MATH 556 - EXERCISES 2: SOLUTIONS

1 We have fr(r) =6r(1 —r), for 0 < r < 1, and hence
Frir)=72(3—-2r) 0<r<l1
with the usual cdf behaviour outside of this range.

e Circumference: Y = 27R, so Y = (0, 27), and from first principles, fory € Y,

3y 23
Fy(y) :P[Yﬁy]:P[QWRSZ/}:P[RSQ/QW]:FR@/QW):R—S?
6y
8 Q3

e Area: Z = nR?, 50 Z = (0,7), and from first principles, for z € Z, recalling that fr is only
positive when 0 < z < ,

= fr(y) 2r—y) 0<y<2m

Fy(z) =P[Z<z]=P[xR2<z2]=P[R< \/z/7]=Fr(z/2m) = > 2{3}3/2

m T
— fz(2) =3n32%(/m—z) 0<z<m.
2 If X®=(0,1) x (0,1) is the (joint) range of vector random variable (X,Y). We have
Ixy(z,y) =cx(l—y) 0<z<l,0<y<l1

so that
fxy(z,y) = fx(x)fy(y) and X® =X xY

where X and Y are the ranges of X and Y respectively, and

fx(@)=cxz and  fy(y) =c2(1—y) (1)

for some constants satisfying cico = c¢. Hence, the two conditions for independence are satisfied
in (1), and X and Y are independent.

Secondly, we must have

/_Z /_Z (@ y) dedy =1 = /01 /Olfc(l —y) dady = 1
// (1—y dxdy—{/ xdx}{/ol(l_y)dy}:

Finally, we have A = {(z,y) : 0 < z < y < 1}, and hence, recalling that the joint density is only
non-zero when = < y, we first fix a y and integrate dx on the range (0, y), and then integrate dy
on the range (0, 1), that is

PIX<Y] = /ny(x,y)d:I:dy:/Ol{/Oyélx(l—y)dx}dy
A
= /01{/wadw}4(1—y)dy=/012y2(1—y)dy=Ey?’—;y“];:é
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and as

N | —
N | —
N

we have ¢ =



3 First sketch the support of the density; this will make it clear that the boundaries of the support
are different for0 < y < land y > 1.

(i) The marginal distributions are given by

& r o1 1 log x
fx(x) = / Ixy(x,y)dy = / sy dy = ;—(logz —log(1l/z)) = g2 1<z
oo 1/z 2T 2x T

Jx 2
> 1 1
Ty () 2/ Ixy(z,y) do =
(ii) Conditionals:
1

—_ 1Jy<zif0<y<1

fX,Y €T,y x2y

fylaly) =208
Iy () Y .

= y<zifl<y
T

fX,Y('rvy) 1

Iz <y<zifz>1

(iii) Marginal expectation of Y’;

1
0 2

Ep[Y]= / —o0ooy fy (y) dy = /
as the second integral is divergent.

4 (i) We set
= /2
V = —log(XY) Y = U1/2e7V/2

note that, as X and Y lie in (0,1) we have XY < X/Y and XY < Y/X, giving constraints
e™V <Uande ™V < 1/U,sothat0 < eV < min {U, 1/U}. The Jacobian of the transforma-

tion is
u—1/2-v/2 w2612
22
|J(u,v)| = =ute7v/2.
u=3/2e-v/2 4 —1/2-v/2
2 2
Hence
fov(u,v) =ute /2 0<e’<min{u,1/u}, u>0
The corresponding marginals are given below: let g(y) = —log(min {u, 1/u}), then
oY) o ,—v —v : 1
fu(u) 2/ fov(u,v) dv:/ C dv= [—e] _ min{u, Lju} u >0
o o(y) 2u 2 Jg(y) 2u
o ey logu _,1¢ o
fv(v) = fov(u,v) du= 5 du = 5 € = ve v>0
o e—v 2U o—v
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(i) Now let

V+Z
V=X+Y X=—
—
X -z
Z=X-Y Y:V2

and the Jacobian of the transformation is 1/2. The transformed variables take values on the
square A in the (V, Z) plane with corners at (0,0), (1,1), (2,0) and (1, —1) bounded by the
linesz = —v,z2=2—v,z=wvand z = v — 2. Then

fvz(v,z) = % (v,2) € A

and zero otherwise (sketch the square A). Hence, integrating in horizontal strips in the
(V, Z) plane,

24z
/ —dv =1+=z -1<2<0
_, 2

fz(z) = / Jv,z(v,z) dv =
—00 /2Z
—dv =1-—2z2 O<zx1

5 We have Kx(t) = log Mx(t), hence

W)y - @ _d _ Mo Mgy — _
K(0) = g (K (®omy = g Qoe Mx(O}hioy = s = KX (0) = 7 = Bp[ X

as Mx(0) = 1. Similarly

and hence

{Mx(0)}”

and hence Kg?) (0) =Vars [ X]

6 (i) PutU = X/Y and V = Y; the inverse transformations are therefore X = UV and Y =
V. In terms of the multivariate transformation theorem, we have transformation functions
defined by

g1(t1,t2) = t1/t2 gfl(t1,t2) = t1to

g2(t1,t2) = to 95 ' (t1,t2) = to

and the Jacobian of the transformation is given by

and hence

fuw (u,0) = festu) 1ol = (5 ) e { G2 42 f . o) e
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and zero otherwise, and so, for any real u,

:/_Zny(u,v) dv :/_Z (;) exp{ ;(u%%v }|v| dv
= <71T) /Ooouexp{l);(1+u2)} dv
-(3) Farmee - z0e)], = mvm

with the final step following by direct integration. Thus U has a Cauchy distribution.

(ii) Now put T' = X/,/S/v and R = S; the inverse transformations are therefore X = T/R/v
and S = R. In terms of the multivariate transformation theorem, we have transformation
functions from (X, S) — (7', R) defined by

g1(t1,t2) = t1/\/t2/v g1 (1, t2) = tin/ta /v

g2(t1,t2) = ta 95 ' (t1,t2) = to

and the Jacobian of the transformation is given by

and hence

frr(t.r) = fxs <t\[ r) \/Z fx (t\/j) fs (r) \/Z teR,s € RT

and zero otherwise, and so, for any real ¢,

:/Oo fT’R(t,T) d?“
© 1\ rt2 (/2% oy [T
[T (e) e e
1/2 1//2 2
:(%) (1/2V/2 f/ (v1)/2- 1exp{ 2(1+’;)}dr

v —(v+1)/2 0
1/2 (1/2)¥/2) - ﬁ v+1)/ / Z(y+1)/2—1exp{_f} da
27‘(’ Vv T(v/2) v 0 2

N

after setting

Hence

1\"? (1/2)¥/» 2\ U2 w1 1)/2 4+ 1)
fr) = = <2w> VU T(v/2) (“) (1/2) 07

v
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as the integrand is proportional to a Gamma pdf. Thus

fT(t):F<V;—1> (1 )1/2( !

v p— 14 2/, +D/2
I‘<2> +t2/v)

which is the Student(v) density.

(iii) We have that X|Y =y ~ N(0,y~!)and Y ~ Gamma(v/2,v/2). Now, we have
fxy(@,y) = fxy(ely)fr(y)  reRyeR”

and zero otherwise, and so, for any real z,

@ = [ fevwdy

2
"
-G [ ()

L (%)
T ()

as the integrand is proportional to a Gamma pdf. Therefore fx is given by

1/7—1—1
e s 10—

which is again the Student(v) density.

Exercise 6 give the two alternative ways of specifying the Student-t distribution, either as a func-
tion of independent Normal and Gamma/Chi-squared variables, or as the marginal obtained by
“scale-mixing” a Normal distribution by a Gamma distribution (that is, rather than having a fixed
variance 02 = 1/Y; we regard Y as a random variable having a Gamma distribution, so that (X,Y")
have a joint distribution

Ixy(@,y) = fxy(@|y) fy (y)

from which we calculate fx (z) by integration.
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