
MATH 556: MATHEMATICAL STATISTICS I

MULTIVARIATE PROBABILITY DISTRIBUTIONS: EXAMPLES

Discrete bivariate distributions: We consider two variables X1 and X2 that are both discrete. We can
suppose that both variables take values on the integers, Z. A discrete bivariate probability mass function
is a function of two arguments

fX1,X2(x1, x2)

that distributes probability across the possible values of the vector (X1, X2) so that

fX1,X2(x1, x2) = PX1,X2((X1 = x1) ∩ (X2 = x2)) ≡ PX1,X2(X1 = x1, X2 = x2)

for −∞ < x1 < ∞ and −∞ < x2 < ∞. The function fX1,X2(x1, x2) is the joint probability mass function:
it has two basic properties

• “specifies probabilities”
0 ≤ fX1,X2(x1, x2) ≤ 1 for all x1, x2

• “sums to one”
∞∑

x1=−∞

∞∑
x2=−∞

fX1,X2(x1, x2) = 1.

although fX1,X2(x1, x2) may be zero for some arguments.

We can think of fX1,X2(x1, x2) as specifying the values in a probability table.

X2

1 2 3
1 fX1,X2(1, 1) fX1,X2(1, 2) fX1,X2(1, 3)
2 fX1,X2(2, 1) fX1,X2(2, 2) fX1,X2(2, 3)

X1 3 fX1,X2(3, 1) fX1,X2(3, 2) fX1,X2(3, 3)
4 fX1,X2(4, 1) fX1,X2(4, 2) fX1,X2(4, 3)
5 fX1,X2(5, 1) fX1,X2(5, 2) fX1,X2(5, 3)

Example: For 1 ≤ x1 ≤ 5, 1 ≤ x2 ≤ 3

fX1,X2(x1, x2) =
(x1 + x2)

75

X2

1 2 3
1 2/75 3/75 4/75
2 3/75 4/75 5/75

X1 3 4/75 5/75 6/75
4 5/75 6/75 7/75
5 6/75 7/75 8/75

In the above example,

5∑
x1=1

3∑
x2=1

(x1 + x2)

75
=

1

75

5∑
x1=1

3∑
x2=1

(x1 + x2) =
1

75

[
3

5∑
x1=1

x1 + 5

3∑
x2=1

x2

]

=
1

75

[
3
5× 6

2
+ 5

3× 4

2

]
=

1

75
[45 + 30] = 1.
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We define the joint cumulative distribution function FX1,X2(x1, x2) by

FX1,X2(x1, x2) = PX1,X2(X1 ≤ x1, X2 ≤ x2) =

x1∑
t1=−∞

x2∑
t2=−∞

fX1,X2(t1, t2)

that is, by summing probabilities in the joint pmf over a range of values up to and including (x1, x2)
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FX1,X2(3, 6) = PX1,X2(X1 ≤ 3, X2 ≤ 6) =
3∑

t1=0

6∑
t2=0

fX1,X2(t1, t2)
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FX1,X2(8, 2) = PX1,X2(X1 ≤ 8, X2 ≤ 2) =
8∑

t1=0

2∑
t2=0

fX1,X2(t1, t2)

Example 1 A bag contains ten balls:

• five red;

• three yellow;

• two white;

Four balls are selected, with all such selections being equally likely. Let
• X1 denote the number of red balls selected;

• X2 denote the number of yellow balls selected.
Then using combinatorial arguments, we see that the joint pmf of X1 and X2 is given by

fX1,X2(x1, x2) =

(
5

x1

)(
3

x2

)(
2

4− x1 − x2

)
(
10

4

)
for (x1, x2) such that the combinatorial terms are defined, and zero when the terms are not. We need
(x1, x2) simultaneously to satisfy

0 ≤ x1 ≤ 5 0 ≤ x2 ≤ 3 0 ≤ 4− x1 − x2 ≤ 2

in order to have a non-zero probability. Total number of selections:
(
10

4

)
= 210.

Red (x1) Yellow (x2) White Count
0 2 2 3
0 3 1 2
1 1 2 15
1 2 1 30
1 3 0 5
2 0 2 10
2 1 1 60
2 2 0 30
3 0 1 20
3 1 0 30
4 0 0 5

fX1,X2(x1, x2)

X2

0 1 2 3
0 0.0000 0.0000 0.0143 0.0095
1 0.0000 0.0714 0.1429 0.0238
2 0.0476 0.2857 0.1429 0.0000

X1 3 0.0952 0.1429 0.0000 0.0000
4 0.0238 0.0000 0.0000 0.0000
5 0.0000 0.0000 0.0000 0.0000
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The marginal mass function: Suppose that the joint pmf for X1 and X2 is denoted fX1,X2(., .). Then
the marginal pmf for X1, fX1(.) is given by

fX1(x1) = PX1(X1 = x1) =
∞∑

x2=−∞
PX1,X2(X1 = x1, X2 = x2)

that is

fX1(x1) =

∞∑
x2=−∞

fX1,X2(x1, x2)

This result uses a partitioning argument:

(X1 = x1) =
∞⋃

x2=−∞
(X1 = x1) ∩ (X2 = x2)

For example

PX1(X1 = 2) = PX1,X2(X1 = 2, X2 = 1) + PX1,X2(X1 = 2, X2 = 2) + PX1,X2(X1 = 2, X2 = 3).

If fX1,X2(x1, x2) specifies the values in a probability table, we compute the marginal pmf

• for X1 by summing across the rows of the table;

• for X2 by summing down the columns of the table.

X2

1 2 3 fX1(.)
1 fX1,X2(1, 1) fX1,X2(1, 2) fX1,X2(1, 3) fX1(1)
2 fX1,X2(2, 1) fX1,X2(2, 2) fX1,X2(2, 3) fX1(2)

X1 3 fX1,X2(3, 1) fX1,X2(3, 2) fX1,X2(3, 3) fX1(3)
4 fX1,X2(4, 1) fX1,X2(4, 2) fX1,X2(4, 3) fX1(4)
5 fX1,X2(5, 1) fX1,X2(5, 2) fX1,X2(5, 3) fX1(5)

fX2(.) fX2(1) fX2(2) fX2(3) 1

Example 2 [Previous example]
Four balls selected from 10.

• X1 denote the number of red balls selected;

• X2 denote the number of yellow balls selected.

The joint pmf of X1 and X2 is given by

fX1,X2(x1, x2) =

(
5

x1

)(
3

x2

)(
2

4− x1 − x2

)
(
10

4

)
for (x1, x2) such that the combinatorial terms are defined, and zero when the terms are not.

We can compute the marginal pmf for X1 by summing probabilities in the joint probability table.
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fX1(0) =

(
5

0

)(
3

2

)(
2

2

)
+

(
5

0

)(
3

3

)(
2

1

)
(
10

4

) =
3 + 2

210
=

5

210

fX1(1) =

(
5

1

)(
3

1

)(
2

2

)
+

(
5

1

)(
3

2

)(
2

1

)
+

(
5

1

)(
3

3

)(
2

0

)
(
10

4

) =
15 + 30 + 5

210
=

50

210

fX1(2) =

(
5

2

)(
3

0

)(
2

2

)
+

(
5

2

)(
3

1

)(
2

1

)
+

(
5

2

)(
3

0

)(
2

2

)
(
10

4

) =
10 + 60 + 30

210
=

100

210

fX1(3) =

(
5

3

)(
3

0

)(
2

1

)
+

(
5

3

)(
3

1

)(
2

0

)
(
10

4

) =
20 + 30

210
=

50

210

fX1(4) =

(
5

4

)(
3

0

)(
2

0

)
(
10

4

) =
5

210

Note: In this example we can compute fX1(.) directly using the hypergeometric formula

fX1(x1) =

(
5

x1

)(
5

4− x1

)
(
10

4

)
for 0 ≤ x1 ≤ 5 and 0 ≤ 4− x1 ≤ 5.

x1 Numerator

0

(
5

0

)(
5

4

)
= 1× 5 = 5

1

(
5

1

)(
5

2

)
= 5× 10 = 50

2

(
5

2

)(
5

3

)
= 10× 10 = 100

3

(
5

3

)(
5

1

)
= 10× 5 = 50

4

(
5

4

)(
5

0

)
= 5× 1 = 5

The marginal pmfs fX1(x1) and fX2(x2) have all the properties of single variable pmfs; specifically
∞∑

x1=−∞
fX1(x1) =

∞∑
x1=−∞

∞∑
x2=−∞

fX1,X2(x1, x2) = 1.
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The conditional mass function: Once we have the joint pmf

fX1,X2(x1, x2) = PX1,X2(X1 = x1, X2 = x2)

and the marginal pmf
fX1(x1) = PX1(X1 = x1)

we can consider conditional pmfs. We have that if PX1(X1 = x1) > 0, then the conditional probability
that X2 = x2, given that X1 = x1, is

P (X2 = x2|X1 = x1) =
PX1,X2(X1 = x1, X2 = x2)

PX1(X1 = x1)

For a fixed value of x1, we can consider how this conditional probability varies as argument x2 varies.
The conditional probability mass function for X2, given that X1 = x1, is denoted

fX2|X1
(x2|x1)

and defined by
fX2|X1

(x2|x1) = P (X2 = x2|X1 = x1)

whenever PX1(X1 = x1) > 0.

The conditional pmfs are obtained by taking ‘slices’ through the joint pmf, and then standardizing
the slice so that the probabilities sum to one. Recall that

fX2|X1
(x2|x1) =

P (X1 = x1, X2 = x2)

P (X1 = x1)
=

fX1,X2(x1, x2)

fX1(x1)
=

fX1,X2(x1, x2)
∞∑

t2=−∞
fX1,X2(x1, t2)

.

Given X1 = 2, we define the conditional pmf fX2|X1
(x2|2) by examining the second row of the table.

X2

1 2 3 fX1(.)
1 fX1,X2(1, 1) fX1,X2(1, 2) fX1,X2(1, 3) fX1(1)
2 fX1,X2(2, 1) fX1,X2(2, 2) fX1,X2(2, 3) fX1(2)

X1 3 fX1,X2(3, 1) fX1,X2(3, 2) fX1,X2(3, 3) fX1(3)
4 fX1,X2(4, 1) fX1,X2(4, 2) fX1,X2(4, 3) fX1(4)
5 fX1,X2(5, 1) fX1,X2(5, 2) fX1,X2(5, 3) fX1(5)

fX2(.) fX2(1) fX2(2) fX2(3) 1

Given X2 = 3, we define the conditional pmf fX1|X2
(x1|3) by examining the third column of the table.

X2

1 2 3 fX1(.)
1 fX1,X2(1, 1) fX1,X2(1, 2) fX1,X2(1, 3) fX1(1)
2 fX1,X2(2, 1) fX1,X2(2, 2) fX1,X2(2, 3) fX1(2)

X1 3 fX1,X2(3, 1) fX1,X2(3, 2) fX1,X2(3, 3) fX1(3)
4 fX1,X2(4, 1) fX1,X2(4, 2) fX1,X2(4, 3) fX1(4)
5 fX1,X2(5, 1) fX1,X2(5, 2) fX1,X2(5, 3) fX1(5)

fX2(.) fX2(1) fX2(2) fX2(3) 1

Note: We have the fundamental relationship

fX1,X2(x1, x2) = fX1(x1)fX2|X1
(x2|x1)

whenever fX1(x1) > 0.
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Continuous case: joint density function: If X1 and X2 are two continuous random variables, then we
can still consider statements of the form

PX1,X2((X1 ≤ x1) ∩ (X2 ≤ x2))

and hence define the joint cumulative distribution function cdf

FX1,X2(x1, x2) = P ((X1 ≤ x1) ∩ (X2 ≤ x2))

for any pair of real numbers (x1, x2).

The joint cdf has the following properties:

• “starts at zero”
lim

x1−→−∞
lim

x2−→−∞
FX1,X2(x1, x2) = 0

• “ends at one”
lim

x1−→∞
lim

x2−→∞
FX1,X2(x1, x2) = 1

• “non-decreasing in x1 and x2 in between”

FX1,X2(x1, x2) ≤ FX1,X2(x1 + h, x2)

FX1,X2(x1, x2) ≤ FX1,X2(x1, x2 + h)

for all x1, x2, and any h > 0.

Furthermore, we have that

lim
x1−→∞

FX1,X2(x1, x2) = PX1,X2(X1 < ∞, X2 ≤ x2) = PX1(X2 ≤ x2) = FX2(x2)

and similarly
lim

x2−→∞
FX1,X2(x1, x2) = FX1(x1).

Regions of integration: to compute the joint cdf, we accumulate probability over the shaded region,
the rectangle

(−∞, x1]× (−∞, x2],

to compute FX1,X2(x1, x2). However, as in the single variable case, we must have

PX1,X2(X1 = x1, X2 = x2) = 0

for all x1 and x2.

−4 −2 2 4 6 8 10
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x2

FX1,X2(3, 5) = PX1,X2(X1 ≤ 3, X2 ≤ 5)
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FX1,X2(8, 2) = PX1,X2(X1 ≤ 8, X2 ≤ 2)

FX1,X2(−1, 5) = PX1,X2(X1 ≤ −1, X2 ≤ 5)
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FX1,X2(−1, 5) = PX1,X2(X1 ≤ −1, X2 ≤ 5)

Joint pdf: As in the single variable case, we introduce the joint probability density function (joint pdf)

fX1,X2(x1, x2)

to describe how probability is spread around the possible values, where

FX1,X2(x1, x2) =

∫ x1

−∞

∫ x2

−∞
fX1,X2(t1, t2) dt2 dt1

that is, to compute FX1,X2(x1, x2) we integrate fX1,X2(x1, x2) over the rectangle

(−∞, x1]× (−∞, x2].

We compute the double integral as follows: writing∫ x1

−∞

{∫ x2

−∞
fX1,X2(t1, t2) dt2

}
dt1
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• fix t1, and perform the first (inner) integration∫ x2

−∞
fX1,X2(t1, t2) dt2

in the ‘strip’ at t1 to obtain a function g(t1, x2), say;

• perform the second (outer) integration ∫ x1

−∞
g(t1, x2) dt1.

to obtain the joint cdf.

−4 −2 2 4 6 8 10

−4

−2

2

4

6

8

10

t1 = 2

t1

t2

FX1,X2(5, 7) = PX1,X2(X1 ≤ 5, X2 ≤ 7)

The joint pdf describes how the probability is spread ‘point-by-point’ across the real plane. By the
probability axioms, we must have that

• the joint pdf is non-negative

fX1,X2(x1, x2) ≥ 0 −∞ < x1 < ∞,−∞ < x2 < ∞

(as the joint cdf is non-decreasing in both x1 and x2);

• the joint pdf integrates to 1 ∫ ∞

−∞

{∫ ∞

−∞
fX1,X2(x1, x2) dx2

}
dx1 = 1

(as the probability must accumulate to 1 over the real plane).
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Example 3 Suppose X1 and X2 are continuous with joint pdf

fX1,X2(x1, x2) = c(x1 + x2) 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1

with fX1,X2(x1, x2) = 0 otherwise. Then for 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1,

FX1,X2(x1, x2) =

∫ x1

−∞

{∫ x2

−∞
fX1,X2(t1, t2) dt2

}
dt1 =

∫ x1

0

{∫ x2

0
c(t1 + t2) dt2

}
dt1

=

∫ x1

0

[
c

(
t1t2 +

1

2
t22

)]x2

0

dt1

=

∫ x1

0
c

(
t1x2 +

1

2
x22

)
dt1

=

[
c

(
1

2
t21x2 +

1

2
x22t1

)]x1

0

=
c

2

(
x21x2 + x1x

2
2

)
We require that FX1,X2(1, 1) = 1, so we must have c = 1. That is

fX1,X2(x1, x2) =

{
(x1 + x2) 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1

0 otherwise

(no probability outside of the unit square).

FX1,X2(x1, x2) =



0 x1 < 0 or x2 < 0 1(
x21x2 + x1x

2
2

)
/2 0 ≤ x1, x2 ≤ 1 2(

x21 + x1
)
/2 0 ≤ x1 ≤ 1, x2 > 1 3(

x2 + x22
)
/2 0 ≤ x2 ≤ 1, x1 > 1 4

1 x1 > 1 and x2 > 1 5

Note: regions for FX1,X2(x1, x2)

0.5 1 1.5 2

0.5

1

1.5

2
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2

3

4

5

x1

x2

Note: To compute FX1,X2(x1, x2) we always integrate the joint pdf below and to the left of (x1, x2).
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Figure 1: fX1,X2(x1, x2): image and contour plot
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Figure 2: FX1,X2(x1, x2): image and contour plot
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Figure 3: fX1,X2(x1, x2): contour plot
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Figure 4: FX1,X2(x1, x2): contour plot
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We compute fX1,X2(x1, x2) from FX1,X2(x1, x2) using partial differentiation:

fX1,X2(x1, x2) =
∂2

∂x1∂x2
{FX1,X2(x1, x2)}

• Step 1: differentiate FX1,X2(x1, x2) with respect to x2 while holding x1 constant;

• Step 2: take the result of Step 1, and differentiate it with respect to x1.

We can regard the calculation as

fX1,X2(x1, x2) =
∂

∂x1

{
∂FX1,X2(x1, x2)

∂x2

}

Example 4 [Previous example] For 0 ≤ x1, x2 ≤ 1,

FX1,X2(x1, x2) =
1

2

(
x21x2 + x1x

2
2

)
• Step 1:

∂FX1,X2(x1, x2)

∂x2
=

1

2

(
x21 + 2x1x2

)
• Step 2:

∂
{
1
2

(
x21 + 2x1x2

)}
∂x2

=
1

2
(2x1 + 2x2) = (x1 + x2)

Note: In the partial differentiation, we could choose to differentiate with respect to x1 in Step 1, and
then differentiate the result with respect to x2: we will get the same answer

∂2

∂x1∂x2
{FX1,X2(x1, x2)} =

∂2

∂x2∂x1
{FX1,X2(x1, x2)} .

This is a general property of partial derivatives that holds provided the result of each side is continu-
ous.
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Constant pdfs: If the joint pdf is constant over a finite region Y ∈ R2

fX1,X2(x1, x2) = c (x1, x2) ∈ Y
with fX1,X2(x1, x2) zero otherwise, then to compute probabilities associated with this pdf, for example

PX1,X2((X1, X2) ∈ A) =

∫∫
A

fX1,X2(x1, x2) dx2dx1

we must compute the area of A and divide it by the area of X.

−1 2 4 6 8 10
−1

2

4

6

8

10 ∫∫
Y

fX1,X2
(x1, x2) dx2dx1 = 1

X

x1

x2

−1 2 4 6 8 10
−1
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4

6

8

10

P ((X1, X2) ∈ A) =
∫∫
A

fX1,X2
(x1, x2) dx2dx1

X

A

x1

x2
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FX1,X2
(5, 4) =

∫ 5

−∞

∫ 4

−∞
fX1,X2

(x1, x2) dx2dx1

X

x1

x2
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The marginal density function: Once the joint pdf fX1,X2(x1, x2) is specified, we define the marginal
probability density functions (marginal pdfs) analogously to the discrete case.

We have for X1 the marginal pdf fX1(x1) for each fixed x1 by

fX1(x1) =

∫ ∞

−∞
fX1,X2(x1, x2) dx2

and for X2 the marginal pdf fX2(x2) for each fixed x2 by

fX2(x2) =

∫ ∞

−∞
fX1,X2(x1, x2) dx1

Example 5 [Distribution on the unit square]
For

fX1,X2(x1, x2) =

{
(x1 + x2) 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1

0 otherwise

We have for 0 ≤ x1 ≤ 1

fX1(x1) =

∫ ∞

−∞
fX1,X2(x1, x2) dx2

=

∫ 1

0
(x1 + x2) dx2

=

[
x1x2 +

x22
2

]1
0

= x1 +
1

2
.

with fX1(x1) = 0 otherwise. Also for 0 ≤ x1 ≤ 1

FX1(x1) =

∫ x1

−∞
fX1(t1) dt1

=

∫ x1

0

(
t1 +

1

2

)
dt2

=

[
t21
2
+

t1
2

]x1

0

=
x21
2

+
x1
2
.

with FX1(x1) = 0 for x1 < 0 and FX1(x1) = 1 for x1 > 1.
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1
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x1

fX1
(x1)

fX1(x1) = x1 + 1/2 for 0 ≤ x1 ≤ 1

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

x1

FX1
(x1)

FX1(x1) = (x21 + x1)/2 for 0 ≤ x1 ≤ 1

We can perform a similar calculation and obtain

fX2(x2) = x2 +
1

2
0 ≤ x2 ≤ 1

with fX2(x2) = 0 otherwise, and

FX2(x2) =
(x22 + x2)

2
0 ≤ x2 ≤ 1

with FX2(x2) = 0 for x2 < 0 and FX2(x2) = 1 for x2 > 1.
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The conditional density function: Once we have the joint pdf

fX1,X2(x1, x2)

and the marginal pdf
fX1(x1)

we can consider conditional pdfs.

The conditional probability density function for X2, given that X1 = x1, is denoted

fX2|X1
(x2|x1)

and defined by

fX2|X1
(x2|x1) =

fX1,X2(x1, x2)

fX1(x1)

whenever fX1(x1) > 0. The function fX2|X1
(x2|x1) is a pdf in x2 for every fixed x1. That is, for every

fixed x1 where fX1(x1) > 0,

• the conditional pdf is non-negative

fX2|X1
(x2|x1) ≥ 0 −∞ < x2 < ∞;

• the conditional pdf is integrates to 1 over x2∫ ∞

−∞
fX2|X1

(x2|x1) dx2 = 1.

We can define fX1|X2
(x1|x2) in an identical fashion. Conditional pdfs are obtained by taking a ‘slice’

through the joint pdf at X1 = x1, and then standardizing the slice so that the density integrates to one.
As in the discrete case, we have the chain rule factorization

fX1,X2(x1, x2) = fX1(x1)fX2|X1
(x2|x1)

whenever fX1(x1) > 0.

As ever, we can exchange the roles of X1 and X2 to obtain that

fX1,X2(x1, x2) = fX2(x2)fX1|X2
(x1|x2).

whenever fX1(x1) > 0.

Example 6 [Distribution on the unit square]
For

fX1,X2(x1, x2) =

{
(x1 + x2) 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1

0 otherwise

we can consider conditioning on values of x1 or x2 in the interval [0, 1]. As

fX1(x1) = x1 +
1

2
0 ≤ x1 ≤ 1.

we have for each fixed x1 in this range

fX2|X1
(x2|x1) =

fX1,X2(x1, x2)

fX1(x1)
=

(x1 + x2)

x1 + 1/2

for 0 ≤ x2 ≤ 1, with the function zero for other values of x2.

fX2|X1
(x2|x1) =

(x1 + x2)

x1 + 1/2
for 0 ≤ x2 ≤ 1, with x1 = 0.2
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fX2|X1
(x2|0.2)

fX2|X1
(x2|x1) =

(x1 + x2)

x1 + 1/2
for 0 ≤ x2 ≤ 1, with x1 = 0.2
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x2

fX2|X1
(x2|0.6)

fX2|X1
(x2|x1) =

(x1 + x2)

x1 + 1/2
for 0 ≤ x2 ≤ 1, with x1 = 0.6
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1
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2

x2

fX2|X1
(x2|0.95)

fX2|X1
(x2|x1) =

(x1 + x2)

x1 + 1/2
for 0 ≤ x2 ≤ 1, with x1 = 0.95

19



General multivariate distributions: All of the above ideas extend naturally to more than two vari-
ables. If (X1, . . . , Xd) form an n-dimensional random vector, we can consider the joint pdf

fX1,...,Xd
(x1, . . . , xd)

and joint cdf
FX1,...,Xd

(x1, . . . , xd).

We can consider marginalization by integrating out n−k < n of the dimensions to leave a k-dimensional
probability distribution: for example if d = 4 and k = 2, we have

fX1,X2(x1, x2) =

∫ ∞

−∞

∫ ∞

−∞
fX1,X2,X3,X4(x1, x2, x3, x4) dx3dx4

or
fX2,X4(x2, x4) =

∫ ∞

−∞

∫ ∞

−∞
fX1,X2,X3,X4(x1, x2, x3, x4) dx1dx3

and so on. This construction works with any d and any k. We can also define conditional pdfs for
example

fX1,X3|X2,X4
(x1, x3|x2, x4) =

fX1,X2,X3,X4(x1, x2, x3, x4)

fX2,X4(x2, x4)

provided the denominator fX2,X4(x2, x4) > 0.

Independence
Continuous random variables (X1, . . . , Xd) are independent if

fX1,...,Xd
(x1, . . . , xd) =

d∏
i=1

fXi(xi)

for all vectors (x1, . . . , xd) ∈ Rd. Equivalently they are independent if

FX1,...,Xd
(x1, . . . , xd) =

d∏
i=1

FXi(xi)

for all vectors (x1, . . . , xd) ∈ Rd. Random variables that are not independent are termed dependent.

In the bivariate case, X1 and X2 are independent if

fX2|X1
(x2|x1) = fX2(x2)

for all (x1, x2) where the conditional pdf is defined, or equivalently if

fX1|X2
(x1|x2) = fX1(x1)

for all (x1, x2).
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Note: A straightforward way to exclude the possibility of two variables being independent is to assess
whether the set of values, X12 (called the support of the joint pdf), for which

fX1,X2(x1, x2) > 0

is identical to the Cartesian product of the two sets, X1 and X2 for which the marginal densities satisfy
fX1(x1) > 0 and fX2(x2) > 0. That is, if

X12 ̸= X1 × X2

then X1 and X2 are not independent.

−1 2 4 6 8 10

−1

2

4

6

8

10

X12

X1 = [0, 6]

X2 = [0, 6]

X12 = {(x1, x2) : 0 ≤ x1, x2 ≤ 6, 0 ≤ x1 + x2 ≤ 6}

X1

X2

We can find points where

• fX1(x1) > 0 and fX2(x2) > 0, but

• fX1,X2(x1, x2) = 0

(for example, the point (5, 5)), so we do not meet the requirement for independence that

fX1,X2(x1, x2) = fX1(x1)fX2(x2)

for all (x1, x2) ∈ R2.
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