CHI-SQUARED TESTS FOR CATEGORICAL DATA

In a multinomial experiment, the independent experimental units are classified to one of k categories determined by the levels of a discrete factor. Let $n_{1}, n_{2}, \ldots, n_{k}$ be the counts of the numbers of experimental units in the k categories, where $n_{1}+n_{2}+\cdots+n_{k}=n$.

The probability that an experimental unit is classified to category i is p_{i}, for $i=1, \ldots, k$, so that

$$
p_{1}+p_{2}+\cdots+p_{k}=1
$$

- The one-way classification table can be displayed as follows:

Category	1	2	\cdots	k
Count	n_{1}	n_{2}	\cdots	n_{k}
Probability	p_{1}	p_{2}	\cdots	p_{k}

We can test a hypothesis H_{0} that fully specifies p_{1}, \ldots, p_{k}, for example

$$
H_{0}: p_{1}=p_{1}^{(0)}, p_{2}=p_{2}^{(0)}, \ldots, p_{k}=p_{k}^{(0)}
$$

so that, for $k=3$, we might have

$$
H_{0}: p_{1}=p_{2}=p_{3}=1 / 3 \quad \text { or } \quad H_{0}: p_{1}=1 / 2, p_{2}=p_{3}=1 / 4
$$

We use the test statistic

$$
X^{2}=\sum_{i=1}^{k} \frac{\left(n_{i}-n p_{i}^{(0)}\right)^{2}}{n p_{i}^{(0)}}=\sum_{i=1}^{k} \frac{(\text { Observed Count in Cell } i-\text { Expected Count in Cell } i)^{2}}{\text { Expected Count in Cell } i}
$$

We sometimes write $\widehat{n}_{i}=n p_{i}^{(0)}$. If H_{0} is true,

$$
X^{2} \stackrel{\text { Chi-squared }}{ }(k-1)
$$

- The two-way classification table can also be constructed to represent the cross-classification for two discrete factors A and B with r and c levels respectively.

		Factor B			
		1	2	\cdots	c
	1	n_{11}	n_{12}	\cdots	$n_{1 c}$
	2	n_{21}	n_{22}	\cdots	$n_{2 c}$
	\vdots	\vdots	\vdots		\vdots
	r	$n_{r 1}$	$n_{r 2}$	\cdots	$n_{r c}$

To test the hypothesis

$$
H_{0}: \text { Factor } \mathrm{A} \text { and Factor } \mathrm{B} \text { levels are assigned independently }
$$

we use the same test statistic that can be rewritten

$$
X^{2}=\sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(n_{i j}-\widehat{n}_{i j}\right)^{2}}{\widehat{n}_{i j}}
$$

where

$$
\widehat{n}_{i j}=\frac{n_{i . n_{. j}}}{n} \quad n_{i .}=\sum_{j=1}^{c} n_{i j} \quad n_{. j}=\sum_{i=1}^{r} n_{i j}
$$

The terms $n_{i .}$ and $n_{. j}$ are the row and column totals for row i and column j respectively. If H_{0} is true

$$
X^{2} \div \operatorname{Chi}-\text { squared }((r-1)(c-1))
$$

EXAMPLE 1: DNA Sequence Data

The counts of the numbers of nucleotides (A,C,G,T) in the DNA sequence of the cancer-related gene BRCA 2 are presented in the table below.

Category	1	2	3	4	Total
Nucleotide	A	C	G	T	
Count	38514	24631	25685	38249	127079

so that $k=4$. To test the hypothesis

$$
H_{0}: p_{1}=p_{2}=p_{3}=p_{4}=1 / 4
$$

We use the one-way table chi-squared test: here

$$
\widehat{n}_{i}=n p_{i}^{(0)}=\frac{127079}{4}=31769.75
$$

so the test statistic is

$$
\begin{aligned}
X^{2} & =\frac{(38514-31769.75)^{2}}{31769.75}+\frac{(24631-31769.75)^{2}}{31769.75}+\frac{(25685-31769.75)^{2}}{31769.75}+\frac{(38249-31769.75)^{2}}{31769.75} \\
& =5522.597
\end{aligned}
$$

We compare this with the Chi-squared $(k-1) \equiv$ Chi-squared (3) distribution. From McClave and Sincich, p. 898,

$$
\text { Chisq}_{0.05}(3)=7.815<X^{2}
$$

so H_{0} is rejected.

EXAMPLE 2: Eye and Hair Colour Data

The table below contains counts of the number of people in a study with a combination of eye and hair colour.

		Hair				
		Black	Brunette	Red	Blonde	n_{i}
	Brown	68	119	26	7	220
	Blue	20	84	17	94	215
	Hazel	15	54	14	10	93
	Green	5	29	14	16	64
	$n_{. j}$	108	286	71	127	592

so $r=c=4$. To test the hypothesis

$$
H_{0}: \text { Eye and Hair colour are assigned independently }
$$

we use the X^{2} statistic

$$
X^{2}=\sum_{i=1}^{r} \sum_{j=1}^{c} \frac{\left(n_{i j}-\widehat{n}_{i j}\right)^{2}}{\widehat{n}_{i j}}
$$

Here, for example, for $i=2$ and $j=3$

$$
\widehat{n}_{23}=\frac{n_{2 .} \times n_{.3}}{n}=\frac{215 \times 71}{592}=25.785 .
$$

In fact, on complete calculation, we find that

$$
X^{2}=138.2898
$$

We compare this with the Chi-squared $((r-1)(c-1)) \equiv$ Chi-squared (9) distribution. From McClave and Sincich, p. 898,

$$
\text { Chisq}_{0.05}(9)=16.919<X^{2}
$$

so H_{0} is rejected

Chi-Squared test for the nucleotide count data

Use

$$
\text { Analyze } \rightarrow \text { Nonparametric Tests } \rightarrow \text { Chi-Square }
$$

pulldown menus.
For the test of

$$
H_{0}: p_{1}=p_{2}=p_{3}=p_{4}=1 / 4
$$

First null hypothesis

Nucleotide

	Observed N	Expected N	Residual
A	38514	31769.8	6744.3
C	24631	31769.8	-7138.8
G	25685	31769.8	-6084.8
T	38249	31769.8	6479.3
Total	127079		

a 0 cells $(.0 \%)$ have expected frequencies less than 5 . The minimum expected cell frequency is 31769.8 .

For the test of

$$
\mathrm{H}_{0}: \mathrm{p}_{1}=\mathrm{p}_{4}=0.3 \quad \mathrm{p}_{2}=\mathrm{p}_{3}=0.2
$$

Second null hypothesis

Nucleotide

	Observed N	Expected N	Residual
A	38514	38123.7	390.3
C	24631	25415.8	-784.8
G	25685	25415.8	269.2
T	38249	38123.7	125.3
Total	127079		

a 0 cells $(.0 \%)$ have expected frequencies less than 5 . The minimum expected cell frequency is 25415.8 .

Chi-Squared test for the Hair and Eye colour count data

Use

$$
\text { Analyze } \rightarrow \text { Descriptive Statistics } \rightarrow \text { Crosstabs }
$$

pulldown menus.
For the test of H_{0} : Hair and Eye colour are assigned independently

Eye Colour * Hair Colour Crosstabulation

Count

		Hair Colour				Total
		Black	Brown	Red	Blond	
Eye Colour	Brown	68	119	26	7	220
	Blue	20	84	17	94	215
	Hazel	15	54	14	10	93
	Green	5	29	14	16	64
Total		108	286	71	127	592

Chi-Square Tests

Note the comment returned by SPSS: The chi-squared test is not appropriate if any of the cells in the table have expected count less than 5 under the null hypothesis.

In this case, there is no problem as the cell counts are large enough.

