MATH 556: MATHEMATICAL STATISTICS I
MULTIVARIATE PROBABILITY DISTRIBUTIONS: EXAMPLES

Discrete bivariate distributions: We consider two variables X; and X5 that are both discrete. We can
suppose that both variables take values on the integers, Z. A discrete bivariate probability mass function
is a function of two arguments

fxixz (21, 22)
that distributes probability across the possible values of the vector (X1, X») so that
Px, x, (X1 = 21) N (X2 = 12)) = Px, x, (X1 = 21, Xo = 1)

for —o0o < 21 < 0o and —oo < x9 < oo. The function fx, x,(z1,x2) is the joint probability mass function:
it has two basic properties

[x1.x, (21, 22) =

* “specifies probabilities”
0< fx,,x,(x1,22) <1 forall zy,x9

e “sums to one”

Z Z Ixi.x (21, 22) = 1.

T1=—00 L2=—00
although fx, x,(z1,z2) may be zero for some arguments.

We can think of fx, x,(z1,22) as specifying the values in a probability table.

Xo
1 2 3
1 fX17X2(171) fX1,X2(172) le,X2(173)
2 fX17X2<271) fX17X2(272) fX1,X2(2a3)
X1 3 X1,X2(371) X1,X2(372) X1,X2(3a3)
4 X1,X2 (4> 1) X1,X2 (4a 2) X1,X2 (4a 3)
o X17X2(57 1) Xl,X2(572) X1,X2(5’3)
Example: For 1 <z; <5,1 <29 <3
(x1 4+ x2)
Ix1,x, (21, m2) = e
Xo
1 2 3
1 2/75 3/75 4/75
2 3/75 4/75 5/75
X7 3 4/75 5/75 6/75
4|5/75 6/75 T/75
5|6/75 7/75 8/75

In the above example,
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We define the joint cumulative distribution function Fx, x,(x1,z2) by

1

x2
Fx, x, (01, 02) = Px, x, (X1 S 31, Xa <o) = Y > fx x(ta, t2)

ti=—0tg=—0

that is, by summing probabilities in the joint pmf over a range of values up to and including (z1, z2)

3 6
FX11X2(376) = PX17X2(X1 <3, Xy < 6) = Z Z le,Xz(tlth)

t1=01t2=0
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8 2
Fx, x,(8,2) = Px, x,(X1 <8, X2 <2)= > > fx, x,(t1,t2)

t1=01t2=0
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Example 1 A bag contains ten balls:
¢ five red;
¢ three yellow;
¢ two white;

Four balls are selected, with all such selections being equally likely. Let

¢ X, denote the number of red balls selected;

¢ X, denote the number of yellow balls selected.
Then using combinatorial arguments, we see that the joint pmf of X; and X» is given by

) 3 2
<$1> <$2> (4 s wz)
10
(+)
for (z1, x2) such that the combinatorial terms are defined, and zero when the terms are not. We need
(21, z2) simultaneously to satisfy

0<z1 <5 0<a9<3 0<4—x21—29<2

Ix1.x, (21, 22) =

10
in order to have a non-zero probability. Total number of selections: ( 4 > = 210.

Red (z1) Yellow (x2) White Count

8 g % g le,X2($1,332)

1 1 2 15 X

1 2 1 30 0 1 2 3
1 3 0 5 01 0.0000 0.0000 0.0143 0.0095
5 0 9 10 1]0.0000 0.0714 0.1429 0.0238
5 1 1 60 21 0.0476 0.2857 0.1429 0.0000
5 9 0 30 X, 310.0952 0.1429 0.0000 0.0000
3 0 1 50 40.0238 0.0000 0.0000 0.0000
3 1 0 30 510.0000 0.0000 0.0000 0.0000
4 0 0 5



The marginal mass function: Suppose that the joint pmf for X; and X5 is denoted fx, x,(.,.). Then
the marginal pmf for X, fx, (.) is given by

o
fx,(@1) = Px, (X1 =21) = Y Px,x,(X1 =21, X3 = )

To=—00
that is
o0
@)= D> fx,x(21,2)
To=—00
This result uses a partitioning argument:
o0
(Xl :.731): U (Xl :$1)m(X2:x2)
To=—00

For example
PXl(Xl = 2) = PXl,XQ(Xl =2,X9 = 1) + PXl,Xg(Xl =2,X9 = 2) + PXl,Xg(Xl =2,Xg = 3)
If fx, x,(z1,x2) specifies the values in a probability table, we compute the marginal pmf

* for X by summing across the rows of the table;

¢ for X, by summing down the columns of the table.

X2

1 2 3 le()

1 le,X2(171) fX17X2(172) fX1,X2(173) fX1(1>

2 fX17X2(27 1) fX1,X2(2>2) fX1,X2(273) fX1(2)

Xl 3 le,X2(37 1) fX17X2(372) le,X2(373) fX1(3)
4 le,X2(4’ 1) fX1,X2(472) fX1,X2(4a 3) fX1(4)

3 fX17X2(5’ 1) fX1,X2(572) fX1,X2(573) fX1(5)

fX2(') fXQ(l sz(Q) fX2(3) 1

Example 2 [Previous example]
Four balls selected from 10.

¢ X denote the number of red balls selected;

* X, denote the number of yellow balls selected.

() ()i )
(+)

for (z1, z2) such that the combinatorial terms are defined, and zero when the terms are not.

The joint pmf of X; and X3 is given by

[x1.x, (21, 22) =

We can compute the marginal pmf for X; by summing probabilities in the joint probability table.
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Note: In this example we can compute fx, (.) directly using the hypergeometric formula

()i )

4
for0<z;<5and 0<4—z; <5.
T Numerator
5\ /5
:1 =
0 0)\4 x5=25
5\ /5
1 = 10 =
1) \s 5 x10=50
5\ /5
2 =1 10=1
5 )3 0x10 00
5\ /5
:1 =
3 3]\ 0x5=250
5\ /5
4 = 1=
1)\ 5 X 5

The marginal pmfs fx, (1) and fx, (x2) have all the properties of single variable pmfs; specifically

o0

Z fxi (1) = Z Z Ix1,x, (@1, ) = 1.

r1=—00 I1=—00 Ta=—00

5



The conditional mass function: Once we have the joint pmf
Ix1,%: (21, 22) = Px, x, (X1 = 21, Xo = 29)

and the marginal pmf
fxi (1) = Pxy (X1 = 21)

we can consider conditional pmfs. We have that if Py, (X; = x1) > 0, then the conditional probability
that Xy = x9, given that X; = x4, is
Py, x,(X1 =21, X2 = x2)

P(X2 = xQ‘Xl = .%'1) = PX (Xl — 1’1)
1 =

For a fixed value of z1, we can consider how this conditional probability varies as argument z varies.
The conditional probability mass function for X, given that X; = x, is denoted

Fxo)x, (z2]m1)

and defined by
Ixo1x, (2|71) = P(Xo = 22| Xy = 771)
whenever Px, (X; = z1) > 0.

The conditional pmfs are obtained by taking ‘slices” through the joint pmf, and then standardizing
the slice so that the probabilities sum to one. Recall that

Ixo1x, (T2|21) = P(Xy =21, Xo =m3) _ fx;5x,(®1,22) _ fx,.x0(21,72) .
2|41 P(X1 = ZC1) le ($1) i le,Xz(l'th)

to=—00

Given X; = 2, we define the conditional pmf fx,x, (72|2) by examining the second row of the table.

Xo
1 2 3 le( )
1 fXLXz(l?l) fX17X2(172) fX1,X2(173) fX1(1>
2 fX17X2(27 1) fX11X2(272> fX1,X2(273) fX1(2)
X103 | fxix(31) fxix0(3,2)  fxy,x2(3,3) | fxi(3)
4 fX1,X2(4’ 1) fX1,X2(472) fX1,X2(47 3) fX1(4)
) fX17X2(57 1) fX1,X2<572) le,X2(573) fX1(5)
sz(') fXQ(l fX2(2) fX2(3) 1
Given X3 = 3, we define the conditional pmf fx, |x, (71|3) by examining the third column of the table.
Xo
1 2 3 le(.)
1 fX1,X2(1’1) fX1,X2(172) fX1,X2(173) fXI(]‘)
2 fX17X2(27 1) fX1,X2<272) fX1,X2(273) fX1(2)
X1 3 x0,x2(3,1) fx1,x2(3,2)  fxy x2(3,3) | X, (3)
4 X17X2(47 1) X1,X2 (472> Xl,X2(4a 3) fX1 (4)
) X17X2(57 1) X1,X2(572) X1,X2(5a3) fX1(5)
sz(') sz(l sz(Q) fX2(3 1

Note: We have the fundamental relationship
Ixi.x,(21,22) = fx (371)fX2\X1 (z2]71)

whenever fx, (z1) > 0.



Continuous case: joint density function: If X; and X are two continuous random variables, then we
can still consider statements of the form

Px, x,((X1 < 21) N (X2 < 22))
and hence define the joint cumulative distribution function cdf
Fx, x,(z1,22) = P((X1 < 71) N (X2 < 22))
for any pair of real numbers (x1, z2).
The joint cdf has the following properties:

e “starts at zero”
lim lim FXl,XQ(l'l;mQ) =0
T1—>— 00 L2—>—0O0
e “ends at one”

lim lim Fx, x,(z1,22) =1
T —>00 Ty —+00 ’

* “non-decreasing in z1 and x3 in between”
Fx, x5 (71, 72) < Fxy x, (21 + h, 22)
Fx, x,(71,72) < Fx; x, (21,22 + h)
for all 1, z2, and any h > 0.
Furthermore, we have that

lim  Fx, x,(71,72) = Px, x,(X1 < 00, Xo < 29) = Px, (X2 < 22) = Fx,(72)

1 —>00
and similarly
lim FX1,X2 (:1:1, 3:‘2) = FX1 (1‘1)
Tro—>r00

Regions of integration: to compute the joint cdf, we accumulate probability over the shaded region,
the rectangle
(=00, z1] X (—00, x2],

to compute Fx, x,(z1,22). However, as in the single variable case, we must have
Px, x, (X1 =21, X0 =22) =0
for all 1 and xs.

10 £

FX1,X2<375) = PXl,Xz(Xl <3,Xo < 5)



10 %

1

Fx,,x,(8,2) = Px, x,(X1 < 8, X5 < 2)

Fx, %, (=1,5) = Pxy x, (X1 < =1, X5 <5)

10 %
2

8 |

Fxy,x,(=1,5) = Py x, (X1 < =1, X5 <5)

Joint pdf: As in the single variable case, we introduce the joint probability density function (joint pdf)

Ix1.x, (21, 22)

to describe how probability is spread around the possible values, where

1 To
Fx, x,(z1,22) = / / Ix1.x, (t1, t2) dta dtq
—00 — 00

that is, to compute Fx, x,(x1,z2) we integrate fx, x,(x1,22) over the rectangle
(_007 xl] X (—OO, '152]‘

We compute the double integral as follows: writing

1 9
/ {/ x1.x,(t1, t2) dt2} dty

8



¢ fix t1, and perform the first (inner) integration

T2
/ [x1.x, (L1, t2) dta
— 00

in the ‘strip” at ¢; to obtain a function ¢(t1, z2), say;
¢ perform the second (outer) integration
z1
/ g(t1, x2) diy.
—00

to obtain the joint cdf.

10 %

ty
,

Fx,,x,(5,7) = Px; x, (X1 <5, X2 < 7)

The joint pdf describes how the probability is spread “point-by-point” across the real plane. By the
probability axioms, we must have that

¢ the joint pdf is non-negative
fx1.x,(x1,22) >0 —00 <21 < 00,—00 < Ty < 00

(as the joint cdf is non-decreasing in both 1 and z3);

¢ the joint pdf integrates to 1

/ {/ fX17X2(x17332) d$2} dry =1

(as the probability must accumulate to 1 over the real plane).



Example 3 Suppose X; and X, are continuous with joint pdf

Ix1,x0 (21, x2) = c(x1 + x2) 0<21<1,0<22<1

T To
{/ c(ty + t2) dtg} dtq

0
1 1
l: (tth + t2>] dt1
2 0
1

with fx, x,(z1,22) = 0 otherwise. Then for 0 < z; < 1,0 <z <1,

x1 T2
FXl,XQ(l‘l,ZL‘Q) :/ {/ le’XQ(tl,tQ) dtQ}

1
<t11‘2 + 513 dtq

)
()]

(1:1562 + $1x%)

- |
y
g

|

We require that F'x, x,(1,1) = 1, so we must have ¢ = 1. That is

! ( ) = (x14+2x2) 0<21<1,0<2,<1
X1,X2\ 11, 12) = 0 otherwise

(no probability outside of the unit square).

¢

0 21 <0orzy <0 (1)

(l’%l‘g + xlwg) /2 0<zi,220<1 @
Fx, x,(x1,22) = (:c% +x1) /2 0<xz1 <1l,a9>1 @
(za+a2) /2 0<z<l,z1>1 (4)
1 z1>land zo > 1 @

Note: regions for Fx, x,(z1,x2)

' ®

-1 7 iR

0.5 1

N SN SSSSSSNSYNSSNSSSSS SN

(1) 0.5 1 15 >

Note: To compute Fx, x,(z1,22) we always integrate the joint pdf below and to the left of (x1, x2).
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le,Xz (l’l, .’L'Q)
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Figure 2: Fx, x,(z1,z2): image and contour plot
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Figure 3: fx, x,(z1,2): contour plot
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Y1
Figure 4: Fx, x,(z1,x2): contour plot
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We compute fx, x,(z1,22) from Fx, x,(x1,z2) using partial differentiation:
62
Ixix0 (21, 32) = m {Fx1,x (21, 22)}

* Step 1: differentiate Fx, x,(z1,z2) with respect to x2 while holding = constant;

¢ Step 2: take the result of Step 1, and differentiate it with respect to z;.

We can regard the calculation as

8 {8FX1,X2($1,.’E2)}

[x1.x, (21, 22) = . o2

Example 4 [Previous example] For 0 < z1,29 <1,

1
FX1,X2(x17372) = 5 (ﬁxz -+ xlxg)
e Step 1:
8FX1»X2($17$2)
61‘2

1
= 3 (x% + 2x1x2)

e Step 2:
03 (3 +2ma2)} 1
8.%‘2 - 2

(221 + 2m2) = (21 + 22)

Note: In the partial differentiation, we could choose to differentiate with respect to x; in Step 1, and
then differentiate the result with respect to x2: we will get the same answer

82 82
8«%’18:62 {FX17X2(x17x2>} = 83328:61 {FX1,X2(x1,x2>} .

This is a general property of partial derivatives that holds provided the result of each side is continu-
ous.

14



Constant pdfs: If the joint pdf is constant over a finite region Y € R?

fX17X2($1,5U2) =c ($17$2) c)y

with fx, x,(x1,22) zero otherwise, then to compute probabilities associated with this pdf, for example

Px, x,(X1,X2) € A) = / Ix1.x, (21, 22) deodxy
A

we must compute the area of A and divide it by the area of X.

10 ¢

2

Jf fx1,x, (21, 22) deadey =1
Y

10 &

{
10

o 4
o 1

2

P((X1,X2) € A) = [[ fx, x5 (z1,72) dzadzy
| ‘A

X

10 »

o 4
o 1

2

5 4
X1,X5(5,4) = / / fxq,xqo (@1, ®2) dvoday
—oo ) —oo

X

f
-1
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The marginal density function: Once the joint pdf fx, x,(z1,22) is specified, we define the marginal
probability density functions (marginal pdfs) analogously to the discrete case.

We have for X; the marginal pdf fx, (1) for each fixed z; by

fx (1) = / T (@ a) do

and for X the marginal pdf fx,(z2) for each fixed x2 by

fxy(w2) = /_Oo fx1,x5 (71, 22) dvq

Example 5 [Distribution on the unit square]

For
0<z21<1,0<22<1

(x1 + z2)
otherwise

Ix,x0 (21, 22) = { 0

We have for0 < z; <1
Fx (1) = / Fx0 (21, 22) d

1
—/ (1'1 +$2) dzo
0
.fU2 !
= [901332 + 2]
2 0

1
:x1+§~

with fx, (x1) = 0 otherwise. Also for 0 < z; <1
1
Fy,(z1) = / fx, (t1) dty

1 1 d
= ti+ =) dt
/0 <1+2> 2

-[44]
2 2],
_ i m
2 2

with Fx, (z1) =0for z; < 0and Fx,(x;) =1forz; > 1

16



1.5 | fxq (@)

0.5

1

0.5 1 15

le(xl) =x1 + 1/2 for0<z; <1
Fx, (z1)
1]
0.8 |
0.6 |
0.4 1
0.2
z1
0.2 0.4 0.6 0.8 1

Fx, (1) = (22 + 21)/2for0 < a1 < 1
We can perform a similar calculation and obtain
1
sz(.’L'Q):.’L'2+§ 0<2y<1

with fx,(z2) = 0 otherwise, and

(23 + x2)

Fx,(r2) = 5

0<ay<1

with Flx,(z2) = 0 for 2 < 0 and Fx,(z2) = 1 for zo > 1.
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The conditional density function: Once we have the joint pdf

fx1,x2 (w1, @2)
and the marginal pdf
fx, (21)
we can consider conditional pdfs.
The conditional probability density function for X, given that X; = 1, is denoted
Ixa)x, (22]21)

and defined by

f 1,32 i
I, (w2|@1) = W

whenever fx, (z1) > 0. The function fx,|x, (r2|71) is a pdf in z2 for every fixed z;. That is, for every
fixed x; where fx, (z1) > 0,

¢ the conditional pdf is non-negative

Ixo)x, (z2]21) >0 — 00 < Ty < O0;

¢ the conditional pdf is integrates to 1 over z
o0
/ Ixo1x, (22]71) dg = 1.
—00

We can define fx,|x,(z1]|z2) in an identical fashion. Conditional pdfs are obtained by taking a “slice’
through the joint pdf at X; = z1, and then standardizing the slice so that the density integrates to one.
As in the discrete case, we have the chain rule factorization

Ixi,x (71, 22) = fx, (21) fx x, (72]71)
whenever fx, (z1) > 0.
As ever, we can exchange the roles of X; and X» to obtain that
fxix0 (1, 2) = fx, (22) fxy x5 (T1]22).

whenever fx, (z1) > 0.

Example 6 [Distribution on the unit square]
For

! ( ) = (x14+x2) 0<21<1,0<2,<1
X1,X2\ 1, 12) = 0 otherwise

we can consider conditioning on values of z; or z in the interval [0, 1]. As

1
fX1($1)21'1+§ 0<x <1.
we have for each fixed x; in this range

thXQ(xlaxZ) _ (x1 + x2)
fxy (1) z1+1/2

for 0 < z3 < 1, with the function zero for other values of x.

(@1 +25)

r1+1/2

fxa1x, (@2|z1) =

fX2|X1 (a;2|:z:1) = for 0 < x9 < 1, with xr1 = 0.2

18



2 T Fxy)x, (#210.2)

1.5 +

0.5 +

t t t
0.5 1 1.5 2

(x1 + x2)

12 for0 <z <1,withz; =0.2

Ixo)x, (T2]21) =

2 1 fxy|x (22]0.6)

1.5

0.5 +

t t t
0.5 1 1.5 2

(1 + 22)

f < <1 ith = 0.
12 or0 <zo <1,withx; =0.6

fX2|X1 (x2|$1) =

2 | fxy1x, (#2]0.95)

1.5 +

0.5 +

t t t
0.5 1 1.5 2

(x1 + z2)

12 for 0 < z9 < 1, with z; = 0.95

fX2|X1(1‘2!$1) =

19



General multivariate distributions: All of the above ideas extend naturally to more than two vari-

ables. If (X7, ..., X,) form an n-dimensional random vector, we can consider the joint pdf
fxi,xa (215 2a)

and joint cdf
FXh_,_,Xd(a;l, . ,l‘d).

We can consider marginalization by integrating out n—k < n of the dimensions to leave a k-dimensional
probability distribution: for example if d = 4 and k = 2, we have

[ee] o0
fxix, (21, 22) = / / IX1.X0,X3,%, (21, X2, T3, £4) drzday
— 00 — 00

or

[ee] o0
fxo, x4 (22, 24) =/ / Ix1,X0,X3,X, (21, T2, T3, 4) dr1dxs
— 00 — 00

and so on. This construction works with any d and any k. We can also define conditional pdfs for
example

x1.X0.X5.x, (21, X2, T3, x4)
Fxy Xalxe. X, (@1, 3|22, 14) = 2
1ol X, X (@1, 23l2, 24) Ix2,x4 (72, 74)

provided the denominator fx, x,(x2,z4) > 0.

Independence
Continuous random variables (X1, ..., X,) are independent if
d
Ixi,oxg (@1, 1) = Hin ()
i=1
for all vectors (71, ...,z4) € R% Equivalently they are independent if
d
Fx, . x,(x1,...,2q) = HFXZ-(%)
i=1
for all vectors (71, . ..,74) € R%. Random variables that are not independent are termed dependent.

In the bivariate case, X; and X are independent if
Ixax, (@221) = fx,(22)
for all (1, z2) where the conditional pdf is defined, or equivalently if
Ixx, (w1]z2) = fx, (21)

for all (1, z2).

20



Note: A straightforward way to exclude the possibility of two variables being independent is to assess
whether the set of values, X2 (called the support of the joint pdf), for which

fX1,X2 ($1>$2) >0

is identical to the Cartesian product of the two sets, X; and X; for which the marginal densities satisfy
le (xl) > 0 and fX2 (332) > 0. That is, if
Xi2 # X1 X Xg

then X; and X are not independent.

10 £

X
Xl = [Oa 6]
51Xy = [0,6]

X2 :{($1,$2)20§$1,$2 <6,0 <z + 22 SG}

X1

We can find points where
* fx,(z1) >0and fx,(x2) > 0, but
* fx,xo(x1,22) =0
(for example, the point (5, 5)), so we do not meet the requirement for independence that
fxi % (w1, m2) = fx, (21) fx, (22)

for all (z1, x2) € R2.
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