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Appendix A

Estimation in Linear Mixed Models

Suppose, that

Y = Xβ + Zu + ε, (A.1)

where u ∼ N(0, G) and ε ∼ N(0, R) with u and ε independent. This model can

be interpreted as Y |β, u ∼ N(Xβ+Zu,R), u ∼ N(0, G), yielding (on integrating

out u) the marginal model Y |β ∼ N(Xβ,ZGZT + R). Let V = ZGZT + R.

Then the maximum penalized likelihood estimates of β and u given G and R

are given by

θ̂ =
[

β̂
û

]
= (CTR−1C + B)−1CTR−1y (A.2)

where C = [X Z] and B is the block diagonal matrix with blocks 0 and G−1.

The variance of the estimators are given by Var[θ̂] = (CTR−1C + B)−1. Fitted

values are obtained routinely as

ŷ = C(CTR−1C + B)−1CTR−1y

whereas predictions under this model at new design point c0 = [x0 z0] are

obtained from

ŷ0 = c0(CTR−1C + B)−1CTR−1y
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with variance c0(CTR−1C + B)−1cT
0 . The quantities R and G that together

define V and B can be estimated using maximum profile (integrated) likelihood

lP (V ) = constant− 1
2

[
log |V |+ yTV −1(I −X(XTV −1X)−1XTV −1)y

]

obtained from the likelihood plugging in β̂ = (XTV −1X)−1XTV −1y, or REML,

using the restricted likelihood

lR(V ) = lP (V )− 1
2

log |XTV −1X|.

obtained by first integrating out β from the likelihood Y ∼ N(Xβ, V ).

Appendix B

An Informative Prior Specification for the SPALM

In the SPALM model, the specification of random effects prior matrix G can

be engineered to match prior opinion about the nature (that is, smoothness or

curvature) of the modelled function. Consider a single semiparametric compo-

nent Y = Zu, where u ∼ N(0, G), so that Y ∼ N(0, ZGZT), where we require

that a priori Y ∼ N(0, V0). Then

V0 = ZGZT =⇒ G = (ZTZ)−1ZTV0Z(ZTZ)−1

and G should adopt a data-dependent form, giving a prior that is similar in

structure to the “g-prior” (Zellner, 1983). Conditional on knot points κ1, . . . , κM ,

we can specify any required prior autocovariance structure. For example, we

could specify a prior with high autocorrelation, thereby encouraging smooth-

ness in the semiparametric component. In our analysis, we specify V0 to be a

diagonal matrix such that the prior variation in the semiparametric function is

concentrated on the range ±2. This results in a required prior variance for the
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dose component to be specified by

G−1 = 10−3




14 13 12 11 11 10 9 8 6 5 2
13 12 11 11 10 9 8 7 6 4 2
12 11 11 10 9 9 8 7 6 4 2
11 11 10 10 9 8 8 7 6 4 2
11 10 9 9 9 8 7 6 5 4 2
10 9 9 8 8 7 7 6 5 4 1
9 8 8 8 7 7 6 5 5 3 1
8 7 7 7 6 6 5 5 4 3 1
6 6 6 6 5 5 5 4 4 3 1
5 4 4 4 4 4 3 3 3 2 1
2 2 2 2 2 1 1 1 1 1 1




This is a much more precise specification than the noninformative prior we

selected. However, it is much less precise than the prior deduced using the

empirical Bayes procedure based on ML/REML estimation of the components

of G; the parameters (σ̂1, σ̂2, σ̂3) that define the diagonal components of G are

(7.589e-08, 2.314e-06, 7.430e-04). Finally, as the prior is design-dependent, this

specification is only strictly appropriate for the fixed-knot case, and will change

in a straightforward fashion when the knot positions change.

The results from an analysis using this informative prior (and fixed knots)

are depicted in Figure 4, where results for the Non-Informative and Empirical

Bayes Priors are also shown for comparison. Overall, results are broadly similar

when the two fully Bayesian procedures are used, but the magnitude of the

various dose effects are estimated to be much larger than those estimated using

the empirical Bayes procedures. We note that the deduced empirical Bayes

prior has extremely (we argue unreasonably) high precision for several of the

components, and prefer the informative specification.
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Appendix C

Estimation of the Average Potential Outcome in a frequentist GPS analysis

The approach to estimating the Average Potential Outcome (APO) at dose level

d, µ(d), was described in Hirano and Imbens (2004) and proceeds as follows:

I. Estimate β in the predictive model for D given X = x, fD|X(d|x, β).

II. Compute the estimated GPS, r̂i = fD|X(di|xi, β̂).

III. Estimate α in the predictive model for Y given D = d and R = r̂,

fY |D,R(y|d, r̂, α).

IV. Estimate the APO at dose level d by

µ̂(d) = Ê[Y |D = d] =
1
N

N∑

i=1

EY |D,R[Yi(d)|D = d, r̂i = r̂(d, xi), α̂]

for d in a suitable range in D, where r̂ is evaluated at β = β̂. Then

µ̂(d), d ∈ D is the GPS-adjusted estimated dose-response function.

Several components in this model must be user-specified; the two key con-

ditional models fD|X(d|x, β) and fY |D,R(y|d, r, α) must be selected to reflect

the various relationships between the variables. However, the adequacy of both

components is testable in a straightforward statistical fashion.

Appendix D

Bayesian Posterior Calculation for Repeated Measures Data

Consider a linear model formulation using the notation introduced earlier, that

is where Y ∼ N(Xβ, R), where R is a block diagonal error covariance matrix

R = diag(R1, . . . , RN ). For example, the components of R can be specified via
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the exponential decay, or AR(1) autocorrelation functions. We focus on the

former for illustration.

To complete the specification, we use a diffuse (improper uniform) prior

specification for β and an improper Jeffreys-type prior on the positive pa-

rameters in the exponential autocovariance function; i.e., take p (β, λ, ζ, ν) =

(λζν)−1 and derive the posterior distribution. This factorizes p (β, λ, ζ, ν|y) =

p (λ, ζ, ν|y) p (β|y, λ, ζ, ν) where

p (λ, ζ, ν|y) ∝ | M3|−1/2

N∏

i=1

|Ri|1/2

exp
{
−1

2
[
M1 −MT

2 M−1
3 M2

]} 1
λζν

(D.3)

with

M1 =
N∑

i=1

yT
i R−1

i yi M2 =
N∑

i=1

XT
i R−1

i yi M3 =
N∑

i=1

XT
i R−1

i Xi

and β|y, λ, ζ, ν ∼ Np(M−1
3 M2,M3). The posterior distribution in equation (D.3)

is not available analytically, but inference may be carried out using Markov

chain Monte Carlo (MCMC) on the three parameter joint posterior. We use

a Metropolis update on a sweep of the conditionals, reparameterized onto the

log scale, and jointly on the block of the three parameters. The conditional

posterior for β given (λ, ζ, ν) can be sampled directly.

To extend the mixed model, a further level can be added to the hierar-

chy in some cases, although this is not sensible for the semiparametric compo-

nents. For example, fitting a random effects model is straightforward using a

Gibbs sampler. Denoting by η = (η1, ..., ηN ) the vector of child-specific ran-

dom effects (intercepts), the posterior of interest becomes the joint distribution

p
(
θ, λ, ζ, ν, η, σ2

η|y
)
, where σ2

η is the (unknown) random effect error variance,

which is included in the MCMC cycle; we might assign an Inverse Gamma
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prior with parameters 2.5 and 0.25. Then, conditional on η, the posterior for

(θ, λ, ζ, ν) is updated as in the fixed effect only model, with datum yij replaced

by yij − ηi. Conditional on (θ, λ, ζ, ν) and σ2
η, the posterior for ηi is univariate

Gaussian. Finally, conditional on all other parameters, the posterior for σ2
η is

Inverse Gamma.

A fully Bayesian analysis is also possible for the SPALM model. The poste-

rior distribution of the covariance parameters is identical to that in (D.3), but

with

M1 =
N∑

i=1

yT
i R−1

i yi M2 =
N∑

i=1

CT
i R−1

i yi M3 =
N∑

i=1

CT
i R−1

i Ci = CTR−1C.

where R ≡ R(λ, ζ, ν), and the posterior distribution for θ = [β u]T is multivari-

ate normal (dimension p + MK) with mean and variance

µ = (CTR−1C + B)−1CTR−1y Σ = (CTR−1C + B)−1

respectively. In addition, rather than using an improper uniform prior for β,

an informative prior can also be specified. In this case, the calculation proceeds

as before, with the marginal posterior for (λ, ζ, ν) sampled using Metropolis-

Hastings, and the conditional posterior for β (or (β, u)) multivariate normal.

Appendix E

MCMC for the Bayesian Generalized Propensity Score

To sample the posterior distribution for (α, β, γ), given the data (y, d, x), iterate

around the following cycle with parameter updating: at iteration m, let the

current values of the parameters be (α(m), β(m), γ(m)), and let r
(m)
1 , . . . , r

(m)
N be

defined by

r
(m)
i = fD|X(di|xi, β

(m), γ(m)).
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Let p(α, β, γ) be the joint prior distribution for the three parameters, and let

p(α) and p(β, γ) be the corresponding marginal priors. Then

1. Sample α(m+1) from full conditional p(α|y, d, x, β(m), γ(m)) using Metropolis-

Hastings, where

p(α|y, d, x, β, γ) ∝ fY |D,R(y|d, r, α)p(α)

proposing from some appropriate distribution and accepting/rejecting in

the usual fashion.

2. Sample (β(m+1), γ(m+1)) from full conditional p(β, γ|y, d, x, α(m+1)) using

Metropolis-Hastings as follows

(i) Propose candidate values (β(new), γ(new)) from some appropriate dis-

tribution, q, possibly functionally dependent on the current values

(β(m), γ(m)).

(ii) Compute for (β(new), γ(new))

r
(new)
i = fD|X(di|xi, β

(new), γ(new)).

(iii) For brevity, let

L(β, γ;α) = fY |D,R(y|d, r, α)fD|X(d|x, β, γ)

where the first term depends on β and γ through r. Define Λ as the

minimum of 1 and

L(β(newγ(new);α(m+1))
L(β(m), γ(m); α(m+1))

p(β(new), γ(new))
p(β(m), γ(m))

q(β(m), γ(m)|β(new), γ(new))
q(β(new), γ(new)|β(m), γ(m))

.

where the L terms depend on r(new) and r(m)) numerator and de-

nominator respectively.
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(iv) With probability Λ, set new values for parameters (β(m+1), γ(m+1))

equal to (β(new), γ(new)), else set them equal to (β(m), γ(m)).

After a sufficient number of iterations of this scheme, the required sample from

the joint posterior distribution is obtained.
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