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The value of a characteristic function of a random vari- 
able X at some real number t is the center of mass of 
the distribution of tX wrapped around the unit circle in 
the complex plane. This geometrical representation is 
used to illustrate how various properties of frequency 
functions and characteristic functions correspond and 
to illuminate the role of empirical characteristic func- 
tions in statistical inference. 
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1. INTRODUCTION 

In view of the one-to-one correspondence between 
frequency functions and characteristic functions, their 
Fourier transforms, models of distributions can be rep- 
resented equivalently by either function. In practice, 
the frequency function is the usual representation, be- 
cause it is the more intuitive concept and because the 
standard tools of statistical inference rely on the like- 
lihood function or the empirical distribution function. 
On the other hand, the characteristic function is the 
canonical representation of some useful distributions 
whose frequency functions cannot be expressed in closed 
form. The example most often encountered in applied 
work is the "stable" laws, the class of limit distribu- 
tions of sums of iid random variables, which are often 
used to model such "noisy" processes as common-stock 
returns. The difficulty of applying likelihood methods 
to these models led to the use of procedures based 
on the empirical characteristic function. For example, 
Paulson, Holcomb, and Leitch (1975) estimated pa- 
rameters of the stable distributions by minimizing a 
measure of the total distance between the empirical and 
stable cfs. Koutrouvelis (1980) devised a regression 
technique for the same problem, which exploits the 
particular functional form of the stable cf. Bryant and 
Paulson (1983) and others have described procedures 
for estimating parameters of mixture distributions, whose 
likelihoods-often unbounded-also make traditional 
inference difficult. These and other papers, notably those 
of Heathcote (1972, 1977). Feuerverger and Mureika 
(1977), and Csorgd (1981), stimulated the wider appli- 
cation of cf methods in inference. 

A particularly fertile application of the empirical cf 
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is to tests of various nonparametric hypotheses, such as 
goodness of fit, K-sample homogeneity, symmetry, and 
independence. Csorgd (1984) surveys techniques in these 
areas that are appropriate for random samples. Epps 
(1987, 1988) has described applications in the non-iid 
case also, for testing that time series are Gaussian or 
stationary. The usefulness of cf methods has been dem- 
onstrated even in areas to which frequency-based tools 
are well adapted, such as testing for normality (Bar- 
inghaus and Henze 1988; Epps and Pulley 1983; Hall 
and Welsh 1983), for two-sample homogeneity (Epps 
and Singleton 1986), and for exponentiality (Epps and 
Pulley 1986). In many cases the cf methods are ex- 
tremely easy to use, relying on statistics that are readily 
computed and interpreted. In some situations, such as 
testing for univariate and multivariate normality, it has 
been argued (Baringhaus, Danschke, and Henze 1989) 
that they are the best methods available. Still, it is safe 
to say that these new techniques are not yet widely used 
by applied statisticians. 

A factor that has limited the use of cf's in inference 
is that statisticians are accustomed to thinking of models 
in terms of frequency functions. Properties such as lo- 
cation, dispersion, skewness, and tail thickness have 
clear geometrical interpretations in this context. By 
contrast, although the mathematics behind many of the 
properties of cf's is straightforward-Lukacs (1970) is 
a definitive source-it is not easy to acquire an intuitive 
understanding. This article uses the geometrical rep- 
resentation of cf's to illuminate some of their properties 
and to further motivate their use in applied statistical 
inference. Section 2 develops the geometrical repre- 
sentation of the cf as the center of mass of a distribution 
wrapped around the unit circle. Several of the elemen- 
tary features of cf's are then explained in terms of this 
paradigm by means of illustrations. Section 3 describes 
the empirical cf and its applications in inference. 

2. 	 THE GEOMETRICAL REPRESENTATION OF 
cf's 

For a random variable X with distribution function 
F, the cf, evaluated at arbitrary real t, is the Fourier-
Stieltjes transform 

C(t) = J eir. . dF(x). 

In the absolutely continuous and purely discrete cases, 
C(t) is the ordinary Fourier traisform of the density 
function J ei" . f(x)dx, or of the probability function, 

' f ( ~ ) .  
The transformation elrX = cos(tX) + i . sin(tX) takes 
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Figure 1. Wrapped-Around Distributions of tX, X - N(0, I ) ,  at 
t = .0, .5, 1.0 and cf of N(0, 1) on [O, I ] .  

realizations of X from the real line to the perimeter of 
the unit circle in the complex plane. If a discrete vari- 
able X has positive probability mass at x ,  then in the 
distribution of the complex variable eitX this mass ap- 
pears at a point in the complex plane at angle tx from 
the real axis. For t # 0 the total mass at this point is 
the sum of masses at all points x + 27~jlt,j = 0, 1, 2, 
. . . . Thus in the discrete case the probability function 
of egX is that of tX wrapped around the unit circle. The 
same view applies in the continuous case also, upon 
substituting the concept of density for mass. Figure 1 
depicts the wrapped-around distributions of tXfor three 
values of t when X is N(0, 1). In the figure the values 
t = .O, t = .5, and t = 1.0 correspond to the base, 
center, and top of the cylinder. The circular contour at 
each elevation represents the complex plane, with the 
real axis appearing as the horizontal dotted line. The 
right-most point on each circle corresponds to (1, 0). 
Drawn on the side of the cylinder at each elevation, 
and centered on (1, O), is a wrapped-around normal 
curve with scale t. The distribution corresponding to 
t = 0 is of course degenerate, with unit mass at (1, 0). 

Since C(t) = E(eicX), the cf at t E R is merely the 
center of mass of the wrapped-around distribution of 
tX. The Cauchy distribution affords a familiar example 
of the fact that the distribution of X itself sometimes 
has no definite center of mass. Since expectations of 
unbounded functions such as efloften fail to exist, many 

random variables do not possess moment-generating 
functions (mgf's). On the other hand, as the center of 
mass of the wrapped-around distribution of tX, C(t) 
always exists, lying on or within the unit circle in the 
complex plane. It lies on the boundary of the circle, in 
which case lC(t)( = 1, iff the wrapped-around distri- 
bution is degenerate, with all the probability mass con- 
centrated at a single point. This is true, of course, if 
the distribution of tX itself is degenerate, as it always 
is at t = 0; but we shall see later that the distribution 
of elrX can be degenerate even when that of tX is not. 
A nondegenerate wrapped-around distribution clearly 
must have center of mass within the unit circle. Thus, 
taking the domain of C(.) to be the entire real line, we 
have the geometrical representation of the cf as a curve 
confined to an infinitely long circular cylinder- 
henceforth, the "unit" cylinder-and having the value 
(1, 0) at t = 0. The bold dashed line in Figure 1 rep- 
resents the standard-normal cf on the set [0, 11, and 
Figure 2 depicts that cf and two others on [O, 21. 

As the center of mass of the wrapped-around distri- 
bution, the cf corresponding to a frequency function 
that is symmetric about the origin clearly lies always on 
the real axis of the unit cylinder. Figure 1 illustrates this 
fact. If X has such a symmetric distribution and Y = 

X + p ,  then the distribution of eirY is merely that of 
eUX rotated by angle tp. As t varies, the center of mass 
of the distribution of eirY thus has a cyclic component 
that causes it to rotate about the center of the cylinder. 
The distance from the center, IC,(t)l, always equals 
lCX(t)l. The cf's of the distributions N(0, 1) and N(5, 
1) in Figure 2 illustrate this behavior. The third curve 
in Figure 2 depicts the cf of the degenerate random 
variable X = 5,  which always resides on the surface of 
the unit cylinder. At any t the cf of N(5 , l )  is the product 
of the cf's of N(0, 1) and of the degenerate variable. 
Since lC(t)l = 1only if the wrapped-around distribution 
of tX is degenerate, a cf can lie on the surface of the 
unit cylinder for all values of t only if the distribution 
of Xitself is degenerate. Because C(0) = (1,0) always, 
a cf can be constant only if C(t) = (1,0), which requires 
P{X = 0) = 1. 

Comparing the wrapped-around distributions of tX 
and - tX(t # 0), one is seen to be a mirror image of 
the other about the real axis. Since the real parts of 
their centers of mass are the same and the imaginary 

Figure 2. cf's of N(0, I ) ,  N(5, I ) ,  and a Degenerate Distribution on [O, 21. 
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parts are equal but of opposite sign, C(- t) is the com- 
plex conjugate of C(t); accordingly, the restriction of 
C(t) to [0, w) fully represents the function. 

We have seen that the cf of a degenerate random 
variable always resides on the surface of the unit cyl- 
inder. Consider the behavior of cf's of absolutely con-, 
tinuous random variables and of discrete variables whose 
distributions are supported on a lattice. In the contin- 
uous case, as f increases from zero the wrapped-around 
distribution of tX approaches that of a uniform distri- 
bution with density l i ( 2 ~ )  on the perimeter of the unit 
circle. (To visualize this approach to uniformity, it may 
help to think of wrapping the distribution of X itself 
about a circle of radius lit, and letting t -+ w.) Since 
the center of mass of this uniform distribution is at the 
origin, one can see that for an absolutely continuous 
random variable (rv) IC(t)( + 0 as t +m. On the other 
hand, the presence of an atom of mass at any point x 
would contribute to the cf a cyclic component, el" . 
P{X = x), that would keep it from damping out as 
t - +  a. 

Turning to lattice distributions, all of whose proba- 
bility mass is in the form of atoms on a subset of a 
collection of equally spaced points, consider first the 
simple case of a Bernoulli variate, with P{X = 0) = 

p = 1 - P{X = 1). The distribution of eltX has mass 
p at (1, 0) and mass 1 - p at e". As t increases from 
zero, the mass at eft moves around the unit circle until, 
at t = 21r, all the mass comes to reside at (1,0). Thus, 
the cf is periodic, with period 2 ~ .  This illustrates the 
fact that the distribution of elrX can be degenerate even 
when that of tX itself is not. More generally, if X has 
a distribution supported on two or more points of the 
set {a, a i d,  a 2d, . . .),d > 0, then adjacent mass 
points of the wrapped-around distribution of tX are 
points on the unit circle separated by angle td. For 
values of t that are integral multiples of 2 d d  all the 
mass is concentrated at the point e"". Thus, the modulus 
of the cf of any distribution supported on a lattice is 
periodic, with period 2 d d .  If the lattice representation 
allows a = 0, as in the Bernoulli case-indeed, when-
ever ald is rational-then C(t) itself is strictly periodic. 

Figure 3 depicts the periodic behavior of the binomial 

Ll' 

Figure 3. Periodic Behavior of the Binomial (4, .5) cf. 
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Figure 4. Oscillatory Behavior of cf's of Bimodal Distributions. 

(4, .5) cf (a = 0, d = 1). At  the bottom level, t = .25, 
the five probability masses, {(~)/16)$=,, are separated 
by the angle .25. As t increases to .25 + T, the masses 
corresponding to x = 1 and x = 3 rotate through angles 
.rr and 31r, to appear just opposite their first positions, 
while the masses at 2 and 4 move around the circle once 
and twice to their original places. At  the top level, t = 

.25 + 21r, all reoccupy the starting positions. 
Just as the cf of a distribution with atoms never 

damps out, the degree of oscillatory behavior of the cf 
of an absolutely continuous distribution depends on the 
smoothness of the pdf. For example, cf's of unimodal 
distributions are typically better behaved than those of 
bimodal distributions. When the distribution of tX is 
bimodal, the center of mass of the wrapped-around 
distribution oscillates as t increases, the modes first 
spreading apart, achieving at least partial balance, 
spreading again, and eventually overlapping. The pro- 
cess is depicted in Figure 4. On the left are wrapped- 
around distributions and cf of the Laplace with mean 
zero and scale .25, denoted L(O, .25). The right figure 
pertains to an equal mixture of L ( -  1, .25) and L ( l ,  
.25). By comparing distributions with real-valued cf's- 
here, (1 + t2116)-' and cos(t) . (1 + t2/16)-I--we focus 
on the effect of bimodality per se. The sign of the cf of 
the mixture alternates as t increases and the relative 
positions of the modes change. The distance between 
the modes governs the frequency of oscillation, and 
their sharpness governs the amplitude. The oscillation 
ultimately dies out as the wrapped-round distribution 
nears uniformity. 

It is well-known that the existence of the mgf implies 
the existence of all moments and that these can be found 
by differentiating the mgf at the origin. The cf generates 
moments in much the same way; in particular, E(Xh)= 
i -k  . C(k)(t)ll,O. Evidently, the thinness of a distribu- 
tion's tails, which governs the existence of moments, 
is connected with the differentiability of C(t) at t = 0. 
A geometrical interpretation of this feature is available. 
Figure 5 depicts wrapped-around distributions and the 
cf of X - L(5, 1) and of Y - Cauchy(median 5.0, scale 
1.0). At t = 0, both wrapped-around distributions are, 
of course, concentrated at (1, 0). As It1 increases, the 
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Figure 5. Greater Smoothness at t = 0 of cf's of Thin-Tailed 
Distributions. 

Cauchy's thick tails cause the center of mass of the 
distribution of eUY to move so sharply toward the origin 
that C,(t) = e5"-1' fails to be differentiable at t = 0. 
On the other hand, the cf of the thin-tailed Laplace 
distribution, Cx(t) = e5"l(l + t2), is very smooth. 

The Laplace and Cauchy distributions happen to be 
natural conjugates, in the sense that the modulus of the 
cf of each has the same form as the pdf of the other- 
specifically, fx(t) ICy(t)l and fy(t) x lCx(t)]. This spe- 
cial conjugate relation allows Figure 5 to illustrate a 
general form of symmetry between cf's and frequency 
functions, arising from their relationship as Fourier- 
transform pairs: Just as smoothness of the cf at t = 0 
is associated with thin tails in the distribution, smooth- 
ness of the pdf at x = 0 corresponds to a thin-tailed cf. 

An essential property of cf's is their one-to-one cor- 
respondence with distribution functions. (Indeed, it is 
this uniqueness that makes them "characteristic.") It is 
not at all uncommon for distinct distributions Fx and 
Fy to have cf's that coincide at certain nonzero values 
of t. (Of course, they invariably coincide at t = 0.) For 
example, the standard-normal and Cauchy cf's are equal 
at t = 2 2 ,  and we have seen that all distributions 
supported on the nonnegative integers coincide at in- 
tervals of 2 ~ .On the other hand, the uniqueness 
theorem (Lukacs 1970, pp. 28-29) rules out the pos- 
sibility that cf's of distinct distributions could coincide 
for all t. Let us see how the geometry of cf's makes this 
intuitively plausible. The difference between two cf's, 
Cx(t) - C,(t) = J" exp(itx) . dFx(x) - J" exp(ity) . 
dFy(y) = J" exp(its) . d[Fx(s) - Fy(s)], can be viewed 
as the center of mass of an improper wrapped-around 
distribution with zero net mass but (signed) mass 
d[Fx(s) - F,(s)] on the arc from exp(its) to exp[it(s + 
ds)]. For example, with discrete X and Y there will be 
"masses" fx(s) - fy(s) and fX(s1) - fY(s1) on the unit 
circle at angles ts and ts' from the real axis, and as t 
increases these will move around the unit circle at dif- 
ferent rates. The condition Cx - C, = (0, 0) requires 
this improper wrapped-around distribution always to 
have center of mass at the origin. Intuitively, this seems 
to rule out any nonuniformity in d[Fx(s) - F,(s)], for 
as t changes the relative positions of local irregularities 
in the wrapped-around distribution would change-and 
thereby move the center of mass. But the improper 
wrapped-around distribution, having zero net mass, could 

be constant on the unit circle only by being uniformly 
zero. This implies that Fx = F,. 

Although we do not treat them here, we note that 
certain other features of cf's, such as the form taken by 
cf's of mixture distributions and of convolutions, also 
have geometrical interpretations when the cf's are viewed 
as centers of mass of wrapped-around distributions. As 
for mgf's, the cf of a sum of independent random vari- 
ables is the product of their cf's, and the cf of a mixture 
is a convex linear combination of the individual cf's. 

3. THE EMPIRICAL cf 

If F,, is the empirical distribution function (df) cor- 
responding to a sample, {X,};'=,,from a population with 
distribution F, the empirical cf is 

As the center of mass of the wrapped-around empirical 
distribution of tX, C,,(t) behaves like the cf of a discrete 
rv. When F is absolutely continuous, then F,, is a.s. 
not supported on a lattice, so that C,, is not strictly, 
but almost periodic (Feuerverger and Mureika 1977). 
(In practice there is strict periodicity even in the con- 
tinuous case because of rounding.) In any case, C,,(.) 
is a complex-valued stochastic process whose realiza- 
tions are confined to the unit cylinder. Empirical cf's 
corresponding to samples of size n = 10 and n = 100 
from a standard-normal population are illustrated in 
Figure 6. Note the apparent tendency for C,, to converge 
to C as n increases. 

In fact, when {X,};'=,are iid, many of the large-sample 
properties of C,, follow rigorously from the almost-sure 
uniform convergence of F,, to F. Feuerverger and Mu- 
reika (1977) prove the a.s. uniform convergence of C,, 
to C on any finite interval-on (-m, m) if F is a step 
function; and Marcus (1981) proves that when F satis-
fies a weak tail condition the normalized process fi. 
(C,, - C) converges weakly to a zero-mean, complex 
Gaussian process whose covariance function depends 
on C. Epps (1987) extends the latter result to the case 

Figure 6. cf and Two ecf's From N(1, 1) Population, Sample Sizes 
10 and 100. ...., C,(t), n = 10; ---, C,(t), n = 100; -, C(t). 
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in which the sample data are themselves the realization 
of a discrete-time, stationary, Gaussian process-a re-
sult which opens up applications of the empirical cf in 
time-series analysis. Although these results are quite 
deep, the weaker, finite-dimensional versions of the 
theorems are obvious, at least in the iid case, from the 
geometrical interpretation of C,, as the center of mass 
of the empirical distribution of {exp(itX,));=,. These 
asymptotic properties form the basis for applications of 
C,, in statistical inference. 

Many of these applications use one of the following 
types of functionals of the distance between the cf's of 
the sample and the model: 

where D{., .) measures distance and W is a weighting 
function. For example, taking D{C,,, C) = IC,, - CI2 
and Wit) = J?, exp(-cru2)du, cr > 0, Paulson et al. 
(1975) and Bryant and Paulson (1983) estimated pa- 
rameters of the stable laws and mixtures of normals by 
minimizing SIC,(t) - C(t)I2 . exp( - at2) . dt. Heathcote 
(1977) showed that such "integrated squared-error" es- 
timators are usually consistent and related their asymp- 
totic relative efficiency to the choice of W. Epps and 
Pulley (1983) and Baringhaus and Henze (1988) used 
similar integrated-distance statistics in testing univariate 
and multivariate normality. Using D{C,,, C) = C,, - C 
and a certain complex-valued W, Epps and Pulley (1986) 
obtained from (1) a simple and powerful test for ex- 
ponentiality. Feuerverger and McDunnough (1981a, b) 
and Koutrouvelis and Kellermeier (1981) developed 
methods of estimation and tests of fit based on quadratic 
forms in differences {C,(t,) - C(t,)),k=, on a finite set 
of points. Functionals like (2) can take such forms if 
W(s, t) is a step function. The efficiency of minimum- 
distance estimators of this type can be high if W(s, t) 
and the {t,) are appropriately chosen. 

An example of testing univariate normality will il- 
lustrate these distance methods. The data {x,)~!, -
(-8.62, -2.88, -1.26, -1.03, -.62, .13, .47, .70, 
1.28, 1.79) are a sample of 10 from a standard Laplace 
distribution, ordered just for display. They were gen- 
erated by mixing standard exponential variates, ob- 
tained via the inverse probability integral transform with 
the RAN1 generator in Press, Flannery, Teukolsky, and 
Vetterling (1989), initial seed -4. Figure 7 compares 
he empirical df of the standardized data, lj,= (x, -

Z)/s)fO,,with the standard-normal df. The outlier in the 
left tail is prominent. The solid curve in Figure 8 shows 
the squared modulus of the difference between the em- 
pirical and normal cf's weighted by dW(t) = (23~)-I/2. 
exp( - t2/2). The large peak around It1 = 1.5, suggesting 
poor fit, is greatly diminished when the outlier is ex- 
cluded (the dashed curve). The total area under the 
curve, S:IC,,(t) - C(t)I2 . dW(t), which is the statistic 
used in the Epps-Pulley-Baringhaus-Henze test, turns 
out to be a simple function of the standardized obser- 
vations: n-I  . 2 C exp[-(y, - yJ2/2] - fi . 
Z exp(-yfi4) + n*. Large values indicate departure 

- - Norma l  
-- Loplace sample 

Figure 7. Empirical df of Standardized Laplace and df of Normal, 
Sample Size 10. 

from normality. Its value for the full sample of Laplace 
data, 3 2 ,  implies rejection at the .O1 level, whereas 
the value without the outlier, .049, is quite consistent 
with normality. 

The role of W in this and the other tests based on 
(1) or (2) can be related to the geometrical behavior of 
the empirical cf. We have seen that the cf of an abso- 
lutely continuous distribution approaches (0, 0) as t -+ 
m, whereas the ecf is periodic. One purpose of W, there- 
fore, is just to assure convergence of the integrals. An- 
other is to give the distances D{C,,(t), C(t)} high influ- 
ence at values of t where C,,(t) has high precision. It is 
easy to show that for any real s ,  t 

The quadratic forms used by Feuerverger and Mc- 
Dunnough (1981a), Koutrouvelis and Kellermeier (1981), 
and Epps (1987) weight vectors of differences between 
real and imaginary parts of the ecf and cf by the inverse 
of an appropriate covariance matrix, with elements sim- 
ilar to (3). In this way the test statistic-the minimum 
of the quadratic form with respect to the parameters- 
is made asymptotically distribution free. 

Taking s = - t  in (3) shows that the precision of C,, 
declines as jC(t)j departs from unity, a fact that has a 
ready geometric interpretation. IC(t)l = 1 only if the 
wrapped-around distribution of tXis nearly degenerate. 

Figure 8. We~ghted Squared Modulus, Laplace ecf- Normal cf, 
With and Without Outlying Observation. 
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The probability is then high that the sample points, 
{exp(itX,)};',,, will be highly concentrated, so that the 
mean will have small variance. By contrast, IC(t)l = 0 
implies that the distribution of eitX is highly dispersed, 
so that there will be high variation in n-I . I: exp(itX,) 
also. In practice, the ecf tends to be most informative 
near the origin. 

4. SUMMARY 

C(t), the characteristic function of a random variable 
X evaluated at some real number t, has a geometrical 
interpretation as the center of mass of the distribution 
of tX wrapped about the unit circle in the complex 
plane. This interpretation clarifies the elementary prop- 
erties of cf's and relates them to the properties of fre- 
quency functions. The geometrical view also illuminates 
some of the features of inferential techniques that em- 
ploy the empirical cf. 
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