dosing and covariates are

complex and not well-approximated with linear forms. We have presented a

cohesive framework to examine the impact of a continuous treatment given

longitudinally with patient non-compliance.

An area of ongoing statistical research and for future ophthalmic research

is that of optimal dynamic regimes. Dynamic regimes allow treatment to

change over time based on patient history up to the current time - for ex-

ample, an optometrist may prescribe a tapering of occlusion as visual acuity

improves over time. A number of innovations in the design and analysis

of dynamic regime trials have recently been made (see, for example, Mur-

phy, 2003; Robins, 2004; Lavori and Dawson, 2004; Moodie, Richardson and
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Stephens, 2006); an implementation in relation to MOTAS can be obtained

through author Moodie.

7. Supplementary Materials

The Web Appendices referenced in sections 3.2, 4.2, 5.1, and 5.2 are available

under the Paper Information link at the Biometrics website

http://www.tibs.org/biometrics.

Acknowledgements

Moodie was supported by a Merck Company Foundation BARDS Fellowship.

MOTAS was supported by The Guide Dogs for the Blind Association, UK.

References

Diggle, P. J., Heagerty, P., Liang, K.-Y. and Zeger, S. L. (2001). Analysis of

Longitudinal Data. Oxford University Press, 2 edition.

Fielder, A. R., Auld, R., Irwin, M., Cocker, K. D., Jones, H. S. and Moseley,

M. J. (1994). Compliance monitoring in amblyopia therapy. Lancet 343,

547.

Hirano, K. and Imbens, G. W. (2004). The propensity score with continuous

treatments. In Gelman, A. and Meng, X.-L., editors, Applied Bayesian

Modeling and Causal Inference from Incomplete-Data Perspectives, New

York. John Wiley.

Imai, K. and Van Dyk, D. A. (2004). Causal inference with general treatment

regimes: Generalizing the propensity score. Journal of the American

Statistical Association, Theory and Methods 99, 854–866.

23



Lavori, P. W. and Dawson, R. (2004). Dynamic treatment regimes: practical

design considerations. Clinical Trials 1, 9–20.

Moodie, E. E. M., Richardson, T. S. and Stephens, D. A. (2006). Demysti-

fying optimal dynamic treatment regimes. Biometrics 360, 597–602.

Murphy, S. A. (2003). Optimal dynamic treatment regimes. Journal of the

Royal Statistical Society, Series B 65, 331–366.

Rahi, J. S., Logan, S., Timms, C., Russell-Eggitt, I. and Taylor, D. (2002).

Risk, causes and outcomes of visual impairment after loss of vision in the

non-amblyopic eye: a population-based study. Lancet 360, 597–602.

Robins, J. R. (2004). Optimal structural nested models for optimal sequential

decisions. In Lin, D. Y. and Heagerty, P., editors, Proceedings of the

Second Seattle Symposium on Biostatistics, New York. Springer.

Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity

score in observational studies for causal effects. Biometrika 70, 41–55.

Ruppert, D., Wand, M. P. and Carroll, R. J. (2003). Semiparametric Regres-

sion. Cambridge University Press.

Stewart, C. E., Fielder, A. R., Stephens, D. A. and Moseley, M. J. (2002). De-

sign of the monitored occlusion treatment of amblyopia study (MOTAS).

British Journal of Ophthalmology 86, 915–919.

Stewart, C. E., Moseley, M. J., Stephens, D. A. and Fielder, A. R. (2004).

Treatment dose-response in amblyopia therapy: the monitored occlusion

treatment of amblyopia study (MOTAS). Investigations in Ophthalmology

and Visual Science 45, 3048–3054.

24



Days into study

lo
g(

M
A

R
)

0 200 400 600 800 1000

0.
0

0.
5

1.
0

1.
5

Visual Acuity Profiles

Days into study

lo
g(

M
A

R
)

0 200 400 600 800 1000

0.
0

0.
5

1.
0

1.
5

Patient 3

Days into study

lo
g(

M
A

R
)

0 200 400 600 800 1000

0.
0

0.
5

1.
0

1.
5

Patient 14

Days into study

lo
g(

M
A

R
)

0 200 400 600 800 1000

0.
0

0.
5

1.
0

1.
5

Patient 26

Days into study

lo
g(

M
A

R
)

0 200 400 600 800 1000

0.
0

0.
5

1.
0

1.
5

Patient 74

Figure 1. Profile plots for the individuals in the MOTAS study (top) and
for four selected patients, with the start of occlusion indicated by the dotted
line (bottom).
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Figure 2. Estimated semiparametric functions from the maximum-
likelihood SPALM analysis for uncorrelated error model, with pointwise 95%
confidence interval.
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Figure 3. The estimated average potential effect for doses in the range 1
to 250 hours per interval (with approximate pointwise 95% credible inter-
val) in the parametric Bayesian causal analysis from section 5.2. Estimated
frequentist APO and 95% interval included for comparison

27



0 50 100 150 200 250

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3

D

C
ha

ng
e 

in
 lo

g(
M

A
R

)

Dose

0 1000 2000 3000 4000 5000

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3

D.(A − 36)

C
ha

ng
e 

in
 lo

g(
M

A
R

)

Dose x Age

0 20 40 60 80 100

−
0.

3
−

0.
2

−
0.

1
0.

0
0.

1
0.

2
0.

3

D.(L + 0.175)

C
ha

ng
e 

in
 lo

g(
M

A
R

)

Dose x LM0

 

 

Non Inf.
Inf.
EB

Figure 4. Bayesian median estimates under the three prior structures: non-
informative, informative and empirical Bayes
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Figure 5. Bayesian median estimates and 95% credible interval for the
informative prior.
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Table 1
Estimates and standard errors for the parameters from a random intercepts

linear mixed effects model with AR correlation.

Phase Term Est. s.e. t.stat p

Refraction Int. -8.509e-2 3.149e-2 -2.702 0.007
L -6.376e-1 4.145e-2 -15.383 0.000
P 4.839e-1 5.405e-2 8.952 0.000
TM 8.313e-2 3.640e-2 2.284 0.023
TS 1.682e-2 3.818e-2 0.441 0.660

Occlusion Int. -5.728e-3 3.473e-2 -0.165 0.869
D -8.645e-4 3.226e-4 -2.680 0.008
A -5.738e-4 4.920e-4 -1.166 0.244
L -5.113e-1 5.557e-2 -9.237 0.000
P 1.234e-1 2.144e-2 5.755 0.000
D.A 1.339e-5 5.063e-6 2.645 0.008
D.L -9.705e-4 2.959e-4 -3.279 0.001
A.L 4.912e-3 9.242e-4 5.315 0.000
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Table 2
Summaries of the APO (on the logMAR scale) for changing dose amount

per interval: 5000 bootstrap or posterior samples.

Dose (hours)
Quantile 25 50 75 100 125 150

Frequentist 0.025 -0.0604 -0.0780 -0.0818 -0.0842 -0.0903 -0.0999
0.250 -0.0528 -0.0683 -0.0729 -0.0743 -0.0766 -0.0804
0.500 -0.0488 -0.0636 -0.0684 -0.0695 -0.0704 -0.0724
0.750 -0.0449 -0.0589 -0.0638 -0.0651 -0.0649 -0.0651
0.975 -0.0371 -0.0496 -0.0555 -0.0567 -0.0542 -0.0517

Bayesian 0.025 -0.0559 -0.0731 -0.0808 -0.0829 -0.0850 -0.0892
0.250 -0.0480 -0.0643 -0.0717 -0.0741 -0.0755 -0.0772
0.500 -0.0443 -0.0603 -0.0675 -0.0699 -0.0706 -0.0711
0.750 -0.0403 -0.0561 -0.0633 -0.0658 -0.0658 -0.0649
0.975 -0.0326 -0.0469 -0.0537 -0.0570 -0.0564 -0.0524
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