CHI-SQUARED TESTS FOR CATEGORICAL DATA

In a **multinomial** experiment, the independent experimental units are classified to one of k categories determined by the levels of a discrete factor. Let n_1, n_2, \ldots, n_k be the counts of the numbers of experimental units in the k categories, where $n_1 + n_2 + \cdots + n_k = n$..

The probability that an experimental unit is classified to category i is p_i , for $i = 1, \dots, k$, so that

$$p_1 + p_2 + \cdots + p_k = 1.$$

• The **one-way** classification table can be displayed as follows:

Category	1	2	• • •	k
Count	n_1	n_2		n_k
Probability	p_1	p_2		p_k

We can test a hypothesis H_0 that fully specifies p_1, \ldots, p_k , for example

$$H_0: p_1 = p_1^{(0)}, p_2 = p_2^{(0)}, \dots, p_k = p_k^{(0)}$$

so that, for k = 3, we might have

$$H_0: p_1 = p_2 = p_3 = 1/3$$
 or $H_0: p_1 = 1/2, p_2 = p_3 = 1/4.$

We use the test statistic

$$X^2 = \sum_{i=1}^k \frac{\left(n_i - np_i^{(0)}\right)^2}{np_i^{(0)}} = \sum_{i=1}^k \frac{\left(\text{Observed Count in Cell } i - \text{Expected Count in Cell } i\right)^2}{\text{Expected Count in Cell } i}$$

We sometimes write $\widehat{n}_i = np_i^{(0)}$. If H_0 is true,

$$X^2 \sim \text{Chi-squared}(k-1)$$
.

• The **two-way** classification table can also be constructed to represent the cross-classification for two discrete factors *A* and *B* with *r* and *c* levels respectively.

		Factor B				
		1	2		c	
	1	n_{11}	n_{12}	• • •	n_{1c}	
or A	2	n_{21}	n_{22}	• • •	n_{2c}	
Factor A	:	:	÷		:	
	r	n_{r1}	n_{r2}	• • •	n_{rc}	

To test the hypothesis

 H_0 : Factor A and Factor B levels are assigned independently

we use the same test statistic that can be rewritten

$$X^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(n_{ij} - \widehat{n}_{ij})^{2}}{\widehat{n}_{ij}}$$

where

$$\widehat{n}_{ij} = \frac{n_{i.}n_{.j}}{n}$$
 $n_{i.} = \sum_{i=1}^{c} n_{ij}$ $n_{.j} = \sum_{i=1}^{r} n_{ij}$.

The terms $n_{i.}$ and $n_{.j}$ are the row and column totals for row i and column j respectively. If H_0 is true

$$X^2 \approx \operatorname{Chi-squared}((r-1)(c-1))$$

EXAMPLE 1: DNA Sequence Data

The counts of the numbers of nucleotides (A,C,G,T) in the DNA sequence of the cancer-related gene BRCA 2 are presented in the table below.

Category	1	2	3	4	Total
Nucleotide	A	С	G	T	
Count	38514	24631	25685	38249	127079

so that k = 4. To test the hypothesis

$$H_0: p_1 = p_2 = p_3 = p_4 = 1/4$$

We use the one-way table chi-squared test: here

$$\widehat{n}_i = np_i^{(0)} = \frac{127079}{4} = 31769.75$$

so the test statistic is

$$X^{2} = \frac{(38514 - 31769.75)^{2}}{31769.75} + \frac{(24631 - 31769.75)^{2}}{31769.75} + \frac{(25685 - 31769.75)^{2}}{31769.75} + \frac{(38249 - 31769.75)^{2}}{31769.75}$$

$$= 5522.597$$

We compare this with the Chi-squared $(k-1) \equiv \text{Chi-squared}(3)$ distribution. From McClave and Sincich, p. 898,

$$Chisq_{0.05}(3) = 7.815 < X^2$$

so H_0 is rejected.

EXAMPLE 2: Eye and Hair Colour Data

The table below contains counts of the number of people in a study with a combination of eye and hair colour.

			Hair					
		Black	Brunette	Red	Blonde	$n_{i.}$		
	Brown	68	119	26	7	220		
S	Blue	20	84	17	94	215		
Eyes	Hazel	15	54	14	10	93		
Щ	Green	5	29	14	16	64		
	$n_{.j}$	108	286	71	127	592		

so r = c = 4. To test the hypothesis

 H_0 : Eye and Hair colour are assigned independently

we use the X^2 statistic

$$X^{2} = \sum_{i=1}^{r} \sum_{j=1}^{c} \frac{(n_{ij} - \hat{n}_{ij})^{2}}{\hat{n}_{ij}}$$

Here, for example, for i = 2 and j = 3

$$\widehat{n}_{23} = \frac{n_{2.} \times n_{.3}}{n} = \frac{215 \times 71}{592} = 25.785.$$

In fact, on complete calculation, we find that

$$X^2 = 138.2898.$$

We compare this with the Chi-squared $((r-1)(c-1)) \equiv \text{Chi-squared}(9)$ distribution. From McClave and Sincich, p. 898,

$$Chisq_{0.05}(9) = 16.919 < X^2$$

so H_0 is rejected

Chi-Squared test for the nucleotide count data

Use

Analyze → Nonparametric Tests → Chi-Square

pulldown menus.

For the test of

$$H_0: p_1 = p_2 = p_3 = p_4 = 1/4$$

First null hypothesis

Nucleotide

	Observed N	Expected N	Residual
Α	38514	31769.8	6744.3
С	24631	31769.8	-7138.8
G	25685	31769.8	-6084.8
Т	38249	31769.8	6479.3
Total	127079		

Chi-squared Statistic = 5522.597

Test Statistics

Nucleotide

ChiSquare(a)
df 3
Asymp. Sig. .000

p-value < 0.001

a 0 cells (.0%) have expected frequencies less than 5. The minimum expected cell frequency is 31769.8.

For the test of

$$H_0: p_1 = p_4 = 0.3$$
 $p_2 = p_3 = 0.2$

Second null hypothesis

Nucleotide

	Observed N	Expected N	Residual			
Α	38514	38123.7	390.3			
С	24631	25415.8	-784.8			
G	25685	25415.8	269.2			
Т	38249	38123.7	125.3			
Total	127079					
Test Statistics						

Test Statistics

Chi-squared Statistic = 31.492

	Nucleotide	
Chi- Square(a)	31.492	
df Asymp. Sig.	.000	p-value < 0.001
1 10,111,011,011,011	.000	

a 0 cells (.0%) have expected frequencies less than 5. The minimum expected cell frequency is 25415.8.

Chi-Squared test for the Hair and Eye colour count data

Use

Analyze → Descriptive Statistics → Crosstabs

pulldown menus.

For the test of

H₀: Hair and Eye colour are assigned independently

Eye Colour * Hair Colour Crosstabulation

Count

		ı				
		Black	Brown	Red	Blond	Total
Eye	Brown	68	119	26	7	220
Colour	Blue	20	84	17	94	215
	Hazel	15	54	14	10	93
	Green	5	29	14	16	64
Total		108	286	71	127	592

Chi-Square Tests

	Value	df	Asymp. Sig. (2-sided)		
Pearson Chi-Square	138.290(a)	9	.000	p-value < 0.001	
Likelihood Ratio	146.444	9		·	
Linear-by-Linear Association	28.292	1	.000		
N of Valid Cases	592				
a 0 cells (.0%) have exp	ected count le	ess than 5. V	ne minimum expe	cted count is 7.68.	
			Chi-square	e statistic = 138.290	

Note the comment returned by SPSS: The chi-squared test is not appropriate if any of the cells in the table have expected count less than 5 under the null hypothesis.

In this case, there is no problem as the cell counts are large enough.