MATH 204 - Assignment 1 Solutions

Memory Task Data Set: Response is Number of Words remembered, Factor is Memory Training method.

(a) ANOVA TABLE (from SPSS)

Sum of Squares df Mean Square Sig. Between Groups 351.520 4 87.880 9.085 .000 Within Groups 435.300 45 9.673 Total 786.820 49

ANOVA F-test p-value = 0.000. (to three decimal places)

Thus the result of the ANOVA F-test implies that we can

REJECT H₀

Therefore we reject the hypothesis of equal treatment means at the 5% significance level (and, indeed, at every significance level greater than 0.1%).

ANOVA F-test statistic F=9.085

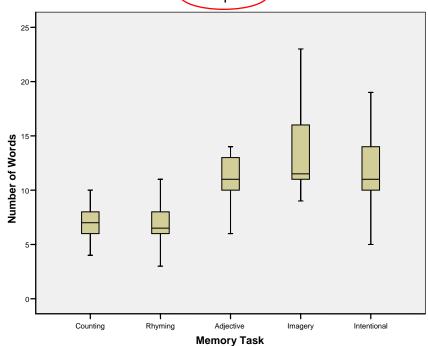
at significance levels α = 0.05/0.01, and conclude that there is a significant difference between the treatment means.

(15 Marks)

For completeness: the exact p-value is 1.815e-05. Critical values are

- $\alpha = 0.05$, $C_R = F_{\alpha}(4.45) = 2.579$ (textbook gives $F_{\alpha}(4.40) = 2.61$, $F_{\alpha}(4.60) = 2.53$)
- $\alpha = 0.01$, CR = $F_{\alpha}(4.45) = 3.767$ (textbook gives $F_{\alpha}(4.40) = 3.83$, $F_{\alpha}(4.60) = 3.65$)

(b) Checking the Assumptions:


- (i) Independent samples: this is apparently a completely randomized design, so this assumption is met.
- (ii) Normality of the populations: visual inspection of the boxplot below provides no categorical evidence that the normality assumption is violated. This could be tested more formally.
- (iii) Equal Variances: Levene's test (below) implies that the equality of variances is not rejected at the 5% level (p=0.054)

(5 Marks)

Boxplot indicates that the assumption of normality may be valid, although this is perhaps questionable. A formal test would probably be needed.

SPSS Output

Boxplot

Descriptives

					95% Confidence Interval for Mean			
	N	Mean	Std. Deviation	Std. Error	Lower Bound	Upper Bound	Minimum	Maximum
Counting	10	7.00	1.826	.577	5.69	8.31	4	10
Rhyming	10	6.90	2.132	.674	5.38	8.42	3	11
Adjective	10	11.00	2.494	.789	9.22	12.78	6	14
Imagery	10	13.40	4.502	1.424	10.18	16.62	9	23
Intentional	10	12.00	3.742	1.183	9.32	14.68	5	19
Total	50	10.06	4.007	.567	8.92	11.20	3	23

Levene's Test of Homogeneity of Variances

Number of Words

Levene Statistic	df1	df2	Sig.					
2.529	4	45	.054					

Levene's Test p-value = 0.054.

Therefore no reason to reject the hypothesis of equal variances at the 5% significance level.