NON-PARAMETRIC STATISTICS: ONE AND TWO SAMPLE TESTS EXAMPLES

EXAMPLE 1: Sign Test: Water Content Example

The following data are measurements of percentage water content of soil samples collected by two experimenters. We wish to test the hypothesis

$$H_0 : \eta = 9.0$$

for each experiment.

Experimenter 1:	n = 10	5.5	6.0	6.5	7.6	7.6	7.7	8.0	8.2	9.1	15.1	
Experimenter 2:	n = 20	5.6	6.1	6.3	6.3	6.5	6.6	7.0	7.5	7.9	8.0	8.0
-		8.1	8.1	8.2	8.4	8.5	8.7	9.4	14.3	26.0		

To perform the test, we need tables of the Binomial distribution with p = 1/2. The individual probabilities are given by the formula

$$\Pr[X=x] = \binom{n}{x} p^x (1-p)^{n-x} = \binom{n}{x} \frac{1}{2^n} = \frac{n!}{x!(n-x)!} \frac{1}{2^n} \qquad x = 0, 1, \dots, n$$

We test at the $\alpha = 0.05$ level. For the first experiment, with n = 10:

• For a test against the alternative hypothesis

$$H_a$$
 : $\eta > 9.0$

the test statistic is

$$S =$$
 Number of observations greater than 9 \therefore $S = 2$

and the *p*-value is

$$p = \Pr[X \ge 2] = 1 - \Pr[X < 2] = 1 - \Pr[X = 0] - \Pr[X = 1] = 0.9893$$

so we **do not** reject H_0 in favour of this H_a .

• For a test against the alternative hypothesis

$$H_a$$
 : $\eta < 9.0$

the test statistic is

$$S =$$
 Number of observations less than 9 \therefore $S = 8$

and the *p*-value is

$$p = \Pr[X \ge 8] = \Pr[X = 8] + \Pr[X = 9] + \Pr[X = 10] = 0.0547$$

so we **do not** reject H_0 in favour of this H_a .

• For a test against the alternative hypothesis

$$H_a$$
 : $\eta \neq 9.0$

the test statistic is

$$S = \max\{S_1, S_2\} = \max\{2, 8\} = 8$$

and the *p*-value is

$$p = 2\Pr[X \ge 8] = 2(\Pr[X = 8] + \Pr[X = 9] + \Pr[X = 10]) = 0.1094$$

so we **do not** reject H_0 in favour of this H_a .

For the second experiment, with n = 20:

• For a test against the alternative hypothesis H_a : $\eta > 9.0$, the test statistic is S = 3. The *p*-value is therefore

 $p = \Pr[X \ge 3] = 1 - \Pr[X < 3] = 1 - \Pr[X = 0] - \Pr[X = 1] - \Pr[X = 2] = 0.9998.$

so we **do not** reject H_0 in favour of this H_a .

• For a test against the alternative hypothesis H_a : $\eta < 9.0$, the test statistic S = 17. The *p*-value is therefore

$$p = \Pr[X \ge 17] = \Pr[X = 17] + \Pr[X = 18] + \Pr[X = 19] + \Pr[X = 20] = 0.0013.$$

so we **do** reject H_0 in favour of this H_a .

• For a test against the alternative hypothesis H_a : $\eta \neq 9.0$, the test statistic is $S = \max\{S_1, S_2\} = \max\{3, 17\} = 17$. The *p*-value is therefore

$$p = 2\Pr[X \ge 17] = 2(\Pr[X = 17] + \Pr[X = 18] + \Pr[X = 19] + \Pr[X = 20]) = 0.0026.$$

so we **do** reject H_0 in favour of this H_a .

This test can be implemented using SPSS, using the

```
Analyze \rightarrow Nonparametric Tests \rightarrow Binomial
```

pulldown menus. The test can be carried out by

- (a) Selecting the *test variable* from the variables list
- (b) Set the *Cut Point* equal to $\eta_0 = 9$.

A **two-sided** test is carried out at the $\alpha = 0.05$ level. The SPSS output is presented below for the two experiments in turn:

Binomial Test

		Category	N	Observed Prop.	Test Prop.	Exact Sig. (2-tailed)
% Water content	Group 1	<= 9	8	.80	.50	.109
	Group 2	> 9	2	.20		
	Total		10	1.00		

Binomial Test

		Category	N	Observed Prop.	Test Prop.	Exact Sig. (2-tailed)
% Water content	Group 1	<= 9	17	.85	.50	.003
	Group 2	> 9	3	.15		
	Total		20	1.00		

EXAMPLE 2: Mann-Whitney-Wilcoxon Test: Low Birthweight Example The birthweights (in grammes) of babies born to two groups of mothers A and B are displayed below: Thus $n_1 = 9, n_2 = 8$. From this

Group A: n = 9 2164 2600 2184 2080 1820 2496 2184 2080 2184 Group B: n = 8 2576 3224 2704 2912 2444 3120 2912 3848

sample (which has ties, so we need to use average ranks), we find that

$$R_1 = 48$$
 $R_2 = 105$

so that the two statistics are

Wilcoxon $W = R_2 = 105$

Mann-Whitney
$$U = R_2 - \frac{n_2(n_2+1)}{2} = 105 - 36 = 69$$

• For the small sample test, from tables on p832 in McClave and Sincich, we find

 $T_L = 51$ $T_U = 93$

Correction

Thus W > 93, so we

Do not reject H_0 against H_a : $\eta_1 > \eta_2$ as $W = R_2 > T_L$ **Reject** H_0 against H_a : $\eta_1 < \eta_2$ as $W = R_2 > T_U$ **Reject** H_0 against H_a : $\eta_1 \neq \eta_2$ as $W = R_2 > T_U$

Note that the one-sided tests are carried out at $\alpha = 0.025$, the two sided test is carried out at $\alpha = 0.05$.

• For the large sample test, we find

$$Z = \frac{U - \frac{n_1 n_2}{2}}{\sqrt{\frac{n_1 n_2 (n_1 + n_2 + 1)}{12}}} = 3.175$$

Thus we

Do not reject H_0 against H_a : $\eta_1 > \eta_2$ as $Z > C_R = -1.645$ **Reject** H_0 against H_a : $\eta_1 < \eta_2$ as $Z > C_R = 1.645$ **Reject** H_0 against H_a : $\eta_1 \neq \eta_2$ as $Z > C_R = 1.645$

All tests are carried out at $\alpha = 0.05$.

This test can be implemented using SPSS, using the

Analyze \rightarrow Nonparametric Tests \rightarrow Two Independent Samples

pulldown menus. Note, however, that SPSS uses different rules for defining the test statistics, although it yields the same conclusions for a two-sided test.

EXAMPLE 3: Mann-Whitney-Wilcoxon Test: Treadmill Test Example

The treadmill stress test times (in seconds) of two groups of patients (disease group and healthy controls) are displayed below:

> Disease : n = 10 864 636 638 708 786 600 1320 750 594 750 Healthy : n = 8 1014 684 810 990 840 978 1002 1110

Thus $n_1 = 10, n_2 = 8$. From this sample (which has ties, so we need to use average ranks), we find that

$$R_1 = 70$$
 $R_2 = 101$

so that the two statistics are

Wilcoxon $W = R_2 = 101$

Mann-Whitney
$$U = R_2 - \frac{n_2(n_2+1)}{2} = 101 - 36 = 65$$

• For the small sample test, from tables on p832 in McClave and Sincich, we find

$$T_L = 54$$
 $T_U = 98$
The correction $T_U = 98$ Correction T_U

Thus W > 98, so we

Do not reject H_0 against H_a : $\eta_1 > \eta_2$ as $W = R_2 > T_L$ **Reject** H_0 against H_a : $\eta_1 < \eta_2$ as $W = R_2 > T_U$ **Reject** H_0 against H_a : $\eta_1 \neq \eta_2$ as $W = R_2 > T_U$

Again, the one-sided tests are carried out at $\alpha = 0.025$, the two sided test is carried out at $\alpha = 0.05$.

• For the **large sample** test, we find

$$Z = \frac{U - \frac{n_1 n_2}{2}}{\sqrt{\frac{n_1 n_2 (n_1 + n_2 + 1)}{12}}} = 2.221$$
Correction

Thus we

Do not reject H_0 against H_a : $\eta_1 > \eta_2$ as $Z > C_R = -1.645$ **Reject** H_0 against H_a : $\eta_1 < \eta_2$ as $Z > C_R = 1.645$ **Reject** H_0 against H_a : $\eta_1 \neq \eta_2$ as $Z > C_R = 1.645$

All tests are carried out at $\alpha = 0.05$.