
556: MATHEMATICAL STATISTICS I

MODES OF STOCHASTIC CONVERGENCE
The following definitions describe the different modes of convergence that are considered for se-
quences of random variables and their distributions. The definitions are stated in terms of scalar
random variables, but extend naturally to vector random variables. For example, some results are
stated in terms of the Euclidean distance in one dimension

|Xn − X| =
√

(Xn − X)2

but this can be extended to the general Euclidean distance for sequences of k-dimensional random
variables Xn

˜
= (Xn1, . . . , Xnk)T,

‖Xn
˜
− X

˜
‖ =


k∑

j=1

(Xn j − X j)2


1/2

.

1. CONVERGENCE IN DISTRIBUTION

DEFINITION: CONVERGENCE IN DISTRIBUTION
Consider a sequence of random variables X1, X2, . . . and a corresponding sequence of cdfs, FX1 , FX2 , . . .

so that for n = 1, 2, .. FXn(x) =P[Xn ≤ x] . Suppose that there exists a cdf, FX , such that for all x at which
FX is continuous,

lim
n−→∞ FXn(x) = FX(x).

Then X1, . . . , Xn converges in distribution to random variable X with cdf FX , denoted

Xn
d−→ X

and FX is the limiting distribution.

Convergence of a sequence of mgfs also indicates convergence in distribution, that is, if for all t at

which MX(t) is defined, if as n −→ ∞, we have MXi(t) −→ MX(t)⇐⇒ Xn
d−→ X.

DEFINITION: DEGENERATE DISTRIBUTIONS
The sequence of random variables X1, . . . , Xn converges in distribution to constant c if the limiting
distribution of X1, . . . , Xn is degenerate at c, that is,

Xn
d−→ X

and P[X = c] = 1, so that

FX(x) =

{
0 x < c
1 x ≥ c

Interpretation: A special case of convergence in distribution occurs when the limiting distribution is
discrete, with the probability mass function only being non-zero at a single value, that is, if the limiting
random variable is X, then P[X = c] = 1 and zero otherwise. The following theorem illustrates another
aspect of convergence in distribution.

THEOREM
The sequence of random variables X1, . . . , Xn converges in distribution to c if and only if, for all ε > 0,

lim
n−→∞ P [|Xn − c| < ε] = 1

This theorem indicates that convergence in distribution to a constant c occurs if and only if the proba-
bility becomes increasingly concentrated around c as n −→ ∞.
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2. CONVERGENCE IN PROBABILITY

DEFINITION: CONVERGENCE IN PROBABILITY TO A CONSTANT
The sequence of random variables X1, . . . , Xn converges in probability to constant c, denoted

Xn
p−→ c

if
lim

n−→∞P [|Xn − c| < ε] = 1

or, equivalently,
lim

n−→∞ P [|Xn − c| ≥ ε] = 0

that is, if the limiting distribution of X1, . . . , Xn is degenerate at c.

Interpretation : Convergence in probability to a constant is precisely equivalent to convergence in
distribution to a constant.

THEOREM (WEAK LAW OF LARGE NUMBERS)
Suppose that X1, . . . , Xn is a sequence of i.i.d. random variables with expectation µ and finite variance
σ2. Let Yn be defined by

Yn =
1
n

n∑

i=1

Xi

then, for all ε > 0,
lim

n−→∞ P
[|Yn − µ| < ε] = 1,

that is, Yn
p−→ µ, and thus the mean of X1, . . . , Xn converges in probability to µ.

Proof. Using the properties of expectation, it can be shown that Yn has expectation µ and variance σ2/n,
and hence by the Chebychev Inequality,

P
[|Yn − µ| ≥ ε] ≤ σ2

nε2 −→ 0 as n −→ ∞

for all ε > 0. Hence
P

[|Yn − µ| < ε] −→ 1 as n −→ ∞
and Yn

p−→ µ.

DEFINITION: (CONVERGENCE IN PROBABILITY TO A RANDOM VARIABLE)
The sequence of random variables X1, . . . , Xn converges in probability to random variable X, denoted
Xn

p−→ X, if, for all ε > 0,
lim

n−→∞ P [|Xn − X| < ε] = 1

or, equivalently,
lim

n−→∞ P [|Xn − X| ≥ ε] = 0
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3. CONVERGENCE ALMOST SURELY

DEFINITION: ( CONVERGENCE ALMOST SURELY)
The sequence of random variables X1, . . . , Xn converges almost surely to random variable X, denoted

Xn
a.s.−→ X

if
P

[
lim

n−→∞ |Xn − X| < ε
]

= 1,

that is, if A ≡ {ω : Xn(ω) −→ X(ω)}, then P(A) = 1.

Alternative characterization:

• Let ε > 0, and the sets An(ε) and Bn(ε) be defined by

An(ε) ≡ {ω : |Xn(ω) − X(ω)| > ε} Bm(ε) ≡
∞⋃

n=m

An(ε).

Then Xn
a.s.−→ X if and only if

P(Bm(ε)) −→ 0 as m −→ ∞.

Interpretation:

– The event An(ε) corresponds to the set of ω for which Xn(ω) is more than ε away from X.
– The event Bm(ε) corresponds to the set of ω for which Xn(ω) is more than ε away from X, for

at least one n ≥ m.
– The event Bm(ε) occurs if there exists an n ≥ m such that |Xn − X| > ε.
– Xn

a.s.−→ X if and only if and only if P(Bm(ε)) −→ 0.

• Xn
a.s.−→ X if and only if

P[ |Xn − X| > ε infinitely often ] = 0

that is, Xn
a.s.−→ X if and only if there are only finitely many Xn for which

|Xn(ω) − X(ω)| > ε

if ω lies in a set of probability greater than zero.

Alternative terminology:

• Xn −→ X almost everywhere, Xn
a.e.−→ X

• Xn −→ X with probability 1, Xn
w.p.1−→ X

Interpretation: A random variable is a real-valued function from sample space Ω to R . The sequence
of random variables X1, . . . , Xn corresponds to a sequence of functions defined on elements of Ω. Al-
most sure convergence requires that the sequence of real numbers Xn(ω) converges to X(ω) (as a real
sequence) for all ω ∈ Ω, as n −→ ∞, except perhaps when ω is in a set having probability zero under
the probability distribution of X.
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THEOREM (STRONG LAW OF LARGE NUMBERS)
Suppose that X1, . . . , Xn is a sequence of i.i.d. random variables with expectation µ and (finite)
variance σ2. Let Yn be defined by

Yn =
1
n

n∑

i=1

Xi

then, for all ε > 0,
P

[
lim

n−→∞ |Yn − µ| < ε
]

= 1,

that is, Yn
a.s.−→ µ, and thus the mean of X1, . . . , Xn converges almost surely to µ.

4. CONVERGENCE IN rth MEAN

DEFINITION: ( CONVERGENCE IN rth MEAN)
The sequence of random variables X1, . . . , Xn converges in rth mean to random variable X, denoted

Xn
r−→ X

if
lim

n−→∞ E
[|Xn − X|r] = 0.

For example, if
lim

n−→∞ E
[
(Xn − X)2

]
= 0

then we write
Xn

r=2−→ X.

In this case, we say that {Xn} converges to X in mean-square or in quadratic mean.

THEOREM
For r1 > r2 ≥ 1,

Xn
r=r1−→ X =⇒ Xn

r=r2−→ X

Proof. By Lyapunov’s inequality

E[ |Xn − X|r2 ]1/r2 ≤ E[ |Xn − X|r1 ]1/r1

so that
E[ |Xn − X|r2 ] ≤ E[ |Xn − X|r1 ]r2/r1 −→ 0

as n −→ ∞, as r2 < r1. Thus
E[ |Xn − X|r2 ] −→ 0

and Xn
r=r2−→ X.

Note : The converse does not hold in general.

4



5. RELATING THE MODES OF CONVERGENCE

THEOREM
For sequence of random variables X1, . . . , Xn, following relationships hold

Xn
a.s.−→ X

u

t
Xn

r−→ X

Xn
p−→ X =⇒ Xn

d−→ X

so almost sure convergence and convergence in rth mean for some r both imply convergence in
probability, which in turn implies convergence in distribution to random variable X.

No other relationships hold in general.

Proof. (a) Xn
a.s.−→ X =⇒ Xn

p−→ X. Suppose Xn
a.s.−→ X, and let ε > 0. Then

P[ |Xn − X| < ε ] ≥ P[ |Xm − X| < ε, ∀m ≥ n ] (1)

as, considering the original sample space,

{ω : |Xm(ω) − X(ω)| < ε, ∀m ≥ n} ⊆ {ω : |Xn(ω) − X(ω)| < ε}

But, as Xn
a.s.−→ X, P[ |Xm − X| < ε, ∀m ≥ n ] −→ 1, as n −→ ∞. So, after taking limits in equation (1),

we have
lim

n−→∞ P[ |Xn − X| < ε ] ≥ lim
n−→∞ P[ |Xm − X| < ε, ∀m ≥ n ] = 1

and so
lim

n−→∞ P[ |Xn − X| < ε ] = 1 ∴ Xn
p−→ X.

(b) Xn
r−→ X =⇒ Xn

p−→ X. Suppose Xn
r−→ X, and let ε > 0. Then, using an argument similar to

Chebychev’s Lemma,

E[ |Xn − X|r ] ≥ E[ |Xn − X|rI{|Xn−X|>ε} ] ≥ εrP[|Xn − X| > ε].

Taking limits as n −→ ∞, as Xn
r−→ X, E[ |Xn − X|r ] −→ 0 as n −→ ∞, so therefore, also, as n −→ ∞

P[|Xn − X| > ε] −→ 0 ∴ Xn
p−→ X.

(c) Xn
p−→ X =⇒ Xn

d−→ X. Suppose Xn
p−→ X, and let ε > 0. Denote, in the usual way,

FXn(x) = P[Xn ≤ x] and FX(x) = P[X ≤ x].

Then, by the theorem of total probability, we have two inequalities

FXn(x) = P[ Xn ≤ x ] = P[ Xn ≤ x, X ≤ x + ε ] + P[ Xn ≤ x, X > x + ε ] ≤ FX(x + ε) + P[ |Xn − X| > ε]

FX(x − ε) = P[ X ≤ x − ε ] = P[ X ≤ x − ε, Xn ≤ x ] + P[ X ≤ x − ε, Xn > x ] ≤ FXn(x) + P[ |Xn − X| > ε].
as A ⊆ B =⇒ P(A) ≤ P(B) yields

P[ Xn ≤ x, X ≤ x + ε ] ≤ FX(x + ε) and P[ X ≤ x − ε, Xn ≤ x ] ≤ FXn(x).
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Thus
FX(x − ε) − P[ |Xn − X| > ε] ≤ FXn(x) ≤ FX(x + ε) + P[ |Xn − X| > ε]

and taking limits as n −→ ∞ (with care; we cannot yet write

lim
n−→∞ FXn(x)

as we do not know that this limit exists) recalling that Xn
p−→ X,

FX(x − ε) ≤ lim inf
n−→∞ FXn(x) ≤ lim sup

n−→∞
FXn(x) ≤ FX(x + ε)

Then if FX is continuous at x, FX(x − ε) −→ FX(x) and FX(x + ε) −→ FX(x) as ε −→ 0, and hence

FX(x) ≤ lim inf
n−→∞ FXn(x) ≤ lim sup

n−→∞
FXn(x) ≤ FX(x)

and thus FXn(x) −→ FX(x) as n −→ ∞.

THEOREM (Partial Converses)

(i) If
∞∑

n=1

P[ |Xn − X| > ε ] < ∞

for every ε > 0, then Xn
a.s.−→ X.

(ii) If, for some positive integer r,
∞∑

n=1

E[ |Xn − X|r ] < ∞

then Xn
a.s.−→ X.

Proof. (i) Let ε > 0. Then for n ≥ 1,

P[ |Xn − X| > ε, for some m ≥ n ] ≡ P


∞⋃

m=n

{|Xm − X| > ε}
 ≤

∞∑

m=n

P[ |Xm − X| > ε ]

as, by elementary probability theory, P(A ∪ B) ≤ P(A) + P(B). But, as it is the tail sum of a
convergent series (by assumption), it follows that

lim
n−→∞

∞∑

m=n

P[ |Xm − X| > ε ] = 0.

Hence
lim

n−→∞ P[ |Xn − X| > ε, for some m ≥ n ] = 0

and Xn
a.s.−→ X.

(ii) Identical to part (i), and using part (b) of the previous theorem that Xn
r−→ X =⇒ Xn

p−→ X.
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