
Identification of Causal Effects Using 
Instrumental Variables 

Joshua D. ANGRIST, Guido W. IMBENS, and Donald B. RUBIN 

We outline a framework for causal inference in settings where assignment to a binary treatment is ignorable, but compliance with 
the assignment is not perfect so that the receipt of treatment is nonignorable. To address the problems associated with comparing 
subjects by the ignorable assignment-an "intention-to-treat analysis"-we make use of instrumental variables, which have long 
been used by economists in the context of regression models with constant treatment effects. We show that the instrumental 
variables (IV) estimand can be embedded within the Rubin Causal Model (RCM) and that under some simple and easily interpretable 
assumptions, the IV estimand is the average causal effect for a subgroup of units, the compliers. Without these assumptions, the 
IV estimand is simply the ratio of intention-to-treat causal estimands with no interpretation as an average causal effect. The 
advantages of embedding the IV approach in the RCM are that it clarifies the nature of critical assumptions needed for a causal 
interpretation, and moreover allows us to consider sensitivity of the results to deviations from key assumptions in a straightforward 
manner. We apply our analysis to estimate the effect of veteran status in the Vietnam era on mortality, using the lottery number 
that assigned priority for the draft as an instrument, and we use our results to investigate the sensitivity of the conclusions to 
critical assumptions. 
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1. INTRODUCTION 

Economists are typically interested in estimating causal 
effects rather than mere associations between variables. Po- 
tentially interesting causal effects include the effects of ed- 
ucation on employment and earnings, the effects of employ- 
ment training programs on subsequent labor market histo- 
ries, and the effects of a firm's inputs on its output. The 
dominant approach to making inferences about causal ef- 
fects in economics over the last four decades is based on 
structural equation models, which rely on the specification 
of systems of equations with parameters and variables that 
attempt to capture behavioral relationships and specify the 
causal links between variables. Goldberger (1972) and Mor- 
gan (1990) provided historical perspectives on these mod- 
els, which date back to Wright (1928, 1934) and Haavelmo 
(1943, 1944). Inference in structural equation models often 
exploits the presence of instrumental variables (IV). These 
are variables that are explicitly excluded from some equa- 
tions and included in others, and therefore correlated with 
some outcomes only through their effect on other variables. 

Rather than relying on structural equation models, causal 
inference in statistics, going back at least to work by Fisher 
(1918, 1925) and Neyman (1923) on agricultural experi- 
ments, is fundamentally based on the randomized experi- 
ment (see also Kempthorne 1952 and Cox 1958). The ba- 
sic notion in this formulation, which has been extended by 
Rubin (1974, 1978) to more complicated situations, includ- 
ing observational studies without randomization, is that of 
potential outcomes. The causal effect of a treatment on a 
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single individual or unit of observation is the comparison 
(e.g., difference) between the value of the outcome if the 
unit is treated and the value of the outcome if the unit is not 
treated. The target of estimation, the estimand, is typically 
the average causal effect, defined as the average difference 
between treated and untreated outcomes across all units in 
a population or in some subpopulation (e.g., males or fe- 
males). For this definition of causality to be applicable to 
samples with units already exposed to treatments, we must 
be able to imagine observing outcomes on a unit in cir- 
cumstances other than those to which the unit was actually 
exposed. This approach is now widely used in statistics and 
epidemiology (e.g., Efron and Feldman 1991 and Greenland 
and Robins 1986), where it is often referred to as the Rubin 
Causal Model (RCM; Holland [1986]). 

In this article we provide a link between these ap- 
proaches, capitalizing on the strengths of each. Earlier work 
combining elements of these approaches includes studies 
by Hearst, Newman, and Hulley (1986), Holland (1988), 
Permutt and Hebel (1989), Sommer and Zeger (1991), and 
Imbens and Angrist (1994). We show how the IV estimand 
can be given a precise and straightforward causal interpre- 
tation in the potential outcomes framework, despite nonig- 
norability of treatment received. This interpretation avoids 
drawbacks of the standard structural equation framework, 
such as constant effects for all units, and delineates criti- 
cal assumptions needed for a causal interpretation. The IV 
approach provides an alternative to a more conventional 
intention-to-treat analysis, which focuses solely on the av- 
erage causal effect of assignment on the outcome (Lee, El- 
lenberg, Hirtz, and Nelson 1991). 

As we show in the context of a specific application, our 
formulation of these assumptions makes it easier for re- 
searchers to judge whether or not a causal interpretation of 
the instrumental variables estimand is plausible. Standard 
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IV procedures rely on judgments regarding the correlation 
between functional-form-specific disturbances and instru- 
ments. In contrast, our approach forces the researcher to 
consider the effect of exposing units to specific treatments. 
If it is not possible (or not plausible) to envision the alter- 
native treatments underlying these assumptions, the use of 
these techniques may well be inappropriate. Moreover, by 
separating and defining the critical assumptions, our formu- 
lation allows for a clear assessment of the consequences of 
violations of these assumptions through sensitivity analysis 
under more general models. Our main results are summa- 
rized in three propositions: the first provides conditions for 
a causal interpretation of the IV estimand, and the others 
reveal the consequences of violations of the critical assump- 
tions. 

We develop our presentation in the context of an eval- 
uation of the effect of serving in the military on health 
outcomes. Data for this study come from the Vietnam 
era, when priority for conscription was randomly allocated 
through the draft lottery. For expository purposes, and to 
be precise without cumbersome notation, we use the sim- 
plest possible example: both the "treatment" (i.e., serving 
in the military or not, denoted by D) and the "assignment" 
(i.e., draft status, determined by lottery number, denoted 
by Z) are binary. If compliance with the draft had been 
perfect, then all those with a low lottery number (Z = 1) 
would have served in the military (D = 1), and all those 
with a high lottery number (Z = 0) would not have served 
(D = 0). We assume that we observe values of Z, D, and 
the health outcome Y for each person. Our basic results, 
however, are not limited to this case with binary treatment 
and binary instrument. The approach developed here can 
be extended to multi-valued treatments and instruments as 
in Angrist and Imbens (1995) and Angrist, Graddy and Im- 
bens (1995). Moreover, the generalization to cases with co- 
variates is, in principle, immediate by applying our results 
at distinct values of the covariates. Also, fully principled 
methods of estimation using likelihood-based or Bayesian 
techniques can be derived as in Imbens and Rubin (1994a). 

In Section 2 we briefly describe the structural equation 
approach to causal inference in economics. In Section 3 we 
develop an alternative approach based on the RCM, and the 
approaches are contrasted in Section 4. In Section 5 we dis- 
cuss how to evaluate the sensitivity of the IV estimand to 
two of the critical assumptions presented in Section 3. In 
Section 6 we apply this approach to our draft lottery ex- 
ample, where we formulate the critical assumptions in the 
RCM framework and investigate the implications of viola- 
tions of these assumptions. 

2. STRUCTURAL EQUATION MODELS 
IN ECONOMICS 

Following Goldberger (1972), we define structural equa- 
tion models as "stochastic models in which each equation 
represents a causal link, rather than a mere empirical associ- 
ation" (p. 979). Such models are widely used in economics, 

going back to work by Wright (1928, 1934), Schultz (1928), 
and Haavelmo (1943, 1944). 

A structural equation model for the problem of infer- 
ring the effect of veteran status on a health outcome is 
the dummy endogenous variable model (see, e.g., Maddala 
1983; Bowden and Turkington 1984; Heckman and Robb 
1985). For person i, let Yi be the observed health outcome, 
let Di be the observed treatment (i.e., veteran status), and 
let Zi be the observed draft status. A standard dummy en- 
dogenous variables model for this problem would have the 
form 

Yi = So + ol * Di + Ei, (1) 

D1 - aoz+c a.Zi+vi (2) 

and 

Di{ f if D->0 (3) 
ifD* < 0 

In this model 01 represents the causal effect of D on Y. 
Although simple, this model is typical of the econometric 
approach to discrete choice (in this case, the choice to serve 
in the military or not). The latent index formulation involv- 
ing D* originates in the notion that compliance is a choice 
determined by comparison of the expected utility of serv- 
ing and not serving. We note that this dummy endogenous 
variables model shares many features with the classical si- 
multaneous equations model (Haavelmo 1943): an underly- 
ing linear structure, constant coefficients, and a reliance on 
error terms to characterize omitted variables. 

The first assumption typically invoked to identify 01 is 
that Zi is uncorrelated with the disturbances Ei and vi: 

E[Zi * Ei] = 01 E[Zi * vi] = O. (4) 

The assumption that the correlation between E and Zi is zero 
and the absence of Z in Equation (1) captures the notion 
that any effect of Z on Y must be through an effect of Z 
on D. This is a key assumption in econometric applications 
of instrumental variables. A second assumption is that the 
covariance between the treatment Di and assignment Z2 
differs from zero; that is, 

cov(Di, Zi) 34 ?, (S) 

which can be interpreted as requiring that a,i differ from 
zero. If Zi satisfies these two assumptions, then it is con- 
sidered an IV in this model. In general Di, the endogenous 
regressor in econometric terminology, is potentially corre- 
lated with Ei because the two disturbances Ei and vi are 
potentially correlated. This implies that the receipt of treat- 
ment Di is not ignorable (Rubin 1978) and, in econometric 
terminology, not exogenous. 

For this simple example, the IV estimator is defined as 
the ratio of sample covariances (Durbin 1954) 

IV = c Y%Z%/Z Z% - Y%(1-Z)/Z (1D-Z) 

Li ThDZ%/Z'l Zi - Zi-1 D(1 Zi/ -1 Zi) 

(6) 
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where the last equality follows from the binary nature of 
the instrument. 

Structural equation models such as Equations (1)-(3) have 
not found widespread use among statisticians. One reason 
is the sensitivity of these models to critical assumptions 
(see Little 1985) and their apparent inability to reproduce 
experimental results (see Lalonde 1986). Another reason is 
the fact that critical assumptions are cast in terms of dis- 
turbances from incompletely specified regression functions 
(i.e., Ei and vi), rather than in terms of intrinsically mean- 
ingful and potentially observable variables. Typically the 
researcher does not have a firm idea what these disturbances 
really represent, and therefore it is difficult to draw realistic 
conclusions or communicate results based on their proper- 
ties. The focus of this article is on the causal interpretation 
of the limit of the estimator in Equation (6); that is, the 
IV estimrand, using the potential outcomes framework, and 
on the formulation of the critical assumptions in a more 
transparent manner to make these models more accessible 
to statisticians. 

3. CAUSAL ESTIMANDS WITH 
INSTRUMENTAL VARIABLES 

In this section, we set out an, alternative framework for a 
causal interpretation of the IV estimand based on potential 
outcomes. First, we discuss the RCM approach to analyzing 
the causal effects of assignment on treatment received and 
on the outcome of interest (the intention-to-treat effects). 
We then define the causal effect of interest, that of treatment 
received on the outcome, in terms of potential outcomes. 
Finally, we show how the IV estimand links the two average 
intention-to-treat effects to a subpopulation average of the 
causal effect of interest. 

3.1 The Rubin Causal Model 

As before, Zi = 1 implies that person i has a low lot- 
tery number (i.e., would potentially get called to serve in 
the military), whereas Za = 0 indicates that person i has a 
high lottery number (i.e., would not get called to serve in 
the military). The subsequent notation for D and Y is some- 
what different from that in Section 2 because of the need to 
represent potential outcomes. Let Z be the N-dimensional 
vector of assignments with ith element Zi, and let Di (Z) be 
an indicator for whether person i would serve given the ran- 
domly allocated vector of draft assignments Z. In a world 
of perfect compliance with the draft, Di (Z) would equal 
Zi for all i; that is, those with low lottery numbers would 
actually serve and none of those with high lottery num- 
bers would serve. In practice, Di (Z) can differ from Zi for 
various reasons: individuals may volunteer for military ser- 
vice, they may avoid the draft, or they may be deferred for 
medical or family reasons. 

Similar to the definition of Di(Z), we define Y2(Z, D) to 
be the response for person i given the vector of service in- 
dicators D and the vector of draft priorities Z; Y(Z, D) is 
the N vector with ith element Yj(Z, D). We refer to D2(Z) 
and Y2 (Z, D) as "potential outcomes." The concept of po- 

tential outcomes used here can be viewed as analogous to 
Neyman's (1923) notion of "potential yields" in random- 
ized agricultural experiments, as extended by Rubin (1974, 
1978, 1990, 1991) to observational studies where the poten- 
tial outcomes are partially revealed by a general treatment 
assignment mechanism, to situations with possible variation 
of treatments and with possible interference between units, 
and to Bayesian and likelihood inference where the poten- 
tial outcomes and assignment have a joint probability dis- 
tribution. As originally formulated, the potential outcomes 
Di(Z) and Y (Z, D) are fixed but unknown values partially 
observed through the assignment of treatments to units. Dif- 
ferences in these potential outcomes due to assigned and 
received treatments will be revealed by analyzing data ob- 
tained by randomly assigning Z in the finite population of 
N units under study. Our initial goal is to provide inferences 
solely about this finite population. 

In evaluation research, some assumptions about how units 
interact and the variety of possible treatments are required. 
Our notation has already restricted both Z and D to have 
only two levels; that is, there is no partial compliance. Here 
we follow the convention in statistics and medical research 
by assuming no interference between units. 

Assumption 1: Stable Unit Treatment Value Assumption 
(SUTVA) (Rubin 1978, 1980, 1990). 

a. If Zi - Z), then Di(Z) -Di (ZW). 
b. If Z, = Zi and Di = D', then Y (Z, D) = Y (Z', DI). 

SUTVA implies that potential outcomes for each person i 
are unrelated to the treatment status of other individuals. 
This assumption allows us to write Y (Z, D) and Di(Z) as 
Y% (Zi, Di) and Di(Zi) respectively. SUTVA is an impor- 
tant limitation, and situations where this assumption is not 
plausible cannot be analyzed using the simple techniques 
outlined here, although generalizations of these techniques 
can be formulated with SUTVA replaced by other assump- 
tions. 

Given the set of potential outcomes, we can define the 
causal effects of Z on D and on Y in the standard fashion 
(Rubin, 1974). 

Definition 1: Causal Effects of Z on D and Z on Y 
The causal effect for individual i of Z on D is Di(1)-Di (0). 
The causal effect of Z on Y is Y(1, Di(1)) - Yi(0, Di(0)). 

In the context of a clinical trial with imperfect compliance 
these are the intention-to-treat effects, and we adopt this 
jargon here. 

Although Bayesian or likelihood-based inference is 
straightforward if treatment assignment is ignorable, even 
if not completely random (Rubin 1978), we assume random 
assignment here to avoid tangential issues. 

Assumption 2: Random Assignment. 

The treatment assignment Zt is random: 

Pr(Z = c) = Pr(Z = c/) 
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for all c and c' such that tTc = TcT, where t is the N- 
dimensional column vector with all elements equal to one. 

Given SUTVA and random assignment, unbiased estima- 
tors for the average intention-to-treat effects can be ob- 
tained by taking the difference of sample averages of Y 
and D classified by the value of Z; that is, by treatment- 
control mean differences. This has been well known since 
at least Neyman (1923). Formally, the unbiased estimator 
for the average causal effect of Z on Y can be written as 

Li zi Li(I - Zi) 

(1/N) L_ YiZ.-(1/N) i- Y. (1/N) EN1Z 

(1/N) ZiU Z= z- (1/N) Zi=? Zi (1/N) z-1 zi 

(7) 

and for the average causal effect of Z on D the unbiased 
estimator can be written as 

Ei Di Zi E i Di (I -Zi) 

Ei zi Ei (I -Zi) 

(1/N) I?> DiZi - (1/N) if1 Y (1/N) EN 
Zi 

(1/N) i=z 1 /).Zi - (1/N) (1N) zi 

(8) 

The ratio of (7) and (8) equals the conventional instrumen- 
tal variables estimator (6). The limit of the IV estimator 
(i.e., the IV estimand), therefore equals the ratio of average 
intention-to-treat effects. 

3.2 Instrumental Variables 

The critical feature of the problem of evaluating a treat- 
ment under imperfect compliance is that even if assignment 
Zi is random or ignorable, the actual receipt of treatment Di 
is typically nonignorable. Therefore the difference of out- 
come averages by treatment received does not provide an 
unbiased or even consistent estimate of the average causal 
effect of D on Y. In fact, we require additional assumptions 
just to define the causal effect of D on Y in a meaningful 
way. The following assumption requires the treatment as- 
signment to be unrelated to potential outcomes once treat- 
ment received is taken into account. 

Assumption 3: Exclusion Restriction. 
Y(Z, D) = Y(Z', D) for all Z, Z' and for all D. 

This assumption implies that Yi(1, d) = Yi(O, d) for d 0 O, 1. 
It captures the notion underlying instrumental variables pro- 
cedures that any effect of Z on Y must be via an effect of 
Z on D. Because the exclusion restriction relates quanti- 
ties that can never be jointly observed, (i.e., Y,i(0, d) and 
Yi (1, d)), it is not directly verifiable from the data at hand 
although it has testable implications when combined with 
Assumptions 1 and 2. Imbens and Rubin (1994b) discussed 

a weaker version of the exclusion restriction that impose re- 
strictions only on outcomes that can potentially be observed 
(i.e., Yi (z, Di (z)).) 

By virtue of Assumption 3, we can now define potential 
outcomes Y(Z, D) as a function of D alone: 

Y(D) = Y(Z, D) = Y(Z', D) V Z, Z' and V D, 

and then by Assumption 1 we can write Yj(Di) instead of 
Yi(Z, D). 

We now have notation for the causal effects of interest. 

Definition 2: Causal Effects of D on Y 
The causal effect of D on Y for person i is Yi(1) - Yi(O). 

Although we can never observe any of these causal effects, 
for people with Di(O) ; Di(1) we can observe either one 
of its terms through appropriate choice of Zi. We there- 
fore focus on average causal effects in groups of people 
who can be induced to change treatments. Inferences about 
such average causal effects are made using changes in treat- 
ment status induced by treatment assignment, provided the 
assignment does affect the treatment. 

At this point we introduce a compact notation to denote 
averages over the entire population or subpopulations. Let 
E[g] denote the average over the population of N units 
of any function g( ) of Zi, Di(1), Di(O), Yi(O, O), Yi(O, 1), 
Yi(1, 0), or Yi(1, 1). Similarly, the average of gQ() over the 
subpopulation defined by some fixed value ho of some func- 
tion h(.) will be denoted by E[glh(.) = ho]. Finally, the 
relative size of the subpopulation satisfying h(-) = ho is 
written as P[h(.) = ho] = E[lh(.)=hj], where 1{.} is the 
indicator function. We emphasize that this notation simply 
reflects averages and frequencies in a finite population or 
subpopulation. 

The next assumption requires Z to have some effect on 
the average probability of treatment. 

Assumption 4: Nonzero Average Causal Effect of Z on D. 
The average causal effect of Z on D, E[Di(1) - Di(0)] is 
not equal to zero. 

The final assumption that we make, originally formulated 
by Imbens and Angrist (1994), says that there is no one 
who does the opposite of his assignment, no matter what 
the assignment. 

Assumption 5: Monotonicity (Imbens and Angrist 1994). 
Di(1) > Di(0) for all i =1,.. .,N. 

We refer to the combination of Assumptions 4 and 5, im- 
plying that Di(1) > Di(O) with inequality for at least one 
unit as strong monotonicity. 

Assumptions 1-5 lead to our formal definition of an in- 
strument in the RCM. 

Definition 3: Instrumental Variable for the Causal Effect 
of D on Y 

A variable Z is an instrumental variable for the causal effect 
of D on Y if: its average effect on D is nonzero, it satisfies 
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Table 1. Causal Effect of Z on Y, Yj(1, Dj(1)) - Yj(O, D1(O)), for the Population 
of Units Classified by D1(O) and D1(1) 

D1(O) 

0 1 

Di(1) 0 Y,(1, 0) - Y,(O, 0) = 0 Y(1, 0) - Y,(O, 1) = -(Y,(1) - Y,(O)) 
Never-taker Defier 

1 Y,(1, 1) - Y,(O, 0) = Y(1) - Y,(O) Y,(1, 1) - Y,(O, 1) = 0 
Complier Always-taker 

the exclusion restriction and the monotonicity assumption, 
it is randomly (or ignorably) assigned, and SUTVA holds 
(i.e., if Assumptions 1-5 hold). 

3.3 Interpreting the Instrumental Variables Estimand 

SUTVA and the exclusion restriction are sufficient to es- 
tablish a fundamental relationship between the intention-to- 
treat effects of Z on Y and D and the causal effect of D on 
Y at the unit level: 

Yi(1, Di(1)) - Yi(O, Di(O)) 

= Y2(Di(l)) - Y2(Di(O)) 

= [Yi (1) * Di (1) + Yi (O) * (1 -Di (1))] 

- [Yi(1) Di(O) + Yi(O) (1 - Di(O))] 

= (Yi(1) - Yi(O)) (Di(1) - Di(O)). (9) 

Thus the causal effect of Z on Y for person i is the product 
of (i) the causal effect of D on Y and (ii) the causal effect 
of Z on D. We can therefore write the average causal effect 
of Z on Y as the weighted sum of average causal effects 
for two subpopulations, both with Di(O) + Di(l): 

E[Yi(1, Di(1)) - Yi(O, Di(O))] 

= E[(Yi(1) - Yi(0))(Di(1) - Di(O))] 

= E[(Y%(I) - Y%(O))IDi(I) - Di(O) = 1] 

* P[Di(I) -Di(O) = 1] 

- E[(Y%(I) - Y%(O))lDi(I) - Di(O) =-1] 

* P[Di(I) - Di(O) =-1]. (10) 

The weights do not sum to 1 but rather to P[Di(O) 4 Di(1)]. 
Equation (10) does not use monotonicity. The monotonic- 

ity assumption requires that Di(1) - Di(O) equals either 
zero or one, so that the average causal effect of Z on Y 
equals the product of the average causal effect of D on Y 
for persons with Di(0) = 0 and Di(1) = 1 and their pro- 
portion in the population: 

E[Yi(Di(1), 1) - Yi(Di (0), 0)] 

= E[(Y%(I) - Y%(O)) Di(I) - Di(O) = 1] 

. PriI To Di(O X=o/ 1] (I 1 ) 

This establishes the relationship between the IV estimand 
and the causal effect of D on Y, which we summarize as a 
formal proposition. 

Proposition 1: Causal Interpretation of the IV Estimand. 
Given Assumptions 1, 3, 4, and 5, the instrumental variables 
estimand is 

E[Yi(Di(l), 1) - Yi(Di(0), 0)] 
E[Di(l) - Di(O)] 

= E[(Yi(1) - Yi(0))IDi(1) - Di(0) = 1]. (12) 

We call this the Local Average Treatment Effect (LATE). 
This result follows directly from (11) combined with two 
facts: first, that the monotonicity assumption implies that 
E[Di(1) - Di(0)] equals P[Di(1) - Di(0) = 1], and second, 
that E[Di(1) - Di(0] differs from zero. 

Table 1 helps interpret this result. The four values of 
(Di(0), Di(1)) in this two-by-two table generate three dis- 
tinct values of Di(1) - Di(0). Individuals with Di(1) 
- Di (0) = 1 (bottom left) are induced to take the treat- 
ment by assignment to the treatment, and the causal effect 
of Z on Y is Yi(1) -Yi(0) for individuals of this type, whom 
we refer to as compliers. A value of Di(1) - Di(0) = 0 (di- 
agonal elements) implies that individual i does not change 
treatment status with the assigned treatment; the causal ef- 
fect of Z on Y is zero for such individuals by the exclusion 
restriction. If Di(O) = Di(1) = 0, the individual is referred 
to as a never-taker; or in our application, a draft avoider; 
whereas if Di (O) = Di (1) = 1, the individual is an always- 
taker or, in our application, a volunteer. Finally, individuals 
with Di (1) - Di (0) = -1 (top right) do the opposite of their 
assignment; they are induced to avoid the treatment by as- 
signment to it, and induced to take the treatment by assign- 
ment to the control group. We call such individuals defiers, 
as suggested by Balke and Pearl (1993) in a comment on 
an earlier version of this paper (Angrist, Imbens, and Ru- 
bin 1993). The causal effect of Z on Y for these individuals 
is Yi(O) - Yi(l). Finally, we refer to never-takers, always- 
takers, and defiers jointly as noncompliers. Note that these 
labels-compliers, defiers, never-takers, always-takers, and 
noncompliers-are simply definitions given SUTVA in this 
experiment and are not assumptions about individual be- 
havior. 

By virtue of the exclusion restriction, the two subpopula- 
tions corresponding to the two diagonal elements of Table 
1 are characterized by a zero causal effect of Z on Y. By 
virtue of the monotonicity assumption there are no defiers, 
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and the group corresponding to the top-right element in the 
table is empty. Finally, by virtue of Assumption 4, the pro- 
portion of the population in the cell corresponding to com- 
pliers differs from zero and is equal to the average causal 
effect of Z on D. Combined, these assumptions imply that 
the average causal effect of Z on Y is proportional to the 
average causal effect of D on Y for compliers. This is the 
result in Proposition 1. 

Because we can estimate the two intention-to-treat es- 
timands by virtue of random assignment, we can also es- 
timate their ratio; that is, the IV estimand. The ratio of 
the usual unbiased estimators for the intention-to-treat es- 
timands given in (7) and (8) is equal to the standard instru- 
mental variables estimator for binary instruments given in 
(6). This estimator does not exploit all the implications of 
the model developed in this section. In Imbens and Rubin 
(1994a,b) we discuss implications of this model for estima- 
tion. 

Finally, it is important to note that (under our assump- 
tions) we cannot generally identify the specific members of 
the group of compliers, defined by Di(O) = 0, Di(1) = 1, 
for whom we can identify the average treatment effect. 
Thus, the local average treatment effect (i.e., the average 
causal effect for compliers) is not the average treatment 
effect for either the entire population or for a subpopula- 
tion identifiable from observed values. Stronger assump- 
tions are needed for the identification of average causal ef- 
fects for subpopulations identifiable from observed data. 
One assumption that achieves this is random assignment to 
a control group denied treatment, so that Di(0) = 0 for 
all i (Zelen 1979; Angrist and Imbens 1991). For exam- 
ples of other such assumptions see Heckman (1990), Robins 
and Tsiatis (1991), Efron and Feldman (1991), and Manski 
(1994). 

4. COMPARING THE STRUCTURAL EQUATION 
AND POTENTIAL OUTCOMES FRAMEWORK 

In Section 2 we described a structural equation model 
for the effect of military service on a health outcome using 
an indicator of draft eligibility as an instrument. Here we 
contrast that framework with the approach developed for 
the same problem in Section 3. In particular, we compare 
the formulation and clarity of the assumptions in each case. 
This comparison is useful because several authors have at- 
tributed the absence of structural equation methods in statis- 
tics to the manner in which such models are commonly 
formulated. For example, in his discussion of the connec- 
tion between structural equation methods and path analysis, 
Goldberger (1972) quoted Moran (1961): "The main reason 
why Sewall Wright's method of path coefficients is often 
found difficult to understand is that expositions of the the- 
ory do not make clear what assumptions are made" (p. 988). 
Similarly, Holland (1988) writes, "it is not always evident 
how to verify assumptions made about [regression distur- 
bances]. For example, why should [they] be independent of 
[Z] ... when the very definition of [the disturbances] in- 
volves [Z]" (p. 458). 

4.1 The Exclusion Restriction and Ignorable 
Treatment Assignment 

The econometric version of these assumptions requires 
that the disturbances in the response equation (1) and the 
participation equation (2) be uncorrelated with, or indepen- 
dent of, the assignment Z. In Imbens and Angrist (1994) this 
assumption is formulated in a framework using potential 
outcomes indexed only against the level of the treatment D. 
The framework we develop here separates this requirement 
into two assumptions about potentially observable quanti- 
ties: the exclusion restriction, which says nothing about the 
treatment assignment mechanism, and ignorable treatment 
assignment, which says nothing about possible direct effects 
of assignment. 

First, the exclusion restriction requires that the instru- 
ment have no effect on the outcome except through D. Thus 
to verify this assumption, the researcher must consider, at 
the unit level, the effect of changing the value of the in- 
strument while holding the value-of the treatment fixed. 
To clarify the distinction between this formulation and the 
econometric formulation, consider the four subpopulations 
defined by the values of Di(O) and Di(1) in Table 1. Some- 
one with Di (0) = Di (1) = 1 would always serve in the 
military with a low or high draft lottery number. It seems 
reasonable to assume that for such a person, the draft lot- 
tery number has no effect on health outcome. Next, consider 
someone with Di(O) = Di(I) = 0, who would have man- 
aged to avoid military service with a high or low lottery 
number. For someone exempted from military service for 
medical reasons, it seems plausible that there was no effect 
of the draft lottery number. But a draftee who managed 
to avoid military service by staying in school or moving 
abroad could experience an effect of Z on future life out- 
comes that would violate the exclusion restriction. For both 
these groups of noncompliers, the exclusion restriction re- 
quires the researcher to consider a difference in outcomes 
that were potentially observable, even though after the pop- 
ulation was randomly allocated to treatment and control 
groups, only one of the outcomes was actually observed. In 
fact, if one could identify compliers and noncompliers, then 
it would be possible to test the exclusion restriction by com- 
paring average outcomes for noncompliers by assignment 
status. 

For compliers with Di(0) = 0, Di(1) = 1, the ex- 
clusion restriction compares outcomes that cannot be ob- 
served: it requires that Yi(0, Di(0)) = Yi(1, Di(0)) and 
Yi(I, Di(1)) = Yi(O, Di(1)). For this group, the exclusion 
restriction amounts to attributing the effect of Z on Y to 
the change in the treatment received D rather than to the 
change in assignment Z. Such an assumption is not innocu- 
ous, and efforts to ensure it form the rationale for blind- 
ing, double blinding, and using placebos in clinical trials. 
Nevertheless, it underlies most experimental evaluations in 
economics where blinding and placebos are impossible, and 
is often thought to be reasonable in those cases. 

The second element embedded in the assumption of zero 
correlation between instruments and disturbances in the 
standard econometric formulation is that of random, or at 
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least ignorable, treatment assignment Z. This assumption 
is trivially satisfied if physical randomization took place, 
as in the application in Section 6 where Z is a function 
of a lottery number. Our formulation makes clear that ran- 
domization of the instrument, though sufficient to allow un- 
biased estimation of the average treatment effect of Z on 
Y and of the average treatment effect of Z on D, does 
not imply that the IV estimand is interpretable as an aver- 
age causal effect. In most applications of IV, however, the 
instrument is not randomly assigned, and this assumption 
must be argued more carefully. Examples include Angrist 
and Krueger's (1991) use of quarter of birth as an instru- 
ment for the effect of schooling on earnings, Card's (1993) 
use of distance to college as an instrument for the effect 
of schooling on earnings, and McClellan and Newhouse's 
(1994) use of relative distance to hospital as an instrument 
for the effect of catherization on mortality after acute myo- 
cardial infarction. 

Whereas the exclusion restriction requires the researcher 
to contemplate the effect of specific treatments on out- 
comes, the ignorability assumption requires consideration 
of the assignment mechanism. Violations of these different 
assumptions can have different sources and consequences. 
In our view, pooling these assumptions into the single as- 
sumption of zero correlation between instruments and dis- 
turbances has led to confusion about the essence of the 
identifying assumptions and hinders assessment and com- 
munication of the plausibility of the underlying model. 

4.2 The Monotonicity Condition 

The monotonicity assumption rules out the existence of 
defiers, characterized by Di(0) = 1 and Di(1) = 0. Permutt 
and Hebel (1989) informally discussed a variant of this as- 
sumption in a reanalysis of a program designed to induce 
pregnant women to stop smoking. In that context, the as- 
sumption implies that everyone who would stop smoking 
if they were in the control group, which received no en- 
couragement to stop smoking, would also stop smoking if 
encouraged to do so by being in the treatment group. Robins 
(1989) discussed the effect of this assumption on bounds on 
population average treatment effects. Monotonicity is im- 
plied by designs where those assigned to the control group 
are prevented from receiving the treatment, as in Zelen's 
(1979) single-consent designs. 

Monotonicity has no explicit counterpart in the econo- 
metric formulation, but is implicit in the use of an equation 
with constant parameters for the relation between Zi and 
Di. The model developed in Section 3 suggests that the 
constant parameter assumption embodied in (2) is much 
stronger than needed. On the other hand, it is not suffi- 
cient to postulate a nonzero covariance between treatment 
and assignment, as in (5), for the interpretation of the IV 
estimand as an average of causal effects. 

4.3 Reduced Form and Structural Parameters 

Reduced-form parameters for the draft lottery applica- 
tion are the coefficients from a regression of Y on Z and D 
on Z. In our formulation, these are the average intention- 

to-treat effects under Assumptions 1 and 2. The structural 
parameter (01) is the average effect of the treatment itself 
on Y for the subpopulation that complies with assignment. 
The econometric approach does not distinguish between an 
effect for the entire population and an effect for the sub- 
population of compliers. In our view LATE is structural in 
the Goldberger (1972) sense of representing a causal link, 
but not necessarily structural in the sense of representing a 
parameter that is invariant across populations. Despite this 
potential lack of generalizability, we. view LATE as inter- 
esting (perhaps in combination with the intention-to-treat 
estimand) because it is an average of unit level causal ef- 
fects of the treatment of interest. For example, for a poten- 
tial recruit, the average effect of actual military service for 
a specific subpopulation is likely to be of greater interest 
than the population average effect of draft eligibility. 

A similar rationale applies to clinical trials, which are of- 
ten based on populations that are more homogeneous than, 
and not representative of, the population that will eventu- 
ally be subjected to the treatment. The presumption in such 
cases, and in our analysis, is the average over the subpopu- 
lation of those whose behavior can be modified by assign- 
ment are likely to be informative about population averages 
of those who comply in the future, even if there is substan- 
tial heterogeneity in individual-level causal effects. 

It should be stressed, however, that the assumptions 
needed for a causal interpretation of the instrumental vari- 
ables estimand (Assumptions 1 and 3-5) are substantially 
stronger than those needed for the causal interpretation of 
the intention-to-treat estimand (Assumption 1). The plausi- 
bility of the additional assumptions (i.e., the exclusion re- 
striction and the monotonicity assumption) must be taken 
into account when facing the choice to report estimates 
of the intention-to-treat estimands, of the IV estimands, or 
both. 

5. SENSITIVITY OF THE IV ESTIMAND 
TO CRITICAL ASSUMPTIONS 

The assumptions laid out in Section 3 are sufficient con- 
ditions for the identification of a meaningful average treat- 
ment effect. In this section we discuss the sensitivity of 
the IV estimand to deviations from the IV assumptions. As 
this discussion makes clear, violations of these assumptions 
need not be catastrophic. We focus on Assumptions 3 and 5 
because they form the core of the IV approach. Assumption 
4 (a nonzero average causal effect of Z on D) is conceptu- 
ally straightforward and easy to check. Assumptions 1 and 
2 are standard in the RCM approach, and sensitivity to par- 
ticular violations of those assumptions has been previously 
discussed (e.g., Rosenbaum and Rubin 1983). In general the 
IV estimand is most likely to be sensitive to violations of 
the exclusion restriction and the monotonicity assumption 
when there are few compliers. In Section 6 we illustrate 
how this sensitivity analysis can be applied. 

5.1 Violations of the Exclusion Restriction 

First, we consider violations of the exclusion restric- 
tion, while maintaining the other assumptions, stability, and 
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strong monotonicity. If subject i is a noncomplier, that is, 
Di(O) = Di(I), then the causal effect of Z on Y is 

Hi = Yi(I, d) -Yi(O, d), (13) 

where d = 0 if subject i is a never-taker and d = 1 if subject 
i is an always-taker. Under the exclusion restriction, Hi = 0 
for all noncompliers. 

Proposition 2. Given stability and strong monotonicity, 
but without the exclusion restriction for noncompliers, the 
IV estimand equals the Local Average Treatment Effect plus 
a bias term given by (14): 

E[Yi(I, Di(1)) - Yi(O, Di(0))] 
E[Di(1) - Di(0)] 

- E[Yi(I, Di(1)) - Yi(0, Di(O)) Ii is a complier] 

P[i is a noncomp lier] 
= E[Hi Ii is a noncomplier] P MP 

P[i is a complier] 

(14) 

The bias of the IV estimand relative to the Local Average 
Treatment Effect equals the average direct effect of Z on 
Y for noncompliers multiplied by the odds of being a non- 
complier. 

When there is a direct effect of assignment on the out- 
come for noncompliers, it is plausible that there is also a 
direct effect of assignment on outcome for compliers. Sup- 
pose that for each complier, assignment and treatment had 
additive effects on the outcome Y; that is, 

Yi(1, O) - Yi(O, O) = Yi(1, 1) - Yi(O, 1), 

for all compliers. Additivity for compliers allows us to 
define the causal effect of Z on Y for compliers as Hi 
= Yi(I, d) - Yi(O, d) for d = 0, 1 [analogous to the defini- 
tion for noncompliers given in (13)] and the causal effect 
of D on Y as Gi = Yi(z, 1) - Yi(z,0). We can then write 
the IV estimand as 

E[Yi(I, Di(1)) - Yi(O, Di(0))] 
E[Di(1) - Di(0)] 

= E[Gi i is a complier] 

+ E[Hi] (15) 
?P[i is a complier] (5 

The bias relative to the average causal effect of D on Y for 
compliers, the second term in (15), can also be written as 

E[Hi i is a complier] + E[Hi Ii is a noncomplier] 

P[i is a noncomplier] (16 
P[i is a complier] 

The first term in the bias in (16) has nothing to do with non- 
compliance, but is the bias due to the direct effect of assign- 
ment for those who take the treatment. If compliance were 
perfect, the second term would be zero but the first term of 
the bias would still be present. The increased bias in the IV 
estimand due to noncompliance is directly proportional to 

the product of the average size of the direct effect of Z for 
noncompliers and the odds of noncompliance given mono- 
tonicity. The higher the correlation between the instrument 
and the treatment status (i.e., the "stronger" the instrument), 
the smaller the odds of noncompliance, and consequently 
the less sensitive the IV estimand is to violations of the 
exclusion assumption. 

5.2 Violations of the Monotonicity Condition 

Next we consider violations of the monotonicity assump- 
tion. Because we maintain the exclusion restriction, the 
causal effect of D on Y for person i with Di(1) 7& Di(O) is 
still uniquely defined, and equal to Yi (1) - Yi (0). 

Proposition 3. Given stability, the exclusion restriction, 
and a nonzero average causal effect of Z on D, but without 
the monotonicity assumption, the IV estimand equals the 
Local Average Treatment Effect plus a bias term given by 
(17): 

E[Yj(1, Di(l)) - Yi(O, Di(O))]/E[Di(1) - Di(O)] 

- E[Yi(1) - Yi(0)Ii is a complier] 

=-A~i\ {E[Yi (1) -Yi (0) i is a defier] 

- E[Yi(1) - Yi(0)Ii is a complier]}, (17) 

where 

P(i is a defier) 
P(i is a complier) - P(i is a defier) (1) 

The bias due to violations of monotonicity is composed of 
two factors. The first factor, A = P(i is a defier)/(P(i is a 
complier) - P(i is a defier)), is related to the proportion of 
defiers and is equal to zero under the monotonicity assump- 
tion. The smaller the proportion of defiers, the smaller the 
bias will be from violations of the monotonicity assump- 
tion. However, because the denominator of this factor is 
the average causal effect of Z on D, the bias can be large 
even if there are few defiers, as long as the average causal 
effect of Z on D is small. Note again that the stronger the 
instrument, the less sensitive the IV estimand is to viola- 
tions of the monotonicity assumption. The second factor is 
the difference in average causal effects of D on Y for the 
compliers and defiers. If the average causal effects of D on 
Y are identical for defiers and compliers, violations of the 
monotonicity assumption generate no bias. The less varia- 
tion there is in the causal effect of D on Y, the smaller the 
bias from violations of the monotonicity assumption. 

Without monotonicity, the IV estimand can also be writ- 
ten as 

(1 + A) . E[Yi(1) - Yi(0)Ii is a complier] 

- A E[Yi(1) - Yi(0)Ii is a defier], 

with A as defined in (18). In this representation, the estimand 
is still a weighted average of average treatment effects de- 
spite the violation of the monotonicity assumption, but the 
weights are always outside the unit interval because A > 0. 



452 Journal of the American Statistical Association, June 1996 

6. AN APPLICATION: THE EFFECT OF MILITARY 
SERVICE ON CIVILIAN MORTALITY 

Hearst, Newman, and Hulley (1986) showed that men 
with low lottery numbers in the Vietnam Era draft lottery 
(i.e., men with Z. = 1) had elevated mortality after their 
discharge from the military. The authors attribute this ele- 
vated mortality to the detrimental effect of serving in the 
military during wartime on well-being. Similarly, Angrist 
(1990) attributed differences in subsequent earnings by lot- 
tery number to the effect of serving in the military on earn- 
ings. These conclusions are primarily based on the fact that 
between 1970 and 1973, priority for the draft was randomly 
assigned in a lottery using dates of birth. Each date of birth 
in the cohorts at risk of being drafted was assigned a ran- 
dom sequence number (RSN) from 1-365. The Selective 
Service called men for induction by RSN up to a ceiling 
determined by the defense department. Men born in 1950 
were potentially drafted up to RSN 195 in 1970, men born 
in 1951 were potentially drafted up to RSN 125 in 1971, 
and men born in 1952 were potentially drafted up to RSN 
95 in 1972. We refer the reader to Hearst et al. (1986) and 
Angrist (1990) for further details on these data and the draft. 

In their paper, Hearst et al. focused on the difference in 
mortality risk by draft status. For example, they compare 
the number of deaths of men born in 1950 with RSN below 
195 to the number of deaths of men born in 1950 with 
RSN above 195. Our purpose in returning to this example 
is twofold. First, we discuss the validity of Assumptions 
1-5 in this context. Second, we show how the sensitivity of 
the estimated average treatment effect to violations of the 
exclusion restriction and the monotonicity assumption can 
be explored using the results from the previous section. 

6.1 Assessment of Assumptions 1-5 

The potential outcome in this example, Yi (z, d), is an in- 
dicator variable equal to one if person i would have died 
between 1974 and 1983 given lottery assignment z and mil- 
itary service indicator d. To distinguish this from mortality 
during the war period, we refer to Yi as civilian mortality. 
For simplicity, we ignore the effect that mortality during 
the war might have on the size of the population at risk. 

For a valid causal interpretation of the IV estimand, we 
require: 

* SUTVA, Assumption 1: The veteran status of any man 
at risk of being drafted in the lottery was not affected 
by the draft status of others at risk of being drafted, 
and, similarly, that the civilian mortality of any such 
man was not affected by the draft status of others; 

* Ignorable Assignment, Assumption 2: Assignment of 
draft status was random; 

* Exclusion restriction, Assumption 3: Civilian mortal- 
ity risk was not affected by draft status once veteran 
status is taken into account; 

* Nonzero Average Causal Effect of Z on D, Assump- 
tion 4: Having a low lottery number increases the av- 
erage probability of service; 

* Monotonicity assumption, Assumption 5: There is no 
one who would have served if given a high lottery 
number, but not if given a low lottery number. 

Although we believe these assumptions are plausible, a 
case can be made for violations of most. For example, it 
has been argued that the fraction of a cohort that served 
in the military affects the civilian labor market response 
to veterans (De Tray 1982). If this assertion is true, then 
the SUTVA assumption very likely does not hold. Another 
reason for possible violations of SUTVA is that people not 
drafted may be induced to serve in the military by friends 
who were drafted. 

There is also some evidence that some men with low lot- 
tery numbers changed their educational plans so as to retain 
draft deferments and avoid the conscription (Angrist and 
Krueger 1992b). If so, then the exclusion restriction could 
be violated, because draft status may have affected civilian 
outcomes through channels other than veteran status. We 
return to this issue in some detail shortly. 

Monotonicity would be violated if, for example, some- 
one, who would have volunteered for the Navy when not 
at risk of being drafted because of a high lottery num- 
ber, would have chosen to avoid military service altogether 
when at risk of being drafted because of a low lottery num- 
ber. It seems unlikely that there were many in the population 
in this category. 

It is clear that the Assumption 4 is satisfied because the 
likelihood of serving in the military sharply increases with 
draft status. 

Another uncontroversial assumption is the ignorability 
of treatment assignment, which allows simple unbiased es- 
timation of the average causal effects of Z on D and of 
Z on Y. Although there is some evidence that the first lot- 
tery, which was executed using a poorly designed physical 
randomization, was not actually random (Fienberg 1971) 
it nevertheless is almost certainly ignorable. Ignoring this 
complication and postponing consideration of the possible 
problems with the exclusion restriction and the monotonic- 
ity condition, we forge ahead with the IV approach. 

6.2 The Instrumental Variables Estimates 

Table 2 presents data and some estimates of the effects 
of military service on civilian mortality for white men born 
in 1950 and 1951 by year of birth and draft status. Column 
3 shows the number of deaths in both Pennsylvania and 
California between 1974-1983. Columns 5 and 6 show the 
average number of civilian deaths and suicides respectively 
per 1,000, computed as the number of deaths divided by the 
population at risk estimated using the 1970 census. Column 
7 shows the frequency of veteran status, estimated from the 
1984 Survey of Income and Program Participation (SIPP). 
In columns 5-7, the entries in the third pair of rows give 
the difference in probability of death, suicide, and veteran 
status between those with low and high lottery numbers 
(draft eligible or not). The fourth pair of rows in columns 5 
and 6 give the ratio of these differences to the difference in 
the probability of being veteran by draft eligibility. These 
are the standard IV estimates. An alternative approach to 
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Table 2. Data on Civilian Mortality for White Men Born in 1950 and 1951 

Draft Number Number Probability Probability Probability 
Year eligibilitya of deathsb of suicidesc of deathd of suicide of military servicee 

1950 Yes 2,601 436 .0204 .0034 .3527 
(.0004) (.0002) (.0325) 

No 2,169 352 .0195 .0032 .1934 
(.0004) (.0002) (.0233) 

Difference (Yes minus No) .0009 .0002 .1593 
(.0006) (.0002) (.0401) 

IV estimatesf .0056 .0013 
(.0040) (.0013) 

1951 Yes 1,494 279 .0170 .0032 .2831 
(.0004) (.0002) (.0390) 

No 2,823 480 .0168 .0029 .1468 
(.0003) (.0001) (.0180) 

Difference (Yes minus No) .0002 .0003 .1362 
(.0005) (.0002) (.0429) 

IV estimates .0015 .0022 
(.0037) (.0016) 

a Determined by lottery number cutoff: RSN 195 for men born in 1950, and RSN 125 for men born in 1951. 
b From California and Pennsylvania administrative records, all deaths 1974-1983. Data sources and methods documented by Hearst et al. (1986). Note: Sample sizes differ from Hearst et al., 

because non-U.S.-born are included to match SIPP data in the last column. 
c The mortality figures are tabulated from the data set analyzed by Hearst et al. (1986). 
d The estimated population at risk is from the author's tabulation of 1970 census data. Estimates by draft-eligibility status are computed assuming a uniform distribution of lottery numbers. 

Standard errors are given in parentheses. 
e These figures are taken from Angrist (1990), table 2, and were tabulated using a special version of the SIPP that has been matched to indicators of draft eligibility. Note that probabilities 

estimated using the SIPP are for the entire country and do not take account of morality. The impact of mortality on differences in the probability of being a veteran by eligibility status is small 
enough to have only trivial consequences for the estimation. 

f The standard errors, following econometric practice (e.g. Imbens and Angrist 1994), were calculated based on a normal approximation to the sampling distribution of the ratio of the difference in 
estimated probability of death/suicide and the difference in estimated probability of serving. We assume independence of numerator and denominator because they were calculated from different 
data sets. Pooled estimates show a statistically significant increase in risk at conventional significance levels (e.g., Hearst, Newman, Hulley 1986). 

estimating the local average treatment effect, which takes 
into account the full implications of the assumptions, is 
provided in Imbens and Rubin (1994b). 

As a specific example, consider men born in 1950. Of 
the men with low lottery numbers (Zi = 1), 35.3% actually 
served in the military. Of those who had high lottery num- 
bers (Zi = 0), only 19.3% served in the military. Random 
assignment of draft status suggests that draft status had a 
causal effect that increased the probability of serving by an 
estimated 15.9% on average. Similarly, of those with low 
lottery numbers, 2.04% died between 1974 and 1983, com- 
pared to 1.95% of those who had high lottery numbers. The 
difference of .09% can be interpreted as an estimate of the 
average causal effect of draft status on civilian mortality. 
Assuming that these estimated causal effects are popula- 
tion averages, the ratio of these two causal effects of draft 
status is, under the Assumptions 1-5, the causal effect of 
military service on civilian mortality for the 15.9% who 
were induced by the draft to serve in the military. For this 
group, the average causal effect is .56%, which amounts to 
approximately a 25% increase in the probability of death 
(given average mortality rates around 7%). These estimates 
highlight the fact that the IV estimator does not require 
observations on individuals; sample averages of outcomes 
and treatment indicators by values of the instruments are 
sufficient. In applications like the one discussed here, these 
moments are drawn from different data sets. (For a detailed 
discussion of IV estimation with moments from two data 
sets, see Angrist and Krueger 1992a.) 

6.3 Sensitivity to the Exclusion Restriction 

Suppose that the exclusion restriction is violated because 
men with low lottery numbers were more likely to stay 
in school. A schooling-lottery connection could arise be- 
cause, for much of the Vietnam period, college and grad- 
uate students were exempt from the draft. Although new 
graduate student deferments were eliminated in 1967 and 
new undergraduate deferments were eliminated in Decem- 
ber 1971, many of the men with low lottery numbers in 
1970 and 1971 could have postponed conscription by stay- 
ing in school. Working with special versions of the March 
1979 and March 1981-1985 Current Population Surveys 
(CPS's), Angrist and Krueger (1992b) showed that men born 
in 1951 with lottery numbers 1-75 had completed .358 
more years of schooling than men with lottery numbers 
above 150, who were not drafted. 

How much bias in estimates of the effect of military ser- 
vice on mortality is this correlation between lottery num- 
bers and schooling likely to generate? Addressing this ques- 
tion requires data on the connection between schooling and 
mortality. The relationship between socioeconomic vari- 
ables and mortality is uncertain and the subject of con- 
siderable research in epidemiology and social science. (An 
early study in this area is Kitagawa and Hauser 1973.) For 
the purposes of illustration, we have taken estimates from 
Duleep's (1986) study of socioeconomic variables and mor- 
tality using men surveyed in the March 1973 CPS and 
linked to 1973-1978 Social Security data. Estimates pre- 
sented in Table 1 of Duleep (1986) suggest that married 
white men 25 years old with 1-3 years of college have 
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mortality rates roughly .0017 per thousand higher than do 
men with only high school degrees. 

Assume that the excess mortality among men with some 
college accumulates linearly, so that an additional year of 
schooling raises mortality by .0017 x (1/3) = .00056. Men 
with low lottery numbers may have as much as .358 more 
years of schooling than men with high lottery numbers. 
Thus an estimate of the mortality difference attributable 
to the effect of draft status on schooling is .358 x .00056 
= .00019, essentially as large as the .0002 observed dif- 
ference in mortality by draft status for white men born in 
1951. Assuming additive causal effects of education and 
military service on mortality, the bias formula (15) applied 
to this example is E[H1/(E[Di(l) - Di(O)]), which is es- 
timated by .00019/.1362 = .0014 because there is a .1362 
difference in the probability being a veteran by draft eligi- 
bility status. Thus taking account of this potential bias could 
eliminate the estimated .0015 impact of veteran status on 
civilian mortality! 

This calculation illustrates the cautions that should ac- 
company the IV estimates. But the extent to which the 
causal interpretation of the estimates in Table 2 should be 
discounted in light of these findings is unclear. First, there 
is no evidence of a schooling-lottery number connection for 
the 1950 cohort, yet lottery-based estimates of the effects 
of service are even larger for men born in 1950 than for the 
1951 cohort used in the illustration. Second, the schooling- 
mortality connection is not well determined [the Duleep 
(1986) estimate used here is not actually significantly dif- 
ferent from zero], and this relationship is also subject to 
sign reversals. For example, although men with some col- 
lege have higher mortality than high school-only graduates, 
the Duleep study showed almost no difference between the 
mortality of high school only graduates and college grad- 
uates. Thus, a calculation based solely on graduates would 
indicate no bias. 

6.4 Sensitivity to the Monotonicity Assumption 

Without monotonicity, the average causal effect of Z on 
D estimates the difference between the proportions of com- 
pliers and defiers. Table 2 therefore suggests that 15.93% 
more people are compliers than defiers. Suppose that 5% 
of the population are defiers. This would imply that about 
21% of the population are compliers, and that the multi- 
plier P[i is a defier]/(P[i is a complier] - P[i is a defier]) 
could be as large as .33 rather than zero, as required by 
monotonicity. Next, suppose that we assume the difference 
between average treatment effects for compliers and de- 
fiers is at most .0041. This number was chosen because 
the range of IV estimates in Table 2 (.0056 for 1950 and 
.0015 for 1951) is equal to this amount. This implies that 
the estimated average treatment effect for compliers could 
be as small as .0056 - .33 x .0041 = .0042 or as large as 
.0056 + .33 x .0041 .0070. To reverse the sign of the av- 
erage causal effect through violations of the monotonicity 
assumption would therefore require the presence of an im- 
plausibly large group of defiers, or very large differences 
between average effects for compliers and defiers. 

7. CONCLUSION 

In this article we have outlined a framework for causal 
inference in settings where random assignment has taken 
place, but compliance is not perfect; that is, the treatment 
received is nonignorable. In an attempt to estimate the ef- 
fect of receipt of treatment, rather than assignment of treat- 
ment as in intention-to-treat analysis, we make use of in- 
strumental variables. This approach has long been used by 
economists in the context of regression models with con- 
stant treatment effects. We show that this technique can be 
fit into the Rubin Causal Model and used for causal in- 
ference without assuming constant treatment effects. The 
advantages of embedding this approach in the RCM are 
twofold. First, it makes the nature of the identifying as- 
sumptions more transparent. Second, it allows us to con- 
sider the sensitivity of results to deviations from these 
assumptions in a straightforward manner. We hope that 
the approach outlined in this article serves to make the 
IV approach more accessible to statisticians, while helping 
economists understand and interpret the strong assumptions 
required for a causal interpretation of IV estimates. 

[Received June 1993. Revised December 1995.] 
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Comment 
James M. ROBINS and Sander GREENLAND 

We wish to complement the interesting paper by Angrist, 
Imbens, and Rubin (AIR) by offering several alternative an- 
alytic strategies. We focus on randomized drug treatment 
trials. In their discussion of noncompliance, AIR focuses 
on estimating the local average treatment effect (LATE), 
which is the average effect of treatment in the compliers. In 
contrast, Robins (1989) focused on estimation of the global 
average treatment effect (ATE) in the entire study popula- 
tion. Both LATE and ATE differ from the intent-to-treat 
(ITT) parameter, which is the average effect of treatment 
assignment. We show that in a typical placebo-controlled 
trial, all three parameters will equal zero under the sharp 
null hypothesis of no treatment effect. We argue that un- 
der the alternative, the ATE parameter can be of greater 
public health interest than the LATE or ITT parameter. We 
review results of Robins, Manski, and Balke and Pearl on 
the estimation of the ATE parameter. We show that in tri- 
als comparing a new therapy to a standard therapy, the null 
hypothesis of bioequivalence does not imply the ITT pa- 
rameter is zero, and thus the ITT parameter is often of no 
public health interest. We review results on the estimation 
of the ATE parameter in bioequivalence trials. 

Following AIR, for subject i = 1, . . . , n, Zi denotes the 
dichotomous randomization indicator (i.e. treatment arm); 
Di(z) denotes the actual treatment when randomized to 
arm z, z = 0, 1; Di = Di(Zi) denotes the observed treat- 
ment; Yi (z, d) denotes the outcome that would be observed 
if randomized to arm z and treatment d were taken, z 
= 0, 1, d = 0, 1; Yi = Yi (Zi, Di (Zi)) denotes the observed 
outcome; and expectations are sample averages. This no- 
tation incorporates Rubin's stable unit treatment value as- 
sumption (SUTVA) assumption. Like AIR, we shall ignore 
sampling variability by restricting attention to estimands- 
the large-sample limits of estimators. The foregoing nota- 
tion is sufficient to describe a trial in which each subject 
is either on or off a single active treatment; for example, a 
placebo-controlled trial. However, it is not sufficient to de- 
scribe a bioequivalence trial that compares a new therapy to 
a standard therapy, because in a bioequivalence trial, non- 
compliers may choose to take no drug at all. Thus d needs to 
be at least trichotomous, corresponding to standard therapy, 
new therapy, and no therapy. 

1. TRIALS WITH A SINGLE ACTIVE TREATMENT 

Robins (1989) and AIR considered the analysis of ran- 
domized trials of a single active treatment with noncompli- 
ance under (1) the exclusion restriction Yi (1, d) = Yi (0, d) 

Yi (d), for all i and d, (2) the monotonicity assumption 

James M. Robins is Professor of Epidemiology and Biostatistics, Har- 
vard School of Public Health, Boston, MA 02115. Sander Greenland is 
Professor of Epidemiology, UCLA School of Public Health, Los Angeles, 
CA 90095. 

that Di(1) > Di(0) for all i, and (3) the random assignment 
assumption that Di(z), Yi(z, d), z = 0, 1, d = 0, 1 are jointly 
independent of Zi which we write as {Di(z), Yi(z, d); z 
= (O, 1), d = (O, 1) } JJ Zi. Robins and AIR also investi- 
gated the sensitivity of inferences to violations of these 
assumptions. (The three assumptions correspond exactly 
to assumptions (1)-(3) in Robins 1989, p. 123.) Robins 
studied the average treatment effect (ATEZ) controlling 
for treatment assignment z; that is, E[Yi (z, 1) -Yi (z, 0)]. 
Under the exclusion restriction, ATE1 = ATEO -ATE 
= E[Yi (1) - Yi (0)]. AIR studied the local average treat- 

ment effect among the compliers, which is E[Yi (1) 
- Yi(0) Di(1) - Di(0) = 1] under the exclusion restriction. 
In contrast, the ITT parameter is E[Yi (1, Di (1)) -Yi (?, 
Di (0))]. Under random assignment, the ITT parameter 
equals the difference in treatment arm-specific means 
E(Yi I Zi = 1) - E(Yi I Zi = 0). 

Assuming the exclusion restriction, all three parameters 
will be zero under the sharp null hypothesis of no causal 
effect of D on Y; that is, Yi(1) = Yi(0) for all i. Even with 
noncompliance, the large investment in randomized trials is 
considered worthwhile because, in contrast to a nonrandom- 
ized study, valid tests of the sharp null hypothesis can be 
obtained from the observed data by comparing treatment 
arm-specific means. Debates over which of the three pa- 
rameters should represent the causal parameter of interest 
arise under alternatives to the sharp null. 

A common argument in favor of the ITT parameter is that 
it corresponds to the overall treatment effect that would be 
realized if the treatment were actually adopted in the com- 
munity. But this argument assumes that the noncompliance 
rate observed in the trial would equal the subsequent rate 
in the community, which may often not be the case. For 
example, once the treatment is proven to be efficacious in 
a trial, then nearly all individuals in the community may 
be willing to stringently comply with the treatment proto- 
col (Robins 1989). In such a case, if the study subjects are 
representative of the community, then the ATE parameter, 
rather than the ITT or LATE parameter, would correspond 
to the public health parameter of interest. An advantage of 
the LATE parameter is that it is identifiable under mono- 
tonicity, whereas the ATE parameter is not. But unless no 
subject in the control arm takes active treatment, the subset 
of the study population for whom the LATE parameter is 
the treatment effect (i.e., the compliers) is itself nonidenti- 
fiable (AIR 1995). As discussed later, the LATE parameter 
is not identifiable under more complex noncompliance pat- 
terns, even if monotonicity holds. 

The distribution of the observed data only determines 
bounds for the ATE parameter. Assuming Yi dichotomous, 
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Robins (1989) calculated bounds for ATEZ under the 23 = 8 
combinations of the truth or falsity of the exclusion restric- 
tion, monotonicity, and random assignment. Related results 
were independently obtained by Manski (1990, 1994). Inter- 
estingly, the bounds for the ATEZ parameter do not depend 
on the monotonicity assumption. Some argue against report- 
ing bounds for nonidentifiable parameters, because bounds 
are often so wide as to be useless for making public health 
decisions. But we view the latter problem as a reason for 
reporting bounds in conjunction with other analyses: Wide 
bounds make clear that the degree to which public health 
decisions are dependent on merging the data with strong 
prior beliefs. Even when the ITT null hypothesis of equal- 
ity of treatment arm-specific means is rejected, the bounds 
may appropriately include zero. If treatment benefits some 
subjects and harms others, the ATE parameter may be zero 
even though both the sharp and ITT null hypotheses are 
false. Conversely, the ATE parameter may be nonzero un- 
der the ITT null, seriously complicating the interpretation 
of tests of the ITT null in trials with substantial noncompli- 
ance. But there are times that bounds can be quite informa- 
tive. For example, Balke and Pearl (1993) reanalyzed data 
from the Lipid Research Clinic's Coronary Primary Preven- 
tion Trial and showed that the Robins-Manski bounds are 
quite informative, with the lower bound lying far above the 
null value of zero. 

Henceforth we assume that both the exclusion restric- 
tion and the random assignment assumption hold. Balke 
and Pearl (1993) showed that for certain distributions 
of the observed data, the Robins-Manski bounds, -1 
+ maxZ{pr(Yi = 1,Di = IIZi = z)} + max,{pr(Yi = 0, 
Di = 0?Zi = z)} < ATE < 1 - maxZ{pr(Yi = 0,Di 
= 1lZi =z)}-maxZ{pr(Yi = 1,Di =0?Zi =z)}, arenot 
sharp. They derived narrower sharp bounds for these dis- 
tributions. Specifically, when the bounds do not coincide, 
the Robins-Manski bounds are sharp under the weak ran- 
domization assumption Yi (d) JJ Zi, d = 0,1 (Manski 1994), 
whereas the Balke-Pearl bounds are sharp under the strong 
randomization assumption {Yi (0), Yi (1) } IJ Zi. The strong 
randomization assumption is satisfied in a truly random- 
ized study. The even stronger randomization assumption 
{Yi(0), Yi(1), Di(0), Di(0)} IJ Zi, although appropriate in a 
randomized trial, does not change the ATE bounds. Balke 
and Pearl (1993) also showed that there are distributions 
of the observed data that are incompatible with jointly as- 
suming the exclusion restriction and random assignment 
of Z. 

If one wishes to identify the ATE parameter, further 
strong nonidentifiable assumptions must be added. Robins 
(1989, p. 122, assumptions 5-8) provided four different 
identifying assumptions and computed the ATE parame- 
ter under each as a form of sensitivity analysis. Assump- 
tion 6 of Robins (1989) implies that the ATE parameter 
equals the instrumental variable (IV) estimand {E(Yi%Zi 
= 1)- E(Yi Z - = O)}/{E(Di- Z - 1) - E(Di TZ = 0)}. 
This result assumes neither monotonicity nor that the sub- 
ject-specific treatment effects Yi (1) - Yi (0) are constant. 
Assumption 6 of Robins (1989) is the assumption that 

both (a) within each treatment arm z, the average treat- 
ment effect is the same for the treated (Di = 1) as for 
the untreated (Di = 0), i.e., E{Yi(1) - Yi(0)IZi = z,Di 
= 1} = E{Yi(1)-Yi(0)IZi = z,Di = 0}, and (b) the aver- 
age treatment effect among the treated is the same for 
both treatment arms; that is, E{Yi(l) - Yi(O)lZi = 1, 
Di = 1} = E{Yi(l) - Yi(0)lZi = 0,Di = 1}. As- 
sumptions (a) and (b) are always true under the sharp 
null. Robins (1989, sec. 16, 1994) introduced the class 
of structural nested mean models (SNMM's) for the 
average effect of treatment on the treated. Assump- 
tion (b) is equivalent to assuming a simple SNMM. 
Robins (1994) proved that the SNMM (b) alone im- 
plies that the average treatment effect in the treated 
E{Yi(l) - Yi(O)JDi = 1} is the IV estimand. The addi- 
tional assumption (a) guarantees that the average treatment 
effect in the untreated (Di = 0) equals that in the treated 
(Di = 1), and hence that the ATE parameter equals the IV 
estimand. An estimand or parameter that is zero if and only 
if the ITT parameter is zero is called ITT null consistent. 
Because, when defined, the IV estimand is ITT null consis- 
tent, the ATE parameter is also ITT null consistent under 
assumptions (a) and (b). 

2. BIOEQUIVALENCE TRIALS 

A critical difference between a trial with a single ac- 
tive therapy and a bio equivalence trial is that in the pres- 
ence of noncompliance, the sharp null hypothesis of the bio- 
equivalence of the two therapies does not imply equality of 
treatment arm-specific mean outcomes. Consider a random- 
ized bioequivalence trial in which a new therapy (D = 1) is 
compared to standard proven therapy (D = 0). Suppose that 
all subjects are initially compliant, but 50% of subjects as- 
signed to standard therapy (Z = 0) and 20% of subjects as- 
signed to the new therapy (Z = 1) later become noncompli- 
ant and stop all therapy due to mild, easily palliated side ef- 
fects. Even if the ITT parameter E[Yi IZi = 1] -E[Yi IZi = 0] 
demonstrated a beneficial effect of assignment to the new 
therapy, the benefit might be wholly attributable to the high 
noncompliance rate in the standard therapy arm. Thus the 
ITT test of equality of treatment arm-specific means may 
not be of regulatory or public health interest. To formal- 
ize our point, we consider four treatments: always remain 
on standard therapy (D = 0); always remain on the new 
therapy (D = 1); begin standard therapy, then stop all ther- 
apy (D = 2); and begin the new therapy, then stop all 
therapy (D = 3). If all therapy terminations were due to 
mild, easily palliated side effects, then the sharp bioequiv- 
alence null hypothesis of medical interest is Yi(l) = Yi(0) 
for all i. But this null hypothesis does not imply the ITT 
null E[YiIZ = 1] = E[Yi|Z = 0]. The ITT null is implied 
by the sharp null hypothesis that Yi (d) = Yi, for all i and 
d = 0, 1, 2, 3; this latter hypothesis is not of interest because 
it implies that being off therapy was as efficacious as being 
on the standard proven therapy, which is already known to 
be false. 

In a bioequivalence trial, possible parameters of interest 
would be the ATE parameter E[Y%(1) - Yi(0)] or the LATE 
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parameter E [Yi (1) - Yi (0) I Di (1) = 1, Di (0) = 0]. Neither 
of these parameters is identifiable from bioequivalence trial 
data, even under a monotonicity assumption. Sharp bounds 
for the ATE parameter are -1 + pr(Yi = I,Di = IIZi 
= 1) + pr(Yi = 0, Di = 0 Zi 0) < ATE < 1- pr(Yi 
= 0,Di = IIZi = 1) -pr(Yi = 1,Di = 0?Zi = 0). If 
one wishes to identify the ATE parameter, then further 
strong nonidentifiable assumptions must be added. Heyt- 
ing, Tolboom, and Essers (1992), Robins (1987), Robins 
and Rotnitzky (1992), and Robins, Rotnitzky, and Zhao 
(1995) have studied identifying assumptions for ATE in this 
setting. If the decision to quit therapy is essentially a sec- 
ond randomization (i.e., Yi(d) DiIZi for d = 0,1) we say 
that the noncompliance is random. In that case, E[Yi(d)] is 
identifiable and equal to E[YiIZi = d, Di = d] for d = 0, 1. 
If, as is usually the case, one does not believe compliance 
is random given Zi, then one can try to collect data on ad- 
ditional pre- or post-randomization covariates L such that 
compliance is random conditional on the covariates; that is, 
Yi (d) J Di IZiI Li, d = 0, 1. Under this assumption, E[Yi (d)] 
is identifiable and, for discrete L, equals El E[Yi Zi 
= d, Di = d, Li = l]pr[Li = lIZi = d] for d = 0, 1. Robins 
(1987) called this formula the G computation algorithm for- 
mula given covariates L. This formula can also be written 
as the inverse probability of censoring weighted (IPCW) 
estimand E[YiI(Zi = d, Di = d)/7r1d7r2d(Li)], where lrld 
= pr[Zi = d] and 7r2d(Li) _ pr[Di = d|Zi = d,Li]. 

The IPCW estimand is easily generalized to allow in- 
vestigation of the sensitivity of the estimate of E[Yi(d)] to 
the assumption Yi (d) J Di IZi, Li. Let 7r2d(Li, y) = pr[Di 
= d =Zi d, Li, Yi(d) = y] be the probability of treat- 
ment D = d given Zi = d,Li, and Yi(d) = y. Note that 
r2d(Li, y) is not identifiable, because we do not observe 

Yi(d) for subjects for whom Di 7& d. In a sensitivity anal- 
ysis, we select plausible functions lr2d(Li, y) based on our 
prior beliefs. For a given 7r2d(Li, y), E[Yi(d)] is given by 
the IPCW estimand with lr2d (Li, Yi) substituted for r2d (Li) 
Robins et al. (1995, p. 118) also considered estimation of 
E[Yi(d)] under the weaker assumption that 7r2d(Li, y) fol- 
lowed a parametric model such as logit 7r2d(Li, y) = o 
+ oalLi + a2Y- 

3. CONCLUSION 

The ATE parameter can be of greater public health inter- 

est than either the LATE or ITT parameter. We have pro- 
posed methods for setting bounds and for constructing esti- 
mators of the ATE parameter both in single active treatment 
trials and in bioequivalence trials. Both structural nested 
models and IPCW estimators can be applied to complex 
trials with randomized and nonrandomized time-dependent 
treatments, noncompliance, and dependent censoring with 
either failure time or repeated-measures outcomes (Robins 
1989, 1993, 1994; Robins and Greenland 1994). 
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Comment 
James J. HECKMAN 

Angrist, Imbens, and Rubin (AIR) apply the method of 
instrumental variables (IV) to estimate the local average 
treatment effect (LATE) of Imbens and Angrist (1994). Ap- 
plication of IV is routine, even for evaluation models with 
heterogeneous responses to treatment, so there is nothing 
novel or controversial about the method. 

LATE is a controversial parameter because it is defined 
for an unobservable subpopulation. Its use as an evaluation 
parameter thus is of questionable value. More controver- 
sial yet is AIR's mischaracterization of the current state of 
knowledge about econometric models of simultaneity and 
selectivity. Econometrics has moved well beyond the (1943) 
model of Haavelmo and the simpler cases of the dummy en- 
dogenous variable model of Heckman (1978) to which the 
authors confine their attention in comparing their approach 
to econometric methods. It is interesting to contrast their 
commentary on econometric models for simultaneous equa- 
tions with the commentary of scholars of causal analysis in 
science. For example, the distinguished philosopher Nancy 
Cartwright (1989) demonstrated how econometric methods 
for simultaneous equations elucidate causality, provide a 
coherent scheme for generating counterfactuals, and shed 
light on controversies in quantum mechanics. 

This comment makes four points: 

1. The "Rubin model" is a version of the widely used 
econometric switching regression model (Maddalla 1983; 
Quandt 1958, 1972, 1988). The Rubin model shares many 
features in common with the Roy model (Heckman and 
Honore 1990; Roy 1951) and the model of competing risks 
(Cox 1962). It is a tribute to the value of the framework that 
it has been independently invented by different disciplines 
and subfields within statistics at different times. 

2. Contrary to remarks by AIR, econometric work on si- 
multaneous equations allows for variable responses to treat- 
ment, does not rely on arbitrary distributional assumptions, 
develops IV estimation methods for these models, examines 
the assumptions required to justify IV, and demonstrates 
that the assumptions required to use IV in the general case 
are very strong. This analysis is conducted within the con- 
text of clearly specified models of outcomes and regime 
selection that are motivated by behavioral theory. Econo- 
metricians make weaker mean independence assumptions 
rather than the strong independence assumptions made by 
AIR to identify their parameter. 

3. The independence assumptions invoked by AIR are 
based on unspecified and implicit behavioral assumptions. 

James J. Heckman is the Henry Schultz Distinguished Service Profes- 
sor, Department of Economics, University of Chicago. This research was 
supported by National Science Foundation Grant SBR-93-048-0211 and a 
grant from the Russell Sage Foundation. 

These assumptions about behavior are very unattractive 
once they are clearly stated. 

4. Econometric policy evaluation is designed to produce 
many counterfactuals from a common set of behavioral 
functions. Conditions required to nonparametrically iden- 
tify this common set of functions are presented in the 
econometrics literature. 

1. SWITCHING REGRESSION MODELS AND THE 
"RUBIN MODEL' 

Counterfactuals are at the heart of any scientific study. 
Galileo was perhaps the first to use the thought experiment 
and the idealized method of controlled variation to define 
causal effects. Economists have used this method from the 
time of Alfred Marshall, who repeatedly used the principle 
of controlled variation in his ceteris paribus clauses. Since 
Haavelmo (1944), modern econometrics has been devoted 
to the construction and estimation of a broad array of coun- 
terfactuals. The construction of counterfactual states is the 
essence of econometric policy analysis (see Lucas and Sar- 
gent 1981). 

Economists have used the following specific model of 
potential outcomes for at least 25 years. It has its origin 
in classical models of choice among discrete outcomes in 
mathematical psychology pioneered by Thurstone in the 
1920s. (See Falmagne 1985 for an extensive bibliogra- 
phy; see also McFadden 1974 or Quandt 1972). There are 
two possible regimes, "0" or "1 ." (The generalization to 
an arbitrary number is trivial. I use two regimes to con- 
form to the setup of AIR.) Associated with each regime 
is an outcome (YO or Y1). There is a rule that selects 
regimes. Let D = 1 if "1" is selected; D = 0 otherwise. 
Variables X determine outcomes in the following sense: 
E(Y1IX) = ,L1(X),E(Y?lX) = ,u?(X). Variables X and 
Z determine D in the following sense: Pr(D = I X, Z) 
is a nontrivial function of both X and Z. The "myste- 
rious errors" that AIR censure in econometric work (see 
the last paragraph of their sec. 2) are (UO, U1) defined as 
UO = Y- E(Y0IX),U1 = - E(Y1IX). (There are 
more general models, as considered in Heckman and Robb 
1985, but for the sake of brevity I consider only the sim- 
plest case.) These "errors" are well defined as long as 
E(YO) < oo, E(Y1) < oo. If (U0, U1) are independent 
across observations "SUTVX' holds. 

Only one regime is observed at any time. Let Y be the 
observed outcome. A = Yl - Y?. Then 

Y = DY1 + (1-D)Y? = Y? + D(Y1-YY) = Y? + DA, 

(1) 
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so 

Y =p0(X) + D(1&L(X)- -i0(X) + U-U0) + U?. (2) 

The "gain" from going from "O" to "1" is A = Yl - Y0. 
This is what AIR and previous authors in econometrics call 
the "causal effect" of D on Y. If superscript "1" refers to 
demand and "O" to supply, we obtain the disequilibrium 
markets model of Quandt (1972, 1988) where 

D = I (Y' < Y?); = 0 otherwise. 

"1" is the logical indicator variable (1(a) = 1 if a holds). 
Letting Y' be the market wage and YO the value of nonmar- 
ket time, we obtain the model of the value of wages and of 
nonmarket time presented by Gronau (1974) and Heckman 
(1974), where D = 1(Y' > YO). The same model appears in 
studies of search unemployment (Flinn and Heckman 1982). 
If Y' and YO are times of death in a competing risk setup, 
then D = I(Y1 < YO). Amemiya (1985), Heckman and 
Robb (1985), and Willis and Rosen (1979) considered more 
general models for D. Applications of this basic model of 
potential outcomes are legion in economics. Analyses are 
available both for the case where D is observed and where 
it is not. (See the numerous references in Amemiya 1985.) 

2. MEAN EFFECT OF TREATMENT ON THE 
TREATED: A "CAUSAL' PARAMETER 

A basic program evaluation parameter widely used in 
economics is the mean effect of treatment on the treated: 

E(Y1 - Y0ID = 1 X) = E(A\D = 1, X). (3) 

This parameter tells us what, on average, persons of charac- 
teristics X who actually participate in regime 1 gain from a 
switch from regime "O" to "1." Unlike LATE, this parameter 
is defined for an observable subpopulation. It is a parame- 
ter that corresponds more closely to the coefficient on the 
dummy variable in nonlinear simultaneous equation (2) with 
variable treatment effect than does LATE. Using means of 
nonparticipants to estimate E(YO D = 1, X) gives rise to 
selection bias if E(YO D = 1,X) - E(YO D - 0,X) 74 0. 
Equivalently, E(U? IX, D = 1) $& E(U? IX, D = 0). I dis- 
cuss identification and estimation of this parameter because 
there is a vast literature on it in economics, and the lessons 
from an analysis of this parameter apply directly to LATE. 

Equation (2) is a variable effect or random coefficient 
model. The response to treatment (the term multiplying D) 
varies among persons with identical X, unless U1 = U?. 
That special case is the dummy endogenous variable model 
of Heckman (1978) discussed by AIR. We may reparame- 
terize Equation (2) in terms of E (AID = 1, X). The repa- 
rameterization writes 

Y p0(X) + D(E(AIX, D = 1) 

+ {U? +D(U1 - U - E(U1 - UIX, D = 1). 

The term in braces is an interpretable "error term." If D 
were orthogonal to this term, then simple means for each 
X group would identify the parameter of interest. (For 

each X, subtract the mean for D = 0 from the mean for 
D = 1). Selection bias makes D nonorthogonal to UO. D 
is orthogonal to the second error component in the braces 
(E(U' -UO -E(U1 - UIX, D = 1)IX, D = 1) = 0)), but 
not to the first component. 

The method of IV has been applied to identify this pa- 
rameter under general conditions (see Heckman and Robb 
1985, 1986). Suppose that Z is distinct from X (i.e., does 
not appear directly in (2)) and satisfies the following mean 
independence conditions: 

E(U0IX, Z) = 0 (A-1) 

E(U1 - U -E(U1 - UIX, D = l)IX, Z, D = 1) = 0. 

(A-2) 

An alternative and equivalent way to write condition (A-2) 
is: 

E(AIX, Z, D = 1) = E(AIX, D = 1). (A-2') 

Finally, restate the condition that both Z and X determine 
D as an assumption: 

Pr(D= lIX, Z) 7 Pr(D= lIX) and Pr(D= lX, Z) 

(A-3) 

is a nontrivial function of Z. Then 

E(YIX,Z) =t-0(X) + E(AIX,D = 1) Pr(D = 1IX,Z). 

(4) 

If for each X there are at least two distinct values of Z 
such that Pr(D lIX, Z') 4 Pr(D = I IX, Z"), then we 
may evaluate (4) at all values of X to obtain 

E(AIX,D= 1) 

E(YIX, Z') - E(YIX, Z") (5) 
Pr(D = 1, X, Z') - Pr(D = lIX, Z") 

If for some X values there are not distinct values for 
Pr(D = lX, Z) for two or more values of Z, then the 
parameter is not identified at those values. Replacing pop- 
ulation objects with sample mean analogs produces the IV 
estimator. 

Observe that only mean independence is required-not 
full independence, as assumed by AIR. AIR are able to 
test their identifying assumptions because they invoke much 
stronger conditions than are required to identify their pa- 
rameter. Minimal identifying assumptions cannot be tested. 
(Heckman and Robb 1985). Note further that no arbitrary 
and untestable monotonicity condition is needed-just a 
condition that guarantees that the denominator of (5) is not 
zero for the particular value of X. Parenthetically, mono- 
tonicity is not required in classical discrete choice theory 
either. Also, even in the original dummy endogenous vari- 
able analysis it is recognized that the second assumption of 
AIR's Equation (4) is not needed to apply IV. 
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3. ARE THE ASSUMPTIONS VALID? 

A central focus in modern econometrics is the develop- 
ment of explicit behavioral models relating the "errors" and 
choices made by agents. This is critical to developing and 
justifying any econometric evaluation strategy. Therefore, 
it is surprising to read in AIR that econometricians do not 
clearly state assumptions like (A-i)-(A-3) or worry about 
the justification for them. Hansen and Sargent (1991), and 
Heckman and Robb (1985, 1986) are just some of the au- 
thors who have built explicit behavioral models to justify 
exogeneity and noncausality assumptions. 

Assumption (A-1) is conventional; Assumption (A-2) (or 
A-2') is not. (A-2) is satisfied if U1 - UO = o, (yl - yo 
= ,L(X) - ,u(X)), so that conditional on X there is no 
treatment response heterogeneity. It is also satisfied in the 
case of heterogeneous response to treatment when the rule 
governing participation in a regime conditional on Z, and 
X does not depend on y- - YO 

Pr(D =1X, Z, Y1 - Y) =Pr(D =1X, Z), (6a) 

provided that Yl - YO conditional on X is not perfectly 
forecastable by Z. This is a Granger noncausality condition 
routinely used in econometrics and explicitly presented in 
this context by Heckman and Robb (1985, 1986). Alterna- 
tively, in terms of the "mysterious" unobservables to which 
AIR object, the condition is: 

Pr(D = lX, Z, U1-U?) =Pr(D = lX, Z), (6b) 

provided that U1 - UO conditional on X is not perfectly 
forecastable by Z. AIR call this non-causality condition 
"ignorability." If U1 - UO is perfectly forecastable by Z, 
conditional on X, then (A-2) would be violated. 

In general, the extra conditioning on Z causes (A-2) to be 
violated although it is trivially satisfied only if conditioning 
is done on X and D. The behavioral assumption justifying 
(6a) and (6b) requires that the relevant decision makers do 
not make decisions about which regime is selected using 
information on the outcomes of the regime that cannot be 
forecast by X and Z. In most situations, persons making 
decisions have more information about the outcomes than 
the statisticians studying them. This makes assumption (6a) 
or (6b) questionable in such cases. 

This assumption is definitely not satisfied in the com- 
peting risks model, in the Gronau-Heckman market wage- 
nonmarket wage model, in the Roy model (Heckman and 
Honore 1990), or in most versions of the switching re- 
gressions model. These limitations on the application of 
the IV method were spelled out by Heckman and Robb 
(1985, 1986) and later reiterated by Heckman (1995). In 
the switching regression context, they were discussed by 
Quandt (1988). Although space limitations preclude the full 
development of the point, IV estimation of LATE requires 
the same stringent behavioral assumptions. 

The draft lottery number cited by AIR as a valid instru- 
ment is unlikely to satisfy (A-2) or (A-3) and thus is not 
likely to be a valid instrument. Consider the application of 
IV by Angrist (1990) that AIR discuss. The potential out- 

comes are earnings if persons serve in the military or if they 
do not. Persons who get a high number are virtually guar- 
anteed that they are exempt from service. Those persons 
with a high number who nonetheless volunteer to go to the 
Army perceive a high gain from doing so. If those percep- 
tions are related to the potential outcomes and are based 
on private information that cannot be fully predicted by X 
and Z, then the lottery number is not a proper instrument. 
In addition, persons with high numbers are likely to receive 
more job training, because their likelihood of being drafted 
is reduced and firms have less likelihood of losing them. 
Then Z is an X, and the exclusion assumption is violated. 
Because of the stringent nature of the required assump- 
tions, most economists have been very cautious about using 
IV to identify the parameters of switching models. Some- 
times, however, application of IV can be justified in the con- 
text of heterogeneous treatments. Robinson (1989), using a 
test proposed by Heckman and Robb (1985, 1986), demon- 
strated that IV methods produce appropriate estimates for 
estimating the "causal effect" of unions on wages; that is, 
the union-non-union wage differential. Robinson's evidence 
is surprising because it indicates that union membership is 
not based on unobserved components of union wage dif- 
ferentials not predicted by the crude X and Z available 
to him. 

A major difference between the approach taken by AIR 
and that used by econometricians is that the latter go to 
much greater depth in justifying the behavioral assump- 
tions that are implicit in the statistical assumptions. It is 
disappointing to see an entire literature in econometrics that 
develops explicit models designed to test and justify (A-i)- 
(A-3), or other identifying assumptions, ignored by AIR in 
their discussion of the econometrics literature. 

4. IDENTIFICATION UNDER MORE GENERAL 
CONDITIONS FOR A VARIETY OF PARAMETERS 

Heckman and Honore (1989, 1990) presented conditions 
for identifiability of the full distributions of outcomes in the 
competing risks and Roy models. Heckman (1990) consid- 
ered nonparametric identifiability in more general models. 
Bjorklund and Moffitt (1986) considered estimation of the 
more general models under specific distributional assump- 
tions. Those authors demonstrate that other methods be- 
sides IV estimate behaviorally interesting parameters under 
more behaviorally plausible conditions. These more general 
models produce identification of a large array of distinct 
counterfactuals-a central goal of structural econometric 
policy evaluation-and do not focus on just one special pa- 
rameter. 
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Comment 
Robert A. MOFFITT 

There are many unfortunate barriers to effective commu- 
nication between statisticians and economists. The method 
of instrumental variables (IV) and associated methods for 
simultaneous equations and for "structural" estimation con- 
stitute one of the greatest. These methods are in the toolkit 
of virtually every economist and are among the most widely 
used techniques in the field. IV is discussed in every econo- 
metrics textbook, and three chapters of the 1984 Handbook 
of Econometrics are devoted to advanced IV and related is- 
sues, including nonlinear models (Amemiya 1984; Hausman 
1984; Hsiao 1984). IV is widely regarded by economists as 
one of the most versatile and flexible of techniques, appli- 
cable in an enormous number of disparate applications. Yet 
it is scarcely used or discussed by statisticians, who often 
do not see the point of it all. 

In this context, the attempt by Angrist, Imbens, and Rubin 
(AIR) to translate IV into terms that may be more under- 
standable by statisticians must be welcomed. AIR translate 
IV into two frameworks familiar to statisticians. One is the 
well-known Rubin causal model (RCM). I find this transla- 
tion to be correct and entirely appropriate, and hope that it is 
useful to statisticians. The other framework is the intention- 
to-treat (ITT) framework, with which statisticians are also 
quite familiar. I find this framework to have advantages as 
well as disadvantages. On the one hand, the noncompliance 
problem that is at the heart of the ITT framework is a nice 
illustration of the econometric problem of "endogeneity" 
that leads to IV estimation in economics. The notion that 
the difference in means between experimentals and con- 
trols should be inflated by the difference in the percentage 
treated in the two groups is also common to the ITT and IV 
frameworks. On the other hand, ITT analysis is convention- 
ally discussed in the context of a randomized clinical trial 
(RCT), and AIR do so as well. This provides by necessity 
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an obvious and convincing instrument-the experimental 
treatment assignment. (For another discussion of experi- 
mental assignment as an IV, see Heckman, in press.) Yet 
in the vast majority of work in economics, observational 
data are used instead, and consequently, some of the as- 
sumptions of IV stated by AIR-the random assignment 
assumption and the exclusion restriction-play a far more 
critical role in applied work than is suggested by the ITT- 
RCT framework. 

In what follows, I make a few remarks about IV from the 
viewpoint of an economist, in hopes of further illuminating 
the interpretation and breadth of the technique. (For other 
recent work by economists on IV and identification in re- 
lated models, see Bound, Jaeger, and Baker 1995; Manski 
1990, 1994; and Staiger and Stock 1993.) 

Heterogeneous Response Interpretation 

The simultaneous equations model given by AIR in their 
equations (M)-(3) is one of the models considered in the 
first attempt at a comprehensive econometric treatment of 
the causal effects problem by Heckman and Robb (1985, 
1986). That work was in turn based on the original formu- 
lation of the dummy endogenous variable model by Heck- 
man (1978) (on which the Maddala, Bowden-Turkington, 
and Heckman-Robb papers cited by AIR in Section 2 are 
based). Although AIR find the use of unobservables in the 
specification of equations (I)-(3) and the assumptions sur- 
rounding it to be nonintuitive, it is important to stress that 
the model in those equations is nevertheless directly trans- 
latable into, and is equivalent to, the Rubin causal model 
(RCM) with one modification: to allow the treatment ef- 
fect in equation (1) to vary across individuals; for example, 

l (i). With that modification, 1 (i) =Y (1) - Yi (0) is the 
Rubin causal effect of Di on Yi given by AIR in Defini- 
tion 2. The assumptions of linearity, additive disturbances, 
and other aspects of the specification in equations (I)-(3) 
are entirely unrestrictive in this simple a model. Thus, as 
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AIR note, the issue is which framework provides the bet- 
ter intuition. Of course, one should not expect economists 
and statisticians, or even different individuals within each 
discipline, to find their intuition in the same way, and there 
is no reason not to have the model translated into multiple 
frameworks. 

While the constant effect assumption is made in most 
IV work in economics as a whole, the heterogeneous effect 
model nevertheless has a long history in certain areas. For 
example, heterogeneous effects appear in the basic multi- 
nomial discrete choice model in relative preferences for dif- 
ferent alternatives (McFadden 1974, 1984). The switching 
regression model of Heckman (1978) and Lee (1979), which 
is closely related to the comparative advantage model of 
Roy (1951), has heterogeneous response to "regime switch- 
ing" as a key characteristic. In the treatment effects litera- 
ture, Heckman and Robb (1985, 1986) made the heteroge- 
neous effect model explicit in their analysis and discuss its 
IV estimation. Bjorklund and Moffitt (1987) conducted an 
actual empirical analysis of a heterogeneous-effect model 
but estimated it with maximum likelihood instead of IV. 
There has been a steady stream of studies analyzing the 
heterogeneous response model since those papers. 

To many economists, the heterogeneous coefficient for- 
mulation has great intuitive appeal because it assigns an 
explicit parameter to the main object of interest-the true 
treatment effect for each individual i. It also gives explicit 
representation to the potential, but unobserved, treatment 
effect of noncompliers, which AIR correctly emphasize is 
so important to the conceptualization of the problem. (They 
are a little misleading in suggesting that the concept of po- 
tential outcomes is missing in the econometric formulation 
of the problem; in fact, that concept is key to the econo- 
metric formulation as well, even if less explicitly stated.) In 
addition, such a parameterization gives the monotonicity as- 
sumption a ready illustration, for one possible embodiment 
of that assumption is a model in which treatment receipt for 
individual i is a monotonic function of i3 (i); for example, 
those in the experimental group who receive the treatment 
are those who are more affected by it. 

Alternative Interpretations of IV 

Although AIR find the specification of (1)-(3) and the 
statement of IV assumptions in terms of the unobservables 
in those equations to be nonintuitive, economists usually 
gain their intuition for IV from what they see to be the im- 
plications of the assumptions for specific applications. It is 
for this reason that the RCT framework does not well illus- 
trate the source of intuition for economists, who generally 
use observational data. 

In addition, the military lottery application discussed by 
AIR is not typical of most IV applications in economics, 
for most do not involve any explicit randomization. The 
lottery example is not a pure RCT in any case, because 
the randomization was based on an intervening variable- 
an individual characteristic (birthdate). Pure RCT's instead 
randomize individuals directly into experimental and con- 
trol groups. Consequently, the lottery application requires 
one additional assumption-birthdate does not directly af- 

fect mortality-to satisfy the exclusion restriction and make 
IV possible. The fact that there are well-known seasonal ef- 
fects in birth rates (Lam and Miron 1991) that may have a 
various health-related and socioeconomic antecedents and 
consequences suggests that the validity of this additional as- 
sumption cannot be immediately accepted without further 
investigation. 

A more typical, perhaps even prosaic, economic exam- 
ple, and one that provides an alternative interpretation and 
source of intuition for IV, is the following. Suppose that 
we wish to estimate the effect of a job training program 
on future earnings, and we have data from two different 
cities on the earnings of men who have and have not gone 
through job training at some point in the past. Compar- 
ing the earnings of trained and untrained workers within 
each city alone, or pooling the data from both cities and 
making the same comparison, would yield poor estimates 
of the effect of training if the untrained workers were dif- 
ferent from the trained workers even if they had not gone 
through training; that is, if there is nonignorable selection 
bias. But if, say, city A had more funds and offered more 
training slots than city B, then the fraction of workers who 
have been trained will be higher in city A than in city B. 
Consequently, the effect of training could be estimated by 
regressing mean earnings in each city-the mean taken over 
trained and untrained workers combined-on the fraction 
of workers in the city who were trained. The resulting re- 
gression coefficient is simply the IV estimate given by AIR 
in their equation (6): 

OIV - ____ (1) 

where Yz and Dz are the means of Y and D for the groups 
Z = 1 and Z = 0. Thus the difference in means between 
the two populations is inflated by the change in the fraction 
"treated," exactly as in the ITT framework. 

The econometric assumptions necessary for this estima- 
tor to represent a causal effect in the context of AIR's equa- 
tions (1)-(3) have a ready intuition in the context of this 
example. The random assignment assumption E(Ziei) = 0 
(i.e., mean independence) is just the assumption that the 
greater number of training slots in city A is "exogenous"; 
that is, unrelated to earnings in the absence of training. 
Put differently, it is the assumption that the across-Z varia- 
tion represents a true "experiment." This assumption would 
be violated, for example, if city A obtained more training 
funds because its workers had lower earnings than those in 
city B in the first place. The exclusion restriction-which 
is implicit in equations (1)-(3) because Zi does not appear 
in equation (1)-is just the assumption that there is no di- 
rect effect of city of residence on earnings. This assumption 
would be violated if, for example, the labor market in one 
city was healthier than that in the other city, which would 
make earnings different even in the absence of training dif- 
ferences. The monotonicity assumption is just the assump- 
tion that everyone who received training in city B would 
receive training if they resided in city A. 

This example provides an alternative interpretation of 
IV, as simply representing a comparison in a different 
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dimension-in this case, a comparison across cities (i.e., 
across values of ZJ) instead of a comparison of trained and 
untrained workers within cities (i.e., across individual val- 
ues of Di). Expressing the two methods as simply com- 
parisons along different dimensions puts them on a more 
equal footing and leads to the additional observation that 
either could be correct or incorrect (or neither could be, 
of course). The across-city IV comparison would be biased 
if the allocation of city funds were based on earnings, for 
example, as noted previously; but, providing that there is 
no selection of workers into training within each city, a 
least squares regression that includes a city dummy (i.e., 
conditions on ZJ) would yield unbiased treatment effect es- 
timates. In the econometric literature, Goldberger (1972) 
was the first to note this point, showing that if selection 
into treatment status is based only on an auxiliary variable 
Zi, then one need only condition on that variable to obtain 
consistent and unbiased treatment effects (even if the coef- 
ficient on that auxiliary variable itself is biased). The later 
econometric literature clarified the distinction between this 
case-selection on observables-and the case of selection 
on unobservables. 

Much of the debate in economics involves arguments 
in specific empirical applications over whether a particu- 
lar instrument Zi does or does not improve the estimate 
of treatment effects, given that it can make things worse 
as well as better. Making such a determination is particu- 
larly difficult when it is recognized that no statistical test or 
specification test can distinguish such models at this simple 
level. If the two estimates are different, whether one esti- 
mate is significantly different from the other can be tested 
only under the null that one is correct. Although AIR state 
that IV can be subjected to "sensitivity" testing, the funda- 
mental IV assumptions cannot be tested if they are "just" 
identifying-that is, if they are a minimal and thus nec- 
essary rather than sufficient set of assumptions to obtain 
treatment effects. (See Heckman and Robb 1986, Heckman 
and Hotz 1989, and Moffitt 1989 for discussions of this 
important point.) 

The city example provides yet another interpretation of 
IV, which is as a method of aggregation (Moffitt, 1996). The 
IV estimator represents a least squares regression using ag- 
gregates taken over Yi and Di within cells of Zi. A related 
intuition is based on an analysis of variance (ANOVA) anal- 
ogy, for the IV estimator uses the covariance of Yi and Di 
"between" cities rather than "within" cities. Indeed, it is 
easy to show that the ordinary least squares (OLS) estimate 
of 01 (i.e., the estimate obtained by comparing treatments 
and comparisons in the total, pooled sample) is a weighted 
average of the IV (between) estimator and the within esti- 
mator: 

oOLS =ktIv + (Ik)O3 (2) 

where k is the fraction of the total variance of D that arises 
from the "between" and f3W is the treatment effect based on 
the within variation (i.e., the coefficient on Qi in a regres- 
sion of Yi on Di and a Zi dummy). The exact decomposition 

shown in (2) assumes that the sample size is the same in all 
cities. 

The ANOVA analogy can also be used to relate IV to the 
propensity score method of Rosenbaum and Rubin (1983). 
In the simple case of a single dummy variable Zi, condition- 
ing on the propensity score is identical to conditioning on 
Zi and hence is equivalent to the within estimator, Ow. The 
IV estimator, on the other hand, can be shown to be equiv- 
alent to that obtainable by regressing Yi on the propensity 
score itself; that is, by replacing the treatment dummy Di 
by the propensity score. (This is the two-stage least squares 
version of IV.) This yields a treatment effect estimate based 
on the "between." 
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Comment 
Paul R. ROSENBAUM 

1. INTRODUCTION 

Angrist, Imbens, and Rubin (AIR) deserve congratula- 
tions for a wonderful paper. Linking econometrics with ex- 
perimental design, they have illumined both fields. I par- 
ticularly admire the care they take in defining estimands 
with few modeling assumptions, in stating assumptions in 
tangible terms, and in examining the appropriateness and 
consequences of those assumptions. 

In this comtnent, I would like to slightly restate their ar- 
gument in terms of an artificial example, then generalize 
the argument to a larger class of estimators (the Hodges- 
Lehmann estimators), briefly indicate how one can conduct 
a sensitivity analysis in a nonrandomized study, and con- 
clude with an observation about the case in which some 
subjects have unalterable treatment assignments. 

2. AN ARTIFICIAL EXAMPLE: ENCOURAGING 
EXERCISE FOR LUNG DISEASE 

The following artificial example illustrates and restates 
several of the points made by AIR, but its main purpose is to 
aid in Section 3 in discussing a generalization of the instru- 
mental variables (IV) estimate. Table 1 describes a random- 
ized experiment with 10 subjects suffering from chronic ob- 
structive lung disease (COLD), of whom 5 were randomly 
selected and encouraged to exercise. So the randomization 
determines who was encouraged to exercise; that is, Zi. In 
fact, not all subjects complied, as indicated by Di (Zi). Sub- 
jects 1, 2, and 3 exercised as they were encouraged to do, 
but subjects 4 and 5 ignored the encouragement and did not 
exercise. Subject 6 was not encouraged to exercise (Z6 = 0) 
but did so anyway (D6(0) = 1). The outcome is forced ex- 
piratory volume (FEV), a measure of lung function, larger 
values indicating better health, recorded on a convenient in- 
teger scale. The quantity Yi(0) is the outcome that would 
have been observed from subject i in the absence of ex- 
ercise. As in AIR's exclusion restriction and in Holland's 
(1988) discussion of encouragement designs, it is exercise 
that may have an effect, but encouragement has an effect 
only if it influences exercise. In Table 1 exercise raises the 
outcome, FEV, by 3 units for all subjects; that is, the ob- 

Paul R. Rosenbaum is Professor, Department of Statistics, The Wharton 
School, University of Pennsylvania, Philadelphia, PA 19104. 

served response from subject i is Yi = Yi(O) + 3Di(Zi) 
(e.g., Y1 = Y1(O) + 3D1(1) = 5 + 3 = 8). 

Several features of Table 1 are of note. First, the FEV re- 
sponse that would be observed from subject i in the absence 
of exercise, Yi (0), is unaffected by encouragement Zi or ex- 
ercise Di (Zi), and in the theory of randomized experiments, 
Yi (0) is a fixed feature of subject i not varying with the 
random assignment of encouragement Zi. By good'fortune 
in this artificial example, the distribution of Yi (0) is per- 
fectly balanced in encouraged (Zi = 1) and control (Zi = 0) 
groups. Randomization produces such balance in expecta- 
tion in randomized experiments of all sizes, and in large 
experiments approximate balance is likely, but the exact 
balance in Table 1 is an unnecessary but tidy convenience 
useful in exposition. In short, the randomization worked- 
without treatment, the two randomized groups (Zi = 1) and 
(Zi = 0) would have had similar outcomes. The observed 
responses Yi are not balanced of course, because encour- 
agement Zi increases exercise Di (Zi), which increases Yi. 
Notice also that healthy subjects are more likely to exer- 
cise. More precisely, subjects who would have had high 
FEV absent exercise-subjects with high Yi(0)-are more 
likely to have Di(Zi) = 1. Encouragement appears to in- 
crease the amount of exercise, but subjects with low Yi(0) 
do not exercise even if encouraged. 

The traditional advice in randomized clinical trials is that 
the groups formed by randomization should be compared; 
here, the encouraged (Zi = 1) and control (Zi = 0) groups. 
The difference in means is (8 + 7 + 6 + 2 + 1)/5- (8 + 4 
+3 + 2 + 1)/5 = 6/5 = 1.2. This is a sensible estimate 
of the effect of encouragement. Exercise raises FEV by 3, 
but encouragement raises it only by 1.2 on average, be- 
cause many subjects do not exercise when encouraged and 
some exercise without encouragement. A mistaken estimate 
of the effect of exercise compares those who exercised 
(Di(Zi) = 1) to those who did not (Di(Zi) = 0)-namely, 
(8 + 7 + 6 + 8)/4 - (2 + 1 + 4 + 3 + 2 + 1)/6 = 7.250 
-2.167 = 5.083. This estimate grossly overstates the ef- 
fect of exercise because healthier subjects were more likely 
to exercise. The instrumental variables estimate starts with 
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Table 1. An Experiment Encouraging Exercise for Lung Disease 

Exercise Exercise FEV response Observed FEV 
Subject encouraged Z1 performed D1(Z1) without exercise Y1(O) response Y1 

1 1 1 5 8 
2 1 1 4 7 
3 1 1 3 6 
4 1 0 2 2 
5 1 0 1 1 
6 0 1 5 8 
7 0 0 4 4 
8 0 0 3 3 
9 0 0 2 2 

10 0 0 1 1 

the 1.2 determined previously by comparing the encour- 
aged and control groups, but it attributes the entire 1.2 to 
the increase in exercise in the encouraged group; that is, it 
divides 1.2 by the mean difference in exercise, (1 + 1 + 1 
+0+0)/5- (1+0+0+0+0)/5 2/5, so the estimate is 
1.2/(2/5) 3. 

The point made later is that this argument has nothing 
to do with means and quickly extends to sturdier estimates, 
such as the Hodges-Lehmann (HL) (Hodges and Lehmann 
1963). Also, with an instrumental variable, exact permu- 
tation inferences about an additive effect are obtained us- 
ing the random assignment of encouragement. Moreover, 
sensitivity analysis is straightforward in nonrandomized or 
observational studies. (See Hollander and Wolfe 1973 or 
Lehmann 1975 for discussion of the standard forms of the 
HL estimate, and see Maritz 1995, secs. 1 and 8.1 for dis- 
cussion of the broad scope of HL estimates with various 
technical results.) 

3. THE HODGES-LEHMANN ESTIMATE USING 
AN INSTRUMENTAL VARIABLE IN A 

RANDOMIZED EXPERIMENT 

Following AIR, assume the stable unit treatment value 
assumption (SUTVA), the exclusion restriction, and the 
nonzero average effect of Z on D. For subject i, write 
Di for the observed level of exercise, Di = Zi Di(1) 
+(I- Zi)Di(O), and write Yi for the observed outcome, 
Yi = A } Yi (1) + (1 - Di)Yi (0). The model of an ad- 
ditive effect asserts that Yi(l) - Yi(O) = T for all i, so 

i = Yi (0) + rDi, as in Table 1 where r = 3. In Section 5, 
it will be seen that the additive model need not hold for all i, 
that it suffices that additivity holds for subjects who change 
treatments in response to encouragement, but it is easier 
to discuss this separately. Write Z, D, Y, and Yo for the 
N-dimensional vectors of Zi's, Di's, Yi's, and Yi(0)'s. Write 
M for the number of encouraged subjects, M = ZTZ. In 
Table 1, M = 5. Write B for the set containing the pos- 
sible treatment assignments, so B contains (N) vectors of 
dimension N with M coordinates equal to 1 and N - M 
coordinates equal to zero. In a randomized experiment, Z 
is picked from B at random; that is, prob(Z = z) = (N)- 
for each z C B. 

Let t(Z, Y) be a statistic used to compare the encour- 
aged and control groups. For instance, t(Z, Y) might be 
the difference in sample means, say tM(Z,Y) - ZTY/ 
M - (1 - Z)TY/(N - M), or Wilcoxon's rank sum statis- 

tic, tw(Z, Y) - ZTrank(Y), where rank(Y) is the N- 
dimensional vector of ranks of the Y with average ranks 
used for ties, or the difference between the trimean in the 
encouraged group and the trimean in the control group, say 
tT(Z, Y). (Recall that the trimean is the sum of the upper 
and lower quartiles plus twice the median divided by four.) 

Let t be the expectation of t(Z, Yo) over the random- 
ization distribution of Z; that is, the average of t(z, Yo) 
over the (M) choices z c B. For the difference in means, 
tM (Z, Yo) has expectation IM = 0. For the rank sum, 
tw(Z, Yo) has expectation =w = M(N + 1)/2. For the dif- 
ference of trimeans, tT (Z, Y) has expectation LT = 0 if 
M = N/2 and tT -O 0 as M, N - M -> oX whether or not 
M= N/2. 

now, Yo = Y - DT. The HL estimate using an IV is de- 
fined to be the value -r such that t(Z, Y - D'iT) is as close as 
possible to t. For some estimators such as the difference in 
means, r may be determined by solving t(Z, Y - D') =t. 
For estimates based on rank statistics that move in discrete 
steps, there may be no r such that t(Z, Y - Dhi) = 7t ex- 
actly; then, following HL, i^ is defined as the average of the 
smallest value that is too large and the largest value that is 
too small, namely 

_ sup{T: t(Z, Y- Df) > t} + inf{T: t(Z, Y-Dr) < t} 
2 

Here = oo if there is no finite T such that t(Z, Y-DT) < t 
and r -oo if there is no finite - such that t(Z,Y - Dfr) 

> t. 
Write TM, 'W, and TT for the instrumental HL estimates 

based on tM, tw, and tT. For the difference in means, sim- 
ple algebra shows tM(Z,Y - D5-i) = t = 0 if and only if 
TM is the usual instrumental variable estimator discussed 
by AIR. If encouragement always determines the treatment 
so D = Z, then TM is the encouraged minus-control differ- 
ence in sample means, 'iw is the usual HL estimate associ- 
ated with the rank sum statistic, and XT is the difference in 
trimeans. In short, the estimate r generalizes both the usual 
IV estimate and the usual HL estimate. 

In the example in Table 1, subtracting 3 from each subject 
who exercised sets all three statistics, tM, tw, and tT, equal 
to their null expectations, so TM = = XrT = 3 in this 
particular case. This is exceptional and reflects the perfect 
balance of the Yi(O)'s in this constructed example. If Y1 in 
Table 1 were replaced by an extremely large positive value, 
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then TiM would increase dramatically, 'iw would increase 
slightly, and XT would continue to equal 3. 

Exact inference about T may be based on the randomiza- 
tion distribution of t(Z,Yo) where Yo is fixed. Consider 
first testing the null hypothesis that Ho: T T T*. Under 
the null hypothesis, the fixed responses in the absence of 
exercise, Yo, are equal to Y - DT*, which may be com- 
puted from the data. The one-sided randomization signif- 
icance level is the proportion of treatment assignments 
z c B giving a larger value of the test statistic than ob- 
served, l{z c B: t(z,Yo) ? t(Z,Yo)}J/(N), where JAI 
denotes the number of elements of the set A. A one-sided 
confidence interval for T is obtained by determining all val- 
ues of T not rejected by such a test. A two-sided 95% con- 
fidence interval is the intersection of two one-sided 97.5% 
intervals. It is notable that the test of Ho: T = 0 is identical 
to the usual randomization test of no effect, as discussed by 
Fisher (1935) or Kempthorne (1952), but this is not true for 
T* # O. 

For instance, in Table 2, to test the false hypothesis 
Ho: T = 1.5 using the rank sum test with an instrumen- 
tal variable, one computes Y - 1.5D = (6.5,5.5,4.5,2, 
1,6.5,4,3,2,1) with ranks (9.5,8,7,3.5,1.5,9.5,6,5,3.5, 
1.5), so the rank sum is 9.5+8+7+3.5+ 1.5 = 29.5. Al- 
lowing for the ties, the null expectation and variance of the 
rank sum are 27.5 and 22.5 yielding a standardized deviate 
of (29.5 - 27.5) / 22.5 .42, so the hypothesis Ho: T = 1.5 
is not rejected. Without ties, the familiar exact distribution 
of the rank sum statistic may be used. 

In short, permutation tests, confidence intervals, and 
HL estimates all use the null distribution of t(Z, YO), 
which is the usual randomization distribution (Fisher 1935; 
Kempthorne 1952, sec. 8.2). If encouragement itself Z had 
an additive effect, then one would have Yo-Y - Zi-, and 
the usual procedures for permutation inference would re- 
sult. What is new with the IV is that exercise D) and not 
encouragement Z has the additive effect, so the permuta- 
tion inference is based on Yo Y - DT, but otherwise 
permutation methods are unchanged. As it turns out, these 
considerations extend immediately for sensitivity analysis 
in observational studies. 

4. SENSITIVITY ANALYSIS USING INSTRUMENTAL 
VARIABLES IN OBSERVATIONAL STUDIES 

In the experiment in Table 1, random assignment of en- 
couragement tended to balance the distribution of Yi(O) in 
encouraged (Zi = 1) and control (Zi = 0) groups. In an 
observational study or nonrandomized experiment, subjects 
might have differing chances of receiving encouragement 
to exercise; that is, it may be quite wrong to assume that 
prob(Z = z) - (N)-1 for each z c B. Perhaps the severely 
ill would be less likely to receive encouragement than the 
less severely ill. 

It is possible to study the sensitivity of permutation infer- 
ences to departures from random assignment of treatments 
(see, for instance, Rosenbaum 1993, 1995). These tech- 
niques replace prob(Z =z) =(M)-1 with a range of distri- 

butions of treatment assignments, thereby obtaining a range 
of null distributions for t(Z, Yo). Using these techniques 
with an IV is straightforward; one calculates YO= Y-fDT 

as in Section 3 and applies the sensitivity analysis to the 
result. For instance, the sensitivity analysis gives not one 
null expectation tw = M(N + 1)/2 for the rank sum statis- 
tic, but rather a range of expectations [tw,low, tw,high] de- 
pending on a sensitivity parameter F. This yields a range 
of instrumental HL estimates obtained by approximately 
solving t(Z, Y - D?) tw,low and t(Z, Y - D)= tW,high. 

5. AVOIDING SPECULATION ABOUT SUBJECTS 
WHO IGNORE ENCOURAGEMENT 

AIR carefully focus attention on subjects who do not 
ignore encouragement; see, for instance, their proposition 
1. They call subjects who ignore encouragement "always- 
takers" if Di(l) = Di(O) = 1 or "never-takers" if Di(l) 
= Di (0) = 0. They argue, in effect, that one can say little 
about subjects who ignore encouragement because nothing 
that the experimenter does will change the treatment they 
receive. This final section briefly observes that the argument 
in Section 3 continues to hold if nothing is assumed about 
subjects who ignore encouragement. 

Following AIR, consider a randomized experiment and 
assume that Z is an instrumental variable in the sense 
of their definition 3, so Di (1) > Di (0). In addition, as- 
sume that the treatment has an additive effect for compliers 
only; that is, Yi(I) - Yi(O) = Twhenever Di(1) = 1 > 0 
= Di(0). No assumption is made about Yi(1) - Yi(0), when 
Di (1) -Di (0). Let r* be a hypothesized value for T. Then 
the adjusted responses are 

Yi(l)-T* if Di(D) =Di(O) Di 1, 

Yi(0) + (T - T*)Zi 

if Di(l) = 1 > 0 = Di(O), 

Yi(0) if Di(1) = Di(0) = 0. 

Note first that the adjusted responses Yi - DiT* will be in- 
dependent of encouragement Zi if and only if the hypothe- 
sized T* equals the true T. Also, if T* < T, then the adjusted 
responses Yi - DTi* for encouraged subjects (Zi = 1) will 
tend to be somewhat higher than those for control (Zi = 0) 
subjects, and conversely if T* > T. As a consequence, to 
render the adjusted responses independent of encourage- 
ment, one must have the correct T*, and a test statistic such 
as the rank sum statistic that is consistent when one distribu- 
tion is stochastically larger than another will, in sufficiently 
large sample sizes, reject any fixed T* & T, thereby yielding 
consistent tests, confidence intervals, and point estimates. 
In short, the procedures in Section 3 describe subjects who 
comply with no assumptions about those who ignore en- 
couragement. 
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Rejoinder 
Joshua D. ANGRIST, Guido W. IMBENS, and Donald B. RUBIN 

We thank Heckman, Greenland and Robins, Moffitt, and 
Rosenbaum for their stimulating comments on our paper. 
After making two general remarks, we address specific 
points in each comment. 

Both Heckman and Greenland and Robins stress that 
LATE is the average causal effect for a subpopulation that 
cannot be identified in the sense that we cannot label all 
individual units in the population as compliers or noncom- 
pliers. Greenland and Robins suggest that attention should 
focus on the population average treatment effect, whereas 
Heckman is more interested in the average effect for those 
who receive treatment, also the estimand of interest in Pe- 
ters (1941), Belson, (1951), Cochran (1969), and Rubin 
(1973a,b, 1977). For policy purposes, one may indeed be in- 
terested in averages for the entire population, or for specific 
subpopulations other than compliers. Within the context of 
a particular study with a specific instrument, however, the 
data are not directly informative about average effects for 
subpopulations other than compliers. A key insight from 
our work is that compliers are the only group with members 
observed taking the treatment and members observed not 
taking the treatment. Always-takers are always observed 
taking the treatment, so the data simply cannot be infor- 
mative about average treatment effects for this group, and 
similarly for never-takers. In the same vein, a clinical trial 
restricted to young men is not informative about treatment 
effects for adult women. Yet Heckman and Greenland and 
Robins appear to criticize us precisely because we limit our 
discussion of causal effects to the only subpopulation about 
which the data are directly informative. 

Following a core analysis focused on the directly es- 
timable effect, one may wish to extend the conclusions to 
broader groups. Such extensions are routine in the inter- 
pretation of clinical trials, which are seldom based on rep- 
resentative samples of the overall target population. Our 
approach makes it clear, however, that in instrumental vari- 
ables (IV) contexts, extensions to groups other than com- 
pliers can only be extrapolations. 

The second issue raised by multiple discussants is the 
propriety of our example. Clearly, an example with a bi- 
nary randomized instrument is not representative of eco- 
nomic applications of IV techniques where candidate in- 

struments are rarely based on actual randomization. A 
major reason for using this example was to stress that 
randomization alone does not make a candidate instrument 
a valid one because randomization does not make the ex- 
clusion restriction more plausible. The fact that economists 
do not always make a clear distinction between igfiorability 
and exclusion restrictions is evidenced by Moffitt's incor- 
rect comment that randomization makes the draft lottery 
"by necessity an obvious and convincing instrument" (ital- 
ics ours) for the effect of the military service. In fact, one 
contribution of our approach is to provide a framework that 
clearly separates ignorability and exclusion assumptions. 
Both statisticians and economists should find this separa- 
tion useful and clarifying. 

HECKMAN 

Heckman begins by arguing that the RCM is a version of 
the widely used econometric switching regression model. 
We view the term Rubin causal model (coined by Holland 
[1986] for work by Rubin [1974, 1978]) as referring to a 
model for causal inference where causal effects are defined 
explicitly by comparing potential outcomes. This compar- 
ison can be in the context of a randomized experiment or 
an observational study. Any element of the set of the po- 
tential outcomes could have been observed by manipulation 
of the treatment of interest, even though ex-post only one 
of them is actually observed. Moreover, the RCM defines 
the assignment mechanism, which determines which poten- 
tial outcomes are observed, as the conditional probability of 
each possible treatment assignment given the potential out- 
comes and possibly other variables. In contrast, the switch- 
ing regression model as exposited by Quandt (1958, 1972) 
is a time series model where the first part of the sample 
comes from one regression model and the second part from 
a separate regression model with an unknown switching 
point. 

A second example mentioned by Heckman is Roy (1951), 
who studied the distribution of observed incomes in a world 
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where individuals always choose the occupation with the 
highest income. Neither Roy (1951) nor Quandt (1958, 
1972) discussed causal effects. What makes the Roy model 
and the switching regression model technically closer to 
the RCM than many models used in econometric evalua- 
tions studies (e.g., many of the models in Heckman and 
Robb 1985) is their explicit focus on potential outcomes 
as distinct from observed outcomes. Only recently has the 
RCM potential outcome framework been adopted in eco- 
nomic models for causal effects (e.g., Maddala 1983, Bjork- 
lund and Moffitt 1987, Heckman 1990, and Manski 1990). 
Once potential outcomes have been introduced, one can in- 
deed define disturbances as deviations of these potential 
outcomes from their population expectations, as Heckman 
does in his comment. Our remarks regarding the difficulty 
in interpretating these disturbances (e.g., the Holland 1988 
quote given in our article), refer to papers where the dis- 
turbances are used but are not defined in terms of potential 
outcomes. 

In statistics (e.g., Fisher 1918, Neyman 1923, and other 
early references provided in Rubin 1990), as well as in 
economics, there are studies that contain elements of the 
RCM. Two early economic examples that we find more 
relevant than either the Roy or Quandt articles cited by 
Heckman are Tinbergen (1930) and Haavelmo (1944), both 
founders of modern econometrics. Tinbergen wrote: "Let 
,r be any imaginable price; and call total demand at this 
price n(ir), and total supply a(7r). Then the actual price 
p is determined by the equation a(p) = n(p), so that the 
actual quantity demanded, or supplied, obeys the condi- 
tion u -a(p) = n(p) .... The problem of determining de- 
mand and supply curves ... may generally be put as follows: 
Given p and u as functions of time, what are the functions 
n(Qr) and a(ir)?" (Tinbergen 1930, translated in Hendry and 
Morgan 1995, p. 233). This very clearly describes the poten- 
tial outcomes and the specific assignment mechanism cor- 
responding to market clearing, although there is no statis- 
tical model in Tinbergen's discussion. Similarly, Haavelmo 
wrote: "When we set up a system of theoretical relation- 
ships and use economic names for the otherwise purely the- 
oretical variables involved, we have in mind some actual ex- 
periment, or some design of an experiment, which we could 
at least imagine arranging, in order to measure those quanti- 
ties in real economic life that we thank might obey the laws 
imposed on their theoretical namesakes." (Haavelmo 1994, 
p. 6, italics in original). Although more ambiguous than 
the Tinbergen quote, this certainly suggests that Haavelmo 
viewed laws or structural equations in terms of potential 
outcomes that could have been observed by "arranging" an 
experiment. 

In his Section 2 Heckman provides an alternative set of 
assumptions for identification of the average effect on the 
treated, arguing that these assumptions are more transparent 
and have more behavioral content than our assumptions. As 
discussed in the Introduction to our reply, our focus on the 
complier average causal effect is not incidental, nor do we 
view compliers as the only interesting group. Rather, we 
focus on the average causal effect for compliers because this 

is the only directly estimable causal effect of the treatment. 
The only way to get average effects for always-takers and 
never-takers is to assume that their average treatment effects 
can be deduced from those for compliers, and this is exactly 
what Heckman has done in his assumptions without being 
explicit about it. 

To formalize this argument, let us rewrite Heckman's as- 
sumption (A-2') in our potential outcome notation: 

E [Yi (1)- Yi (0) IZi I Di (Zi) = 1] 

= E[Yi(l) - Y2(0)jDj(Zi) = 1], 
where we drop the predictor or attribute X from the discus- 
sion because all substantive points can be made in the sim- 
ple case without predictor variables. Consider the impact of 
this assumption given random assignment of Z, the exclu- 
sion restriction, and the monotonicity assumption (implied 
by most econometric models). Simple manipulation shows 
that Heckman's assumption (A-2') implies that 

E[Yi(1) - Yi(0)IDi(0) = Di(1) = 1] 

- E[Yi(l) - Y (0)jDj(0) = 0, DL() = 1]. 

In words, Heckman's assumption (A-2') amounts to assum- 
ing that the effect for always-takers is the same as that for 
compliers. Given this assumption, Heckman claims that he 
can identify a more interesting parameter: the average ef- 
fect for those who receive the treatment. But because those 
who receive the treatment are a mixture of always-takers 
and compliers, Heckman's assumptions simply assume the 
answer. In the draft lottery example, Heckman's assumption 
implies that the average effect of military service for vol- 
unteers is the same as that for draftees, an assumption that 
we carefully avoided in Angrist (1990) and in our work. 

We also view Heckman's assumption (A-2') as lacking 
in scientific (economic) content. Our assumptions restrict 
outcomes at the unit level given different assignments, so 
that-like Fisher (1918), Neyman (1923), Tinbergen (1930) 
and Haavelmo (1944)-we compare for a specific unit the 
outcomes that would be observed given different environ- 
ments. Thus our assumptions can be immediately inter- 
pretated as comparisons of outcomes in behavioral mod- 
els of utility maximizing behavior given different sets of 
constraints. In contrast, Heckman's key assumption (A-2') 
compares average outcomes for different groups of indi- 
viduals. He provides no examples where this assumption 
is plausible or can be related to the economic behavior of 
agents. 

Heckman also takes issue with our ignorability assump- 
tion, arguing that mean independence is weaker than full in- 
dependence. The second assumption obviously implies the 
first. However, as we argue elsewhere in more detail (Im- 
bens and Rubin 1994), this distinction is not meaningful in 
practice. If mean independence holds but full independence 
does not hold, then Z would be a valid instrument for the 
effect of D on Y but not for a transformation of Y such as 
log(y). It would inevitably tie the validity of the instrument 
to the specific form of the regression function, and return 
to the functional-form-dependent approach to instrumental 
variables that we avoid. 
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A secondary point in Heckman's Section 3 concerns his 
connection between ignorability and "Granger noncausal- 
ity." Holland (1986) and Granger (1986, in his comment 
on the Holland paper) discussed Granger causality in terms 
of the potential outcomes framework. Heckman's view of 
Granger causality appears to differ from those of either 
Granger or Holland. 

Heckman's main point in his Section 3 concerns the ex- 
ample and the appropriateness of IV methods in general. 
These comments are in marked contrast with his earlier 
views, as expressed in Heckman and Robb (1985): "The 
instrumental variables estimator is the least demanding in 
the a priori conditions that must be satisfied for its use .... 
It is important to notice how weak these conditions are" 
(p. 185). In contrast to this earlier view, Heckman's current 
view supports our position that instrumental variables as- 
sumptions are strong. Our concern with making such strong 
assumptions in practice motivates these sensitivity analyses 
and related discussion in Section 6, where we present pos- 
sible reasons why the IV assumptions need not be satisfied 
in our example. Heckman's specific argument is merely an- 
other possible reason to believe the exclusion restriction 
may be violated. Although we have discussed possible vi- 
olations of the key assumptions at length, we still view the 
draft lottery example as one of the most convincing exam- 
ples of IV methods in the literature. In this case the exclu- 
sion restriction certainly appears more reasonable than the 
alternative assumption of ignorable treatment, which would 
imply that valid causal inferences could be drawn from di- 
rect comparisons of veterans and nonveterans. 

We also find the draft lottery example more convincing 
than the application in Robinson (1989), cited by Heckman 
as an example where "application of IV can be justified 
in the context of heterogeneous treatments." We view the 
Robinson study as an example of an IV application where 
the critical assumptions are formulated in a way that makes 
it almost impossible to judge their plausibility. For exam- 
ple, Robinson defines endogeneity as a restriction on the 
covariance of a disturbance and a function of three dis- 
turbances. In contrast, our formulation casts the ignorabil- 
ity assumption in terms of independence of the candidate 
instrument and potential outcomes, and the exclusion re- 
striction in terms of the effect of specific manipulations on 
observed outcomes. Most importantly, despite their crucial 
role, the instruments in the Robinson study are never clearly 
defined and appear to be solely nonlinear functions of the 
predictor variables. 

Heckman's current pessimistic view of IV methods can 
also be contrasted with the development of his views on a 
class of experimental evaluation designs with randomized 
eligibility. In these designs, units are randomly assigned an 
instrument Zi with Zi = 1 implying that unit i is eligible 
for a particular treatment and Zi = 0 implying that unit i is 
not eligible to receive treatment. Formally, this is a special 
case of our model with Q (0) = 0 (no defiers or always- 
takers), and hence monotonicity is automatically satisfied. 
An alternative interpretation of this example is as a clinical 
trial with one-sided noncompliance. The exclusion restric- 

tion requires that for those who do not take the treatment 
if eligible, there is no effect of the assignment. Although 
this is a strong assumption, which need not be satisfied in 
all cases with randomized eligibility, it can be plausible in 
many cases, especially in double-blind trials. Given the ex- 
clusion restriction, and with the other assumptions satisfied 
by definition, our IV approach can be used to estimate the 
average effect for compliers; that is, those who take the 
treatment when eligible. Because all those observed to take 
the treatment must be eligible, the IV estimand, LATE (the 
average effect for compliers) is equal to the "average effect 
on the treated." Zelen (1979) and Bloom (1984) discussed 
evaluations based on such designs, and Angrist and Imbens 
(1991) and Imbens and Angrist (1994) pointed out the con- 
nection with instrumental variables. 

Heckman's (1991) original discussion of such random- 
ized eligibility designs ignored IV methods and stated only 
that "a simple mean difference comparison between treated 
and untreated persons is less biased for E[AID = 1] than 
would be produced from a mean difference comparison be- 
tween treated and untreated samples without randomized 
eligibility. In general, the simple mean difference estima- 
tor will still be biased" (p. 27, emphasis in original). More 
recently, Heckman (1995, pp. 9-10) acknowledged that IV 
methods can be used to estimate interesting average treat- 
ment effects in this context. Specifically, he writes that "this 
type of randomization [of eligibility] can be placed in an in- 
strumental variables framework .... Note that this type of 
randomization identifies E[AID = 1, X]." In this context 
Heckman's estimand E[ALID = 1, X] is actually the same 
as the local average treatment effect for units with covariate 
values X. 

ROBINS AND GREENLAND 

Robins and Greenland offer several alternative analytic 
strategies, focusing on estimation of bounds for the popu- 
lation average treatment effect. Our approach can also be 
used to generate bounds on the population average treat- 
ment effect in a straightforward fashion. Given monotonic- 
ity, there are three groups: compliers, always-takers, and 
never-takers. Given random assignment, we know in large 
samples the population fraction of the three types, and 
moreover, given the exclusion restriction, we know the av- 
erage treatment effect Yi(l) - Yj(0) for compliers, the av- 
erage of Yi(l) for always-takers, and the average of Yj(0) 
for never-takers. Without further assumptions, the two un- 
known components in the population average treatment ef- 
fect are the average of Y (0) for always-takers and the av- 
erage of Yi(l) for never-takers. The data contain no direct 
information about these two quantities. Simply letting those 
two averages vary over the support of Y gives sharp bounds 
on the population average causal effect. Under our assump- 
tions, these bounds are equal to both the Balke-Pearl and 
the Robins-Manski bounds. 

The bioequivalence example discussed by Robins and 
Greenland is a complicated one. It is clear that with four 
qualitatively different treatments, randomization of a sin- 
gle binary assignment is generally not sufficient to iden- 
tify average treatment effects for any of the four. A re- 
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lated but slightly simpler problem is that of partial com- 
pliance, where the binary assignment is to take a placebo 
or a full dose of the treatment, but individuals in the trial 
may take a partial dose (e.g., Efron and Feldman 1989). In 
related work (Angrist and Imbens 1995) we showed that in 
the RCM framework one can extend the assumptions made 
here to identify a weighted average of the slopes of the 
dose-response curves. 

MOFFITT 

Moffitt makes three main points and two minor points. He 
finds our choice of example unhelpful and our discussion 
of the literature on heterogeneous treatment effects lacking, 
and he offers an interpretation and some intuition for IV 
methods as a type of aggregation. 

Moffitt also remarks that in the draft lottery example the 
assignment was not a true randomized clinical trial because 
the randomization was linked to birth dates, and incorrectly 
suggests this may affect the validity of the estimation of 
the complier average causal effect. Randomization does not 
have to be at the unit level. Given the stable unit treatment 
value assumption (SUTVA), the specific form of clustering 
present in this design does not affect the validity of the 
instrument in the presence of the seasonality effects Moffitt 
mentions, or of any other effects of birth dates on outcomes. 
We note, however, that in principle there are effects of the 
clustering on the precision of estimation. 

In another remark, Moffitt claims that IV assumptions 
cannot be tested. Our independence assumptions (see also 
our discussion of Heckman's comment) do in fact impose 
restrictions on the joint distribution of the observables, as 
we discuss in Imbens and Rubin (1994). See also Balke and 
Pearl (1993) and Pearl (1996), who discuss the incompati- 
bility of certain distributions with the IV assumptions given 
in this article. 

Moffitt's first main point, regarding the choice of exam- 
ple, has been discussed in the Introduction to our rejoinder. 
Moffitt's second point concerns the treatment of heteroge- 
neous effects in the econometric literature. A number of 
authors, including Heckman and Robb (1985) and Heck- 
man (1990), have indeed discussed the estimation of models 
with heterogeneous effects using IV. However, the identifi- 
cation conditions they present generally are too strong to 
be useful in practice. A key condition of Heckman (1990) 
is the requirement that the support of the instrument cover 
the entire real line (whereas the instrument in our veterans 
application is a binary variable). 

Moffitt also mentions Bjorklund and Moffitt (1987) as 
modeling heterogeneous treatment effects. This is an inter- 
esting application formulating the causal effects in terms 
of potential outcomes, although the specific model relies 
heavily on functional form and distributional assumptions 
rather than instruments to achieve identification. 

Finally, Moffitt offers an additional example that provides 
an alternative interpretation for IV methods as aggregating 
within subpopulations defined by the instrument. This inter- 
pretation is useful, and in particular the analysis of variance 
(ANOVA) analogy to the difference between least squares 
regression and IV estimation offers an interesting perspec- 

tive. However, Angrist (1991) has already discussed the 
grouping interpretation of IV estimators and given histor- 
ical background for this idea, which dates back to Durbin 
(1954) and Friedman (1957). In addition, we do not find 
Moffitt's specific example of grouping very convincing. It is 
not clear why a comparison of earnings by city has a causal 
interpretation in this example. Because the candidate instru- 
ment in this case is closer to an attribute than a cause (in 
the Holland 1986 and Cox 1986 sense), the causal interpre- 
tation of the resulting IV estimate will be correspondingly 
weak. 

ROSENBAUM 

Rosenbaum makes some very interesting suggestions re- 
garding alternative methods for inference. He also extends 
our sensitivity analysis to cover sensitivity to nonignorable 
assignment of the instrument. Both parts of his comment 
are welcome contributions to the discussion of IV methods. 
One issue that has limited the dialogue between economists 
and statisticians is the fact that econometric simultaneous 
equations models were not perceived as being interesting 
or relevant by the vast majority of statisticians. One of our 
goals here was to make at least some of these models acces- 
sible to the wider community of statisticians and to stimu- 
late their contributions. We view Rosenbaum's comment as 
an early payoff to this effort. 

Rosenbaum's first point concerns the lack of robustness 
of means. He suggests using more robust estimators such 
as the Hodges-Lehman estimator. It is interesting to note 
that despite the proliferation of discussions of median re- 
gression and more generally quantile regression as alter- 
natives to mean regression in econometrics (e.g., Buchin- 
sky 1994, Chamberlain 1994), there has been little work 
on robust alternatives for moment-based instrumental vari- 
ables techniques (exceptions are Amemiya 1982 and Powell 
1983). Clearly, the lack of robustness that motivated me- 
dian regression as an alternative to mean regression applies 
equally well to IV problems. Rosenbaum's suggestion of 
the Hodges-Lehman estimator is novel and clearly deserves 
further attention. 

Rosenbaum also points out that in typical economic ap- 
plications the instrument is unlikely to be completely ran- 
dom, echoing Moffitt's point about our example of the draft 
lottery as an instrument not being representative of appli- 
cations of IV methods in economics. This point is clearly 
valid and bolsters the case for a sensitivity analysis of the 
type Rosenbaum has suggested, here and in earlier work 
(e.g., Rosenbaum and Rubin 1983). 

Finally, Rosenbaum points out that in his analysis of 
the Hodges-Lehman estimator, one need not make as- 
sumptions about the effect of the treatment for those 
who ignore encouragement. This important point can be 
made even stronger. One need not even define Yi(l) for 
never-takers, and similarly one need not define Yi(0) for 
always-takers. All we need to assume for units with Di(0) 

D= D(1) is equality of the two potential outcomes; that is, 
Yi(0, Di(0)) Yi(1, Di(1)), a weak form of the exclusion 
restriction. 
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CONCLUSION 

The comments on our article cover a wide range of opin- 
ions, partly reflecting the gap between competing paradigms 
for evaluation research in statistics and econometrics. We 
believe that the gap between the two approaches can be nar- 
rowed. We hope that our article will make statisticians more 
appreciative of the insights offered by the IV framework in- 
vented by econometricians, while making economists more 
aware of the benefits of causal inference conducted in the 
potential outcomes framework developed by statisticians. 
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