
2.2.2 Model Checking

Using the General Linear Model approach to regression, we can fit
models with different numbers of predictors, and

I assess whether any individual covariate is influential in the
model (look at β̂, s

β̂
and t-statistics

I assess whether there is any explanatory power in the variables
combined (look at ANOVA statistics)
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For the multiple regression model, the ANOVA table takes the form

SOURCE DF SS MS F

REGRESSION k SSR MSR F =
MSR

MSE

ERROR n − k − 1 SSE MSE

TOTAL n − 1 SS

where

MSR =
SSR

k
MSE =

SSE

n − k − 1

the F statistic is

F =
MSR

MSE

and if H0 is true

F ∼ Fisher-F(k, n − k − 1)
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Here

H0 : β1 = β2 = · · · = βk = 0

Ha : At least one βj 6= 0

The model for H0 has one parameter β0.
The model for Ha has k + 1 parameters

β0, β1, β2, . . . , βk

Therefore the number of extra parameters for model Ha is

(k + 1)− 1 = k

i.e. to obtain model H0 from model Ha we constrain k parameters
to be zero.
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Because we can constrain model Ha by setting some parameters
equal to zero to obtain model H0, we say that

Model H0 is nested inside Model Ha

The number, k, of constraints β1 = β2 = · · · = βk = 0 explains
why the ANOVA table Regression degrees of freedom is k

- the multiple regression brings in k extra parameters.
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In addition, we can use the R2 or Adjusted R2 statistic to check
overall model adequacy

R2 = 1− SSE

SSyy
=

SSyy − SSE

SSyy
=

SSR

SS

which is equal to

VARIATION EXPLAINED BY THE REGRESSION

TOTAL VARIATION

Also

Adj. R2 = 1− SSE/(n − k − 1)

SS/(n − 1)

R2 > 0.7 implies that the model is a good fit, that is, most of the
variation observed is explained by the regression model.
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We can now fit completely general models in the form of the
General Linear Model; if y is the response, and x1, . . . , xk are the
covariates or factor predictors, we can include combinations of

I Polynomial Main Effects : xj , x
2
j , x3

j , . . .

I Two-way Interactions: xj1 . xj2

I Three-way Interactions: xj1 . xj2 . xj3

etc.
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In SPSS, we can use the

General Linear Model → Univariate

pulldown menus to build and fit the model.

I To fit factor predictors, we used the Fixed Factor option

I To build models, we use the

Model → Custom

selections on the Univariate dialog
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Dummy Variables

Recall that we can fit the factor predictor using the Linear
Regression pulldown if we create dummy variables.

For example, if factor predictor X has L levels, we create L new
binary predictors X1, . . . ,XL, where, for l = 1, . . . , L

Xl =

{
1 whenever X = l
0 otherwise

We can then include X1, . . . , XL in the regression model.
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Example (L = 4)

X X1 X2 X3 X4

3 0 0 1 0
1 1 0 0 0
3 0 0 1 0
4 0 0 0 1
2 0 1 0 0
2 0 1 0 0

See McClave and Sincich 10, Section 12.7.
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2.2.3 Stepwise Model Selection

We seek a method that allows us to compare nested models.

Suppose we want to compare

MODEL 1 : y = β0 + β1x + β2x
2

MODEL 2 : y = β0 + β1x + β2x
2 + β3x

3

Model 1 is nested inside Model 2 as if we set β3 = 0 in Model 2,
we get Model 1.
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If

MODEL 1 : y = β0 + β1x1 + β2x2

MODEL 2 : y = β0 + β1x1 + β2x2 + β12(x1.x2)

we can set β12 = 0 in Model 2 to obtain Model 1, so again the
models are nested.

We can set up a hypothesis test to assess whether the
simplification of Model 2 to Model 1 (by setting one or more
parameters equal to zero) is justified by the data.
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ANOVA tests for Comparing Nested Models

Terminology

I Complete Model

E [Y ] = β0 + β1x1 + · · ·+ βkxk

I Reduced Model

E [Y ] = β0 + β1x1 + · · ·+ βgxg

where g < k. The reduced model is obtained from the complete
model by setting

βg+1 = βg+2 = · · · = βk = 0
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The reduced model is nested inside the complete model.

We wish to test the hypothesis

H0 : βg+1 = βg+2 = · · · = βk = 0

Ha : At least one of these βj 6= 0

We can test this hypothesis by fitting both models, and combining
the results; we focus on the sums of squares quantities.
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Method

1. Fit the complete model and obtain the sum of squared
errors, SSEC , available from the ANOVA table.

2. Fit the reduced model and obtain the sum of squared errors,
SSER , available from the ANOVA table.

3. Form the test statistic

F =
(SSER − SSEC )/(k − g)

SSEC/(n − k − 1)

If H0 is true, then F ∼ Fisher-F(k − g , n − k − 1)

Note: k − g is the number of parameters we set equal to zero
when moving from complete to reduced model.

Using this F statistic, we can assess whether there is evidence to
support the reduced model over the complete model.
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Complete Model ANOVA table:

SOURCE DF SS MS F

COMPLETE MODEL k SSRC MSRC FC

ERRORC n − k − 1 SSEC MSEC

TOTAL n − 1 SS

Reduced Model ANOVA table:

SOURCE DF SS MS F

REDUCED MODEL g SSRR MSRR FR

ERRORR n − g − 1 SSER MSER

TOTAL n − 1 SS
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The result holds for comparing any two nested models where the
standard model assumptions hold:

I ε uncorrelated

I ε independent of x1, . . . , xk

I ε has constant variance

I ε ∼ N(0, σ2)

Note: It does not allow us to compare non-nested models; for
example

MODEL 1 : y = β0 + β1x1 + ε

MODEL 2 : y = β0 + β2x2 + ε

- NOT NESTED !
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F =
(SSER − SSEC )/(k − g)

SSEC/(n − k − 1)
=

1©/ 2©
3©/ 4©

1© - SSER − SSEC : this is the improvement in fit when the
reduced model is extended to the complete model

2© - k − g : this is the number of extra parameters needed to
extend the reduced model to the complete model

3© - SSEC

4© - n − k − 1

3©/ 4© - this is the best guess we have at the true value of σ2, that
is, the estimate of σ2 constructed using as much information as
possible, once the effects of

x1, . . . , xk

have been accounted for.
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Example (Hooker’s Data)

We consider the two models:

MODEL 1 : y = β0 + β1x + ε

MODEL 2 : y = β0 + β1x + β2x
2 + ε

Here

I MODEL 1: Reduced Model

I MODEL 2: Complete Model

k = 2, g = 1.

IS THE QUADRATIC TERM NEEDED ?
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Example (Hooker’s Data)

COMPLETE MODEL SSRC 2286.933
SSEC 4.382

REDUCED MODEL SSRR 2272.474
SSER 18.840

with n = 31, k = 2, g = 1

=⇒ k − g = 1, n − k − 1 = 28

So

F =
(SSER − SSEC )/(k − g)

SSEC/(n − k − 1)
=

(18.840− 4.382)/1

4.382/28
= 92.383
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Example (Hooker’s Data)

We compare F with the

Fisher-F(k − g , n − k − 1) ≡ Fisher-F(1, 28)

distribution.
F0.05(1, 28) = 4.20

Thus
92.383 = F > F0.05(1, 28) = 4.20

and H0 : E [Y ] = β0 + β1x is REJECTED in favour of
Ha : E [Y ] = β0 + β1x + β2x

2.

i.e. the quadratic model fits better than the straight-line model.
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NOTE: From the original ANOVA tables, we already know that
Model 1 and Model 2 both fit better than the null model

MODEL 0 E [Y ] = β0

y = β0 + ε

where there is no dependence on x .

We have now confirmed that Model 2 fits better than Model 1.
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Example (Diabetes Data)

Factor Predictor: group (X2)
Continuous Covariate: loggluf (X1)
Response: logglut (Y )

We have five models to confirm:

MODEL 0 : 1

MODEL 1 : X2

MODEL 2 : X1

MODEL 3 : X1 + X2

MODEL 4 : X1 + X2 + X1.X2

230



Example (Diabetes Data)

MODEL 4 us the most complex model with 6 parameters

β10, β11, β20, β21, β30, β31

MODEL 4:

E [Y ] =





β10 + β11x1 GROUP 1

β20 + β21x1 GROUP 2

β30 + β31x1 GROUP 3

All of the other models are nested inside Model 4; we can obtain
them all by setting parameters equal to zero.
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Example (Diabetes Data)

In the SPSS parameterization:

β30, β31 Group 3 Intercept and Slope

β10 = β30 + δ10 Changes in the Intercepts in
β20 = β30 + δ20 Groups 1 and 2 are δ10 and δ20

β11 = β31 + δ11 Changes in the Slopes in
β21 = β31 + δ21 Groups 1 and 2 are δ11 and δ21

Thus the six new parameters are

β30, β31, δ10, δ20, δ11, δ21
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MODEL 0 β31 = 0
δ10 = δ20 = δ11 = δ21 = 0

MODEL 1 β31 = δ11 = δ21 = 0

MODEL 2 δ10 = δ20 = δ11 = δ21 = 0

MODEL 3 δ11 = δ21 = 0

Note: β31 = 0 =⇒ δ11 = δ21 = 0, as X1 is not included in the
model.
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Counting Parameters

I Whenever we remove a continuous covariate, from a model,
we set one parameter to zero.

I Whenever we remove a factor predictor with L levels from a
model, we set L− 1 parameters to zero.

I Whenever we remove a two-way interaction between these
variables from a model, we set 1.(L− 1) = L− 1 parameters
to zero.
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Models 0,1,2,3 are nested inside Model 4.

Two approaches to finding the best model are used:

1. Start with Model 0 and try to add terms that improve the
model fit (Forward Selection)

2. Start with Model 4 and try to remove terms that improve the
model fit (Backward Selection)

Note:

I Models 0,1 and 2 are nested inside Model 3.

I Model 0 is nested inside Models 1 and 2.

Therefore we can begin with Model 4, or Model 3 or Model 1 or 2,
and simplify to a nested model.
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Example (Diabetes Data)

Here n = 144. From SPSS output handouts:

Model Description SSE p

0 1 28.504 1
1 X2 4.160 3
2 X1 3.738 2
3 X1 + X2 1.472 4
4 X1 + X2 + X1.X2 1.318 6

p is the number of non-zero parameters; k or g is always p − 1 in
the following analysis.
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Backward Selection:

Complete Model : Model 4
Reduced Model : Model 3

Here k = 5, g = 3 so k − g = 2, and

n − k − 1 = 144− 5− 1 = 138.

We have

F =
(SSER − SSEC )/(k − g)

SSEC/(n − k − 1)
=

(1.472− 1.318)/2

1.318/138
= 8.062

We compare this with the

Fisher-F(k − g , n − k − 1) = Fisher-F(2, 138)

distribution; we have Fα(2, 138) = 3.061, so we

Reject H0 at α = 0.05
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i.e. Model 4
X1 + X2 + X1.X2

fits significantly better than Model 3

X1 + X2.

- we cannot simplify the complete model to the reduced model
without the loss of significant explanatory power.

The Interaction is Necessary in the Model

Backward selection stops here; we cannot simplify further from the
complete model.
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Forward Selection: we start with Model 0 and build up.

Model 1 vs Model 0 F = 412.568

Model 2 vs Model 0 F = 940.846

It seems that Model 2 is the better improvement, so we try the
selection path

Model 0 −→ Model 2 −→ Model 3 −→ Model 4

Model SSE SSER − SSEC

0 28.504 -
2 3.738 24.766
3 1.472 2.266
4 1.318 0.154

ie we work down the table, 28.504− 3.738 = 24.766 etc.
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Comparison k g SSEC SSER − SSEC F

2 vs 0 1 0 3.738 24.766 940.82
3 vs 2 3 1 1.472 2.266 107.76
4 vs 3 5 3 1.318 0.154 8.06

Recall that n = 144, and

F =
(SSER − SSEC )/(k − g)

SSEC/(n − k − 1)

Under each H0,

F ∼ Fisher-F(k − g , n − k − 1)
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I F0.05(1, 142) l 3.92 < 940.82
Therefore Model 0 is NOT an adequate simplification of
Model 2

I F0.05(2, 140) l 3.07 < 107.76
Therefore Model 2 is NOT an adequate simplification of
Model 3

I F0.05(2, 138) l 3.07 < 8.06
Therefore Model 3 is NOT an adequate simplification of
Model 4

All of the null hypotheses are rejected.
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Therefore by both forward and backward selection, we select Model
4

X1 + X2 + X1.X2

as the most appropriate model.

Note: In this sequence of hypothesis tests, the convention is not
to correct for multiple testing (we don’t know how many tests we
are going to do), although a correction could be used.
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F-tests for Unbalanced Designs

Example (Potato Damage Data)

The damage to potato plants caused by cold temperatures is to be
studied.

In this experimental study, three binary factor predictors were used:
we label them A, B and C rather than X1, X2, X3 to recall the link
with Factorial Designs in ANOVA. Each factor takes two levels:

Factor Levels

A Potato Variety 0- Variety 1, 1- Variety 2

B Acclimatization Routine 0- Room Temp, 1- Cold Room

C Preparation Treatment 0- -4C, 1- -8C

Thus we have a 2× 2× 2 three-way factorial design.
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F-tests for Unbalanced Designs

However, the design is unbalanced; we have different numbers of
replicates in each of the 8 factor-level combinations.

This means we cannot use conventional 3-way ANOVA; the lack of
balance means that the stated p-values may be misleading if we
perform a standard ANOVA.

Thus we are forced to use the General Linear Model F-test
approach.

244



We begin with the most complex model and do backward selection.

Here the most complex model can be written

A + B + C + A.B + A.C + B.C + A.B.C

that is,

I all main effects (terms 1,2 and 3)

I all two-way interactions (terms 4,5 and 6)

I all three-way interactions (term 7)

We may write this model

A ∗ B ∗ C

which is termed the full factorial model.
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Counting the numbers of parameters

Term Parameters

A (a− 1) 1
B (b − 1) 1
C (c − 1) 1
A.B (a− 1)(b − 1) 1
A.C (a− 1)(c − 1) 1
B.C (b − 1)(c − 1) 1
A.B.C (a− 1)(b − 1)(c − 1) 1

Total 7

where a = b = c = 2.

We have 7 parameters in total (excluding the baseline mean) when
all terms are considered, so

k = 7
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In the following tables columns are:

Complete Model
Reduced Model
SSEC

SSER

k
g
F (test statistic)
F0.05(k − g , n − k − 1)

We denote the critical value by Fα and check whether F > Fα.
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Potato Damage Data: ANOVA-F Tests

We compare four models: MR1 , MR2 and MR3 are nested within the
complete model MC .

MC : A + B + C + A.B + A.C + B.C + A.B.C
MR1 : A + B + C + A.B
MR2 : A + B + C
MR3 : A + B + A.B

COMP. RED. SSEC SSER k g F Fα

MC MR1 4968.876 5093.746 7 4 0.561 2.76

MR1 MR2 5093.746 7183.674 4 3 28.721 3.92

MR1 MR3 5093.746 6319.640 4 3 16.846 3.92

Note: The quoted Fα values are approximate as the textbook does
not tabulate all Fisher-F distributions. We take α = 0.05

248



Conclusions

Taking the comparisons in order:

1. MC vs MR1 : F < Fα. Therefore the result is not significant:
Model MR1 is an adequate simplification of Model MC , and
we choose MR1 over MC .

The model MR1 now becomes the complete model.

2. MR1 vs MR2 : F > Fα. Therefore the result is significant:
Model MR2 is not an adequate simplification of Model MR1

3. MR1 vs MR3 : F > Fα. Therefore the result is significant:
Model MR3 is not an adequate simplification of Model MR1
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Thus the final model is

A + B + C + A.B

i.e. all main effects, plus the interaction between potato variety
and acclimatization routine.

We cannot simplify this model further without significant loss in
terms of goodness of fit.

Note: R2 = 0.631 and Adjusted R2 = 0.610, so we have a
reasonable fit.
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Task Distraction Data

Example (Task Distraction Data)

In an experimental study, the number of errors made in performing
a specified task was recorded. The experiment investigated the
influence of various predictors on the numbers of errors made.

There are two factor predictors (A,B) and one continuous
covariate (X ).

We have a balanced design with 15 people (replicates) in each
factor-level subgroup.
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Example (Task Distraction Data)

A Group 1 : Non-smoker
2 : Delayed smoker
3 : Active smoker

B Task 1 : Pattern Recognition
2 : Cognitive Task
3 : Driving Simulation

X Distraction Level
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We compare four models with the complete model

Complete Model : A ∗ B ∗ X

A + B + X + A.B + A.X + B.X + A.B.X

Number of parameters

Term Parameters Tot.

A (a− 1) = 3− 1 2
B (b − 1) = 3− 1 2
X (1) 1
A.B (a− 1)(b − 1) = 2× 2 4
A.X (a− 1)(1) = 2× 1 2
B.X (b − 1)(1) = 2× 1 2
A.B.X (a− 1)(b − 1)(c − 1) = 2× 2× 1 4

Total 17
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For illustration we consider the following sequence of models:

I Reduced Model 1: MR1

A + B + X + A.X + B.X

I Reduced Model 2: MR2

A + B + X + B.X

I Reduced Model 3: MR3

B + X + B.X

I Reduced Model 4: MR4

B + X
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Task Distraction Data: ANOVA-F Tests

MC : A + B + X + A.B + A.X + B.X + A.B.X
MR1 : A + B + X + A.X + B.X
MR2 : A + B + X + B.X
MR3 : B + X + B.X
MR4 : B + X

COMP. RED. SSEC SSER k g F Fα

MC MR1 5660.010 7627.479 17 9 5.084 2.02

MR1 MR2 7627.479 7971.274 9 7 2.817 3.07

MR2 MR3 7971.274 8404.654 7 5 3.452 3.07

MR3 MR4 8404.654 11154.715 5 3 21.105 3.07
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Conclusions

Taking the comparisons in order:

1. MC vs MR1 : F > Fα. Therefore the result is significant:
Model MR1 is not an adequate simplification of Model MC

2. MR1 vs MR2 : F < Fα. Therefore the result is not significant:
Model MR2 is an adequate simplification of Model MR1

3. MR2 vs MR3 : F > Fα. Therefore the result is significant:
Model MR3 is not an adequate simplification of Model MR2

4. MR3 vs MR4 : F > Fα. Therefore the result is significant:
Model MR4 is not an adequate simplification of Model MR3
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Follow-up Analysis

In a follow up analysis (see Handout), it transpires that the model

A + B + X + A.B + A.X + B.X

ie selected.

Note: R2 = 0.863 and Adjusted R2 = 0.831, so we have a good
fit.

Note: we must take great care with the sequence of models.
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Stepwise Selection in SPSS: Options

It is possible to carry out stepwise selection in SPSS using the
Linear Regression pulldown menu, and the Method pulldown list.

I Enter : All variables in a block are entered in a single step.

I Stepwise : At each step, the independent variable not in the
equation that has the smallest p-value in the F -test is
entered, if that probability is sufficiently small. Variables
already in the regression equation are removed if their
p-value becomes sufficiently large. The method terminates
when no more variables are eligible for inclusion or removal.

I Remove : All variables in a block are removed in a single
step.
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Stepwise Selection in SPSS: Options

I Backward : Variables are entered into the equation and then
sequentially removed. The variable with the smallest partial
correlation with the dependent variable is considered first for
removal. After the first variable is considered, the variable
remaining in the equation with the smallest partial correlation
is considered next. The procedure stops when there are no
variables in the equation that satisfy the removal criteria.

I Forward : Variables are sequentially entered into the model
starting from the null model. The first variable considered for
entry into the equation is the one with the largest positive or
negative correlation with the dependent variable. This variable
is entered into the equation only if it satisfies the criterion for
entry. If the first variable is entered, the independent variable
not in the equation that has the largest partial correlation is
considered next. The procedure stops when there are no
variables that meet the entry criterion.
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2.2.5 Pitfalls of Regression Modelling

Five issues to bear in mind in ANOVA, Regression and General
Linear Modelling.

1. Model assumptions

2. Data transformations

3. Model selection

4. Multicollinearity

5. Predicting beyond the range of the covariates

See Handout.
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