Non-parametric tests are normally based on ranks of the data samples, and test hypotheses relating to quantiles of the probability distribution representing the population from which the data are drawn. Specifically, tests concern the population median, \(\eta \), where

\[
\Pr[\text{Observation} \leq \eta] = \frac{1}{2}
\]

The sample median, \(x_{\text{MED}} \), is the mid-point of the sorted sample; if the data \(x_1, \ldots, x_n \) are sorted into ascending order, then

\[
x_{\text{MED}} = \begin{cases}
 x_m & n \text{ odd, } n = 2m + 1 \\
 \frac{x_m + x_{m+1}}{2} & n \text{ even, } n = 2m
\end{cases}
\]

1. One Sample Test for Median: The Sign Test

For a single sample of size \(n \), to test the hypothesis \(\eta = \eta_0 \) for some specified value \(\eta_0 \) we use the Sign Test. The test statistic \(S \) depends on the alternative hypothesis, \(H_a \).

(a) For one-sided tests, to test

\[
H_0 : \eta = \eta_0 \\
H_a : \eta > \eta_0
\]

we define test statistic \(S \) by

\[
S = \text{Number of observations greater than } \eta_0
\]

whereas to test

\[
H_0 : \eta = \eta_0 \\
H_a : \eta < \eta_0
\]

we define \(S \) by

\[
S = \text{Number of observations less than } \eta_0
\]

If \(H_0 \) is true, it follows that

\[
S \sim \text{Binomial (} n, \frac{1}{2} \text{)}
\]

The \(p \)-value is defined by

\[
p = \Pr[X \geq S]
\]

where \(X \sim \text{Binomial}(n, 1/2) \). The rejection region for significance level \(\alpha \) is defined implicitly by the rule

 Reject \(H_0 \) if \(\alpha \geq p \).

The Binomial distribution is tabulated on pp 885-888 of McClave and Sincich.
(b) For a **two-sided** test,

\[H_0 : \eta = \eta_0 \]
\[H_a : \eta \neq \eta_0 \]

we define the test statistic by

\[S = \max\{S_1, S_2\} \]

where \(S_1 \) and \(S_2 \) are the counts of the number of observations less than, and greater than, \(\eta_0 \) respectively. The \(p \)-value is defined by

\[p = 2 \Pr[X \geq S] \]

where \(X \sim \text{Binomial}(n, 1/2) \).

Notes:

1. The only assumption behind the test is that the data are drawn independently from a continuous distribution.
2. If any data are equal to \(\eta_0 \), we **discard** them before carrying out the test.
3. **Large sample approximation.** If \(n \) is large (say \(n \geq 30 \)), and \(X \sim \text{Binomial}(n, 1/2) \), then it can be shown that

\[X \sim \text{Normal}(np, np(1-p)) \]

Thus for the sign test, where \(p = 1/2 \), we can use the test statistic

\[Z = \frac{S - \frac{n}{2}}{\sqrt{\frac{n \times \frac{1}{2} \times \frac{1}{2}}}} = \frac{S - \frac{n}{2}}{\sqrt{\frac{n}{2}}} \]

and note that if \(H_0 \) is true,

\[Z \sim \text{Normal}(0, 1) \]

so that the test at \(\alpha = 0.05 \) uses the following critical values

\[H_a : \eta > \eta_0 \quad \text{then} \quad C_R = 1.645 \]
\[H_a : \eta < \eta_0 \quad \text{then} \quad C_R = -1.645 \]
\[H_a : \eta \neq \eta_0 \quad \text{then} \quad C_R = \pm 1.960 \]

4. For the large sample approximation, it is common to make a **continuity correction**, where we replace \(S \) by \(S - 1/2 \) in the definition of \(Z \)

\[Z = \frac{(S - 1/2) - \frac{n}{2}}{\sqrt{n \times \frac{1}{2}}} \]

Tables of the standard Normal distribution are given on p 894 of McClave and Sincich.
2. **TWO SAMPLE TESTS FOR INDEPENDENT SAMPLES: THE MANN-WHITNEY-WILCOXON TEST**

For a two independent samples of size \(n_1 \) and \(n_2 \), to test the hypothesis of equal population medians

\[
\eta_1 = \eta_2
\]

we use the **Wilcoxon Rank Sum Test**, or an equivalent test, the **Mann-Whitney U Test**; we refer to this as the

Mann-Whitney-Wilcoxon (MWW) Test

By convention it is usual to formulate the test statistic in terms of the smaller sample size. Without loss of generality, we label the samples such that

\[n_1 > n_2. \]

The test is based on the sum of the ranks for the data from sample 2.

EXAMPLE : \(n_1 = 4, n_2 = 3 \) yields the following ranked data

\[
\begin{array}{cccc}
\text{SAMPLE 1} & 0.31 & 0.48 & 1.02 & 3.11 \\
\text{SAMPLE 2} & 0.16 & 0.20 & 1.97 & \\
\end{array}
\]

\[
\begin{array}{ccccccc}
\text{SAMPLE} & 2 & 2 & 1 & 1 & 1 & 1 & 1 \\
\text{RANK} & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\end{array}
\]

Thus the rank sum for sample 1 is

\[R_1 = 3 + 4 + 5 + 7 = 19 \]

and the rank sum for sample 2 is

\[R_2 = 1 + 2 + 6 = 9. \]

Let \(\eta_1 \) and \(\eta_2 \) denote the medians from the two distributions from which the samples are drawn. We wish to test

\[
H_0 : \eta_1 = \eta_2
\]

Two related test statistics can be used

- **Wilcoxon Rank Sum Statistic**

\[
W = R_2
\]

- **Mann-Whitney U Statistic**

\[
U = R_2 - \frac{n_2(n_2 + 1)}{2}
\]

We again consider three alternative hypotheses:

\[
H_a : \eta_1 < \eta_2 \\
H_a : \eta_1 > \eta_2 \\
H_a : \eta_1 = \eta_2
\]

and define the rejection region separately in each case.
Large Sample Test

If \(n_2 \geq 10 \), a large sample test based on the \(Z \) statistic

\[
Z = \frac{U - \frac{n_1n_2}{2}}{\sqrt{\frac{n_1n_2(n_1 + n_2 + 1)}{12}}}
\]

can be used. Under the hypothesis \(H_0 : \eta_1 = \eta_2 \)

\[Z \sim \text{Normal}(0,1) \]

so that the test at \(\alpha = 0.05 \) uses the following critical values

- \(H_a : \eta_1 > \eta_2 \) then \(C_R = -1.645 \)
- \(H_a : \eta_1 < \eta_2 \) then \(C_R = 1.645 \)
- \(H_a : \eta_1 \neq \eta_2 \) then \(C_R = \pm 1.960 \)

Small Sample Test

If \(n_1 < 10 \), an exact but more complicated test can be used. The test statistic is \(R_2 \) (the sum of the ranks for sample 2). The null distribution under the hypothesis \(H_0 : \eta_1 = \eta_2 \) can be computed, but it is complicated.

The table on p. 832 of McClave and Sincich gives the critical values (\(T_L \) and \(T_U \)) that determine the rejection region for different \(n_1 \) and \(n_2 \) values up to 10.

- **One-sided tests:**
 - \(H_a : \eta_1 > \eta_2 \) Rejection Region is \(R_2 \leq T_L \)
 - \(H_a : \eta_1 < \eta_2 \) Rejection Region is \(R_2 \geq T_U \)

 These are tests at the \(\alpha = 0.025 \) significance level.

- **Two-sided tests:**
 - \(H_a : \eta_1 \neq \eta_2 \) Rejection Region is \(R_2 \leq T_L \) or \(R_2 \geq T_U \)

 This is a test at the \(\alpha = 0.05 \) significance level.

Notes:

1. The only assumption is needed for the test to be valid is that the samples are independently drawn from two continuous distributions.

2. The sum of the ranks across both samples is

\[
R_1 + R_2 = \frac{(n_1 + n_2)(n_1 + n_2 + 1)}{2}
\]

3. If there are ties (equal values) in the data, then the rank values are replaced by average rank values.

<table>
<thead>
<tr>
<th>DATA VALUE</th>
<th>0.16</th>
<th>0.20</th>
<th>0.31</th>
<th>0.31</th>
<th>0.48</th>
<th>1.97</th>
<th>3.11</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTUAL RANK</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>AVERAGE RANK</td>
<td>1</td>
<td>2</td>
<td>3.5</td>
<td>3.5</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>