MATH 204 - SOLUTIONS 4

1. Given that

$$
\boldsymbol{X}=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]^{\top}
$$

we have that, by the multiplication rules given

$$
\boldsymbol{X}^{\top} \boldsymbol{X}=\left[\begin{array}{cc}
n & S_{x} \\
S_{x} & S_{x x}
\end{array}\right]
$$

where

$$
S_{x}=\sum_{i=1}^{n} x_{i} \quad S_{x x}=\sum_{i=1}^{n} x_{i}^{2}
$$

The matrix inverse is computed by using the result given on the handout; a square $k \times k$ matrix A has an inverse, denoted A^{-1} if

$$
A \cdot A^{-1}=A^{-1} \cdot A=I_{k}
$$

Here we set $A=\boldsymbol{X}^{\top} \boldsymbol{X}$. We need to find the four constants $a_{11}, a_{12}, a_{21}, a_{22}$ such that

$$
\left[\begin{array}{cc}
n & S_{x} \\
S_{x} & S_{x x}
\end{array}\right]\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Thus we have the four simultaneous equations to solve

$$
\begin{array}{ll}
(1) & n a_{11}+S_{x} a_{21}=1 \\
(2) & n a_{12}+S_{x} a_{22}=0 \\
(3) & S_{x} a_{11}+S_{x x} a_{21}=0 \\
(4) & S_{x} a_{12}+S_{x x} a_{22}=1
\end{array}
$$

After some manipulation, we find that

$$
a_{11}=\frac{S_{x x}}{n S_{x x}-S_{x} S_{x}} \quad a_{12}=a_{21}=\frac{-S_{x}}{n S_{x x}-S_{x} S_{x}} \quad a_{22}=\frac{n}{n S_{x x}-S_{x} S_{x}}
$$

so that

$$
\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1}=\frac{1}{n S_{x x}-S_{x} S_{x}}\left[\begin{array}{cc}
S_{x x} & -S_{x} \\
-S_{x} & n
\end{array}\right]
$$

Note that in general for 2×2 matrices, we have the general formula

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

provided that $a d-b c \neq 0$. Finally, we have that

$$
\boldsymbol{X}^{\top} \underset{\sim}{y}=\left[\begin{array}{c}
S_{y} \\
S_{x y}
\end{array}\right]
$$

where

$$
S_{y}=\sum_{i=1}^{n} y_{i} \quad S_{x y}=\sum_{i=1}^{n} x_{i} y_{i}
$$

and hence, by multiplying out, we get

$$
\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \underset{\sim}{y}=\left[\begin{array}{l}
\widehat{\beta}_{0} \\
\widehat{\beta}_{1}
\end{array}\right]
$$

where

$$
\widehat{\beta}_{0}=\frac{S_{x x} S_{y}-S_{x} S_{x y}}{n S_{x x}-S_{x} S_{x}} \quad \widehat{\beta}_{1}=\frac{n S_{x y}-S_{x} S_{y}}{n S_{x x}-S_{x} S_{x}}
$$

Now note that

$$
\frac{n S_{x y}-S_{x} S_{y}}{n S_{x x}-S_{x} S_{x}}=\frac{S_{x y}-\frac{S_{x} S_{y}}{n}}{S_{x x}-\frac{S_{x} S_{x}}{n}}=\frac{S S_{x y}}{S S_{x x}}
$$

where

$$
S S_{x y}=S_{x y}-\frac{S_{x} S_{y}}{n}=S_{x y}-n \bar{x} \bar{y}=\sum_{i=1}^{n} x_{i} y_{i}-n \bar{x} \bar{y}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
$$

and similarly

$$
S S_{x x}=S_{x x}-\frac{S_{x} S_{x}}{n}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} .
$$

These results use the shortcut formula for sample variance given on page 69 of McClave and Sincich. Thus the formula for $\widehat{\beta}_{1}$ matches the one given in lectures. A similar calculation verifies the result for $\widehat{\beta}_{0}$.
2. For this problem, we use ANOVA and linear regression techniques, specifically multiple regression. Note that Model and Vendor are factor predictors, so we use the General Linear Model pulldown menu in SPSS.
The SPSS output for a series of models is attached; we fit in turn each of the single predictor models, then the multiple regression model with all variables included, then different models with variables and interactions included. We use inspection of p-values in ANOVA tables and R^{2} statistics to assess the most suitable model fit. For the analysis, price is in thousands of pounds.
Note that this is only an informal model comparison procedure; we do not use the formal ANOVA-F test comparison models developed later.
Our conclusions are summarized as follows:

- In the main effects only models (Models 1-4), Model, Age, and Mileage are important predictors, as all have significant p-values in the one-way ANOVA. Of these variables, Model seems to be the most important predictor, with an R^{2} value of 0.77 . The variable Vendor is not significant at the $\alpha=0.05$ significance level ($p=0.089$).
- In the multiple regression model with interaction between the two factor predictors (Model 5), Age and Model appear to be significant predictors (precise interpretation may be difficult in this unbalanced design). The R^{2} value is now 0.947 , indicating good explanatory power.
- After checking a selection of models (Model 6-10) it seems that the best model in terms of simplicity and good explanatory power is the model
Age + Model

No other terms appear to be significant, and also $R^{2}=0.906$ with Adjusted $R^{2}=0.896$, so the explanatory power is good.

- Inspection of the residuals indicates that overall the model assumptions are met, as we see no pattern in the residuals. There may be evidence of a single outlier (the car with the highest observed price)
- Inspection of the parameter estimates indicates that price decreases with increasing Age (estimated coefficient is -1.079 , standard error 0.138), and that the 500 series (Model=0) has the highest price, with coefficient $13.486+11.966=25.452$.

SPSS Output for Exercises 4 Q2

Model 1: Mod

Dependent Variable: Price (1000 GBP)

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	1105.468(a)	4	276.367	45.279	. 000
Intercept	11607.038	1	11607.038	1901.661	. 000
Mod	1105.468	4	276.367	45.279	. 000
Error	299.078	49	6.104		
Total	13658.417	54			
Corrected Total	1404.546	53			

a R Squared $=.787$ (Adjusted R Squared $=.770$)

Parameter	B	Std. Error	t	Sig.	95\% Confidence Interval	
					Lower Bound	Upper Bound
Intercept	9.236	. 618	14.953	. 000	7.994	10.477
[Mod=0]	12.843	1.070	12.005	. 000	10.693	14.993
[$\mathrm{Mod}=1$]	5.610	1.266	4.432	. 000	3.067	8.154
[$\mathrm{Mod}=2$]	9.922	. 996	9.963	. 000	7.921	11.923
[$\mathrm{Mod}=3$]	5.648	. 888	6.361	. 000	3.863	7.432
[Mod=4]	O(a)					

a This parameter is set to zero because it is redundant.

Model 2: Age

Dependent Variable: Price (1000 GBP)

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	$258.133(a)$	1	258.133	11.709	.001
Intercept	4109.494	1	4109.494	186.402	.000
Age	258.133	1	258.133	11.709	.001
Error	1146.413	52	22.046		
Total	13658.417	54			
Corrected Total	1404.546	53			

a R Squared $=.184$ (Adjusted R Squared $=.168$)

Dependent Variable: Price (1000 GBP)

Parameter	B	Std. Error	t	Sig.	95\% Confidence Interval	
					Lower Bound	Upper Bound
Intercept	19.409	1.422	13.653	. 000	16.557	22.262
Age	-1.128	. 330	-3.422	. 001	-1.790	-. 467

Model 3: Mile

Dependent Variable: Price (1000 GBP)

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	$326.165(a)$	1	326.165	15.728	.000
Intercept	5063.081	1	5063.081	244.144	.000
Mile	326.165	1	326.165	15.728	.000
Error	1078.381	52	20.738		
Total	13658.417	54			
Corrected Total	1404.546	53			

a R Squared $=.232$ (Adjusted R Squared $=.217$)

Dependent Variable: Price (1000 GBP)

Parameter	B	Std. Error	t	Sig.	95\% Confidence Interval	
					Lower Bound	Upper Bound
Intercept	19.302	1.235	15.625	. 000	16.823	21.781
Mile	-. 209	. 053	-3.966	. 000	-. 315	-. 103

Model 4: Vend

Dependent Variable: Price (1000 GBP)

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	$209.561(\mathrm{a})$	4	52.390	2.148	.089
Intercept	12329.637	1	12329.637	505.573	.000
Vend	209.561	4	52.390	2.148	.089
Error	1194.985	49	24.387		
Total	13658.417	54			
Corrected Total	1404.546	53			

a R Squared $=.149$ (Adjusted R Squared $=.080$)

Dependent Variable: Price (1000 GBP)

Parameter	B	Std. Error	t	Sig.	95\% Confidence Interval	
					Lower Bound	Upper Bound
Intercept	13.503	1.370	9.859	. 000	10.751	16.256
[Vend=0]	3.015	2.023	1.490	. 143	-1.050	7.081
[Vend=1]	5.054	2.219	2.278	. 027	. 595	9.514
[Vend=2]	1.925	2.141	. 899	. 373	-2.378	6.229
[Vend=3]	-. 511	1.937	-. 264	. 793	-4.403	3.382
[Vend=4]	O(a)					

a This parameter is set to zero because it is redundant.

Model 5: Age + Mile + Mod + Vend + Mod.Vend

Dependent Variable: Price (1000 GBP)

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	$1329.511(\mathrm{a})$	24	55.396	21.410	.000
Intercept	1907.237	1	1907.237	737.122	.000
Age	47.504	1	47.504	18.360	.000
Mile	1.769	1	1.769	.684	.415
Mod	604.015	4	151.004	58.361	.000
Vend	14.839	4	3.710	1.434	.248
Mod *Vend	36.082	14	2.577	.996	.482
Error	75.035	29	2.587		
Total	13658.417	54			
Corrected Total	1404.546	53			

a R Squared $=.947$ (Adjusted R Squared $=.902$)

Model 6: Age + Mile + Mod + Vend

Dependent Variable: Price (1000 GBP)

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	$1293.428(a)$	10	129.343	50.053	.000
Intercept	2413.866	1	2413.866	934.113	.000
Mod	888.417	4	222.104	85.949	.000
Vend	16.608	4	4.152	1.607	.190
Age	60.368	1	60.368	23.361	.000
Mile	2.461	1	2.461	.952	.335
Error	111.117	43	2.584		
Total	13658.417	54			
Corrected Total	1404.546	53			

a R Squared $=.921$ (Adjusted R Squared $=.902$)

Model 7: Age + Mod + Vend

Dependent Variable: Price (1000 GBP)

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	$1290.967(a)$	9	143.441	55.569	.000
Intercept	2474.277	1	2474.277	958.528	.000
Mod	927.675	4	231.919	89.845	.000
Vend	18.131	4	4.533	1.756	.155
Age	123.195	1	123.195	47.726	.000
Error	113.579	44	2.581		
Total	13658.417	54			
Corrected Total	1404.546	53			

a R Squared $=.919$ (Adjusted R Squared $=.903$)

Model 8: Age + Mod

Dependent Variable: Price (1000 GBP)

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	$1272.836(a)$	5	254.567	92.774	.000
Intercept	2949.842	1	2949.842	1075.032	.000
Mod	1014.703	4	253.676	92.449	.000
Age	167.368	1	167.368	60.995	.000
Error	131.710	48	2.744		
Total	13658.417	54			
Corrected Total	1404.546	53			

a R Squared $=.906$ (Adjusted R Squared $=.896$)

Model 9: Age + Mile + Mod

Dependent Variable: Price (1000 GBP)

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	$1276.820(a)$	6	212.803	78.307	.000
Intercept	2953.826	1	2953.826	1086.941	.000
Mod	920.691	4	230.173	84.698	.000
Age	61.768	1	61.768	22.729	.000
Mile	3.985	1	3.985	1.466	.232
Error	127.725	47	2.718		
Total	13658.417	54			
Corrected Total	1404.546	53			

a R Squared $=.909$ (Adjusted R Squared $=.897$)

Model 10: Age + Mod + Mod . Age

Dependent Variable: Price (1000 GBP)

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	$1292.291(a)$	9	143.588	56.282	.000
Intercept	2147.345	1	2147.345	841.688	.000
Mod	270.552	4	67.638	26.512	.000
Age	160.470	1	160.470	62.899	.000
Mod *Age	19.455	4	4.864	1.906	.126
Error	112.254	44	2.551		
Total	13658.417	54			
Corrected Total	1404.546	53			

a R Squared $=.920$ (Adjusted R Squared $=.904$)

Final Model: Age + Mod

Dependent Variable: Price (1000 GBP)

Source	Type III Sum of Squares	df	Mean Square	F	Sig.
Corrected Model	$1272.836(a)$	5	254.567	92.774	.000
Intercept	2949.842	1	2949.842	1075.032	.000
Mod	1014.703	4	253.676	92.449	.000
Age	167.368	1	167.368	60.995	.000
Error	131.710	48	2.744		
Total	13658.417	54			
Corrected Total	1404.546	53			

a R Squared $=.906$ (Adjusted R Squared $=.896$)

Parameter Estimates

Dependent Variable: Price (1000 GBP)

Parameter	B	Std. Error	t	Sig.	95\% Confidence Interval	
					Lower Bound	Upper Bound
Intercept	13.486	. 684	19.720	. 000	12.111	14.861
[$\mathrm{Mod}=0$]	11.966	. 726	16.482	. 000	10.506	13.426
[$\operatorname{Mod}=1]$	8.916	. 948	9.401	. 000	7.009	10.823
[Mod=2]	9.234	. 674	13.709	. 000	7.880	10.588
[Mod=3]	5.139	. 599	8.582	. 000	3.935	6.344
[Mod=4]	0(a)	.		.		
Age	-1.079	. 138	-7.810	. 000	-1.357	-. 802

a This parameter is set to zero because it is redundant.

Residuals

Dependent Variable: Price (1000 GBP)

Model: Intercept + Mod + Age

