The characteristic function for a random variable X with pmf/pdf f_X is defined for $t \in \mathbb{R}$ as

$$
\phi_X(t) = \mathbb{E}[e^{itX}] = \mathbb{E}[\cos(tX) + i\sin(tX)] = \mathbb{E}[\cos(tX)] + i\mathbb{E}[\sin(tX)].
$$

In general $\phi_X(t)$ is a complex-valued function. If X is discrete, taking values on $\mathbb{X} = \{x_1, x_2, \ldots\}$

$$
\mathbb{E}[\cos(tX)] = \sum_{j=1}^{\infty} \cos(tx_j)f_X(x_j)
$$

$$
\mathbb{E}[\sin(tX)] = \sum_{j=1}^{\infty} \sin(tx_j)f_X(x_j)
$$

Now,

$$
\sum_{j=1}^{\infty} \cos(tx_j)f_X(x_j) \leq \sum_{j=1}^{\infty} |\cos(tx_j)f_X(x_j)| \leq \sum_{j=1}^{\infty} f_X(x_j) = 1
$$

with a similar result for \sin, so the two expectations are finite, so $\phi_X(t)$ exists. The same argument works for X continuous, where

$$
\phi_X(t) = \int_{-\infty}^{\infty} e^{itx} f_X(x) \, dx = \int_{-\infty}^{\infty} \cos(tx)f_X(x) \, dx + i \int_{-\infty}^{\infty} \sin(tx)f_X(x) \, dx
$$

Example Double-Exponential (or Laplace) distribution

$$
f_X(x) = \frac{1}{2} e^{-|x|} \quad x \in \mathbb{R}
$$

Then

$$
\phi_X(t) = \int_{-\infty}^{\infty} e^{itx} \frac{1}{2} e^{-|x|} \, dx = \int_{0}^{\infty} \cos(tx)e^{-x} \, dx + i \int_{0}^{\infty} \sin(tx)e^{-x} \, dx.
$$

Integrating by parts we have

$$
\phi_X(t) = [-\cos(tx)e^{-x}]_0^{\infty} + \int_{0}^{\infty} t\sin(tx)e^{-x} \, dx
$$

$$
= 1 + [-t\sin(tx)e^{-x}]_0^{\infty} - \int_{0}^{\infty} t^2\cos(tx)e^{-x} \, dx
$$

$$
= 1 - t^2 \phi_X(t)
$$

Therefore

$$
\phi_X(t) = \frac{1}{1 + t^2}
$$
Example Normal distribution

\[f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}, \quad x \in \mathbb{R} \]

Then

\[\varphi_X(t) = \int_{-\infty}^{\infty} e^{itx} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx. \]

Completing the square

\[\varphi_X(t) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} e^{-it^2/2} dx. \]

Therefore

\[\varphi_X(t) = e^{-t^2/2}. \]

The following results also hold:

- \(\varphi_X(t) \) is **continuous** for all \(t \); this follows as \(\cos \) and \(\sin \) are continuous functions of \(x \), and sums and integrals of continuous functions are also continuous. In fact, we can prove the stronger result that \(\varphi_X(t) \) is **uniformly continuous** on \(\mathbb{R} \).
- \(\varphi_X(t) \) is **bounded in modulus** by 1, as

 \[|\varphi_X(t)| \leq \mathbb{E}[|e^{itX}|] = \mathbb{E}[1] = 1 \]

- The derivatives of \(\varphi_X(t) \) are not guaranteed to be finite; we can consider

 \[\varphi_X^{(r)}(t) = \frac{d^r}{dt^r} \{ \varphi_X(t) \} \]

 but this quantity may not be defined, or finite, at any given \(t \); if \(r = 1 \)

 \[\varphi_X^{(1)}(t) = \mathbb{E}[X \cos(tX)] + i \mathbb{E}[X \sin(tX)]. \]

 but there is no guarantee that either expectation is finite. For example, for the Cauchy distribution

 \[\varphi_X(t) = e^{-|t|} \]

 which undefined derivative at \(t = 0 \).

Inversion Formula

A general inversion formula in 1-D gives the method via which \(f_X \) or \(F_X \) can be computed from \(\varphi_X \).

- Let \(\overline{F}_X(x) \) be defined by

 \[\overline{F}_X(x) = \frac{1}{2} \left\{ F_X(x) + \lim_{y \to x^-} F_X(y) \right\}. \]

 Then for \(a < b \)

 \[\overline{F}_X(b) - \overline{F}_X(a) = \frac{1}{2\pi} \lim_{T \to \infty} \int_{-T}^{T} \left(\frac{e^{-iat} - e^{-ibt}}{it} \right) \varphi_X(t) \, dt \]

- For an alternative statement, let \(a \) and \(a + h \) for \(h > 0 \) be continuity points of \(F_X \). Then

 \[F_X(a + h) - F_X(a) = \frac{1}{2\pi} \lim_{T \to \infty} \int_{-T}^{T} \left(\frac{1 - e^{-ith}}{it} \right) e^{-ita} \varphi_X(t) \, dt \]
In certain circumstances we may compute \(f_X \) from \(\varphi_X \) more straightforwardly.

(I) If \(X \) is discrete taking values on the integers. Then

\[
\varphi_X(t) = \sum_{x=-\infty}^{\infty} e^{itx} f_X(x).
\]

For integer \(j \)

\[
\int_{-\pi}^{\pi} e^{i(j-x)t} \, dt = \begin{cases}
2\pi & \text{if } x = j \\
0 & \text{if } x \neq j
\end{cases}
\]

Thus for any fixed \(x \)

\[
\frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-ixt} \varphi_X(t) \, dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-ixt} \left(\sum_{j=-\infty}^{\infty} e^{itj} f_X(j) \right) \, dt = \frac{1}{2\pi} \sum_{j=-\infty}^{\infty} \left(\int_{-\pi}^{\pi} e^{i(j-x)t} \, dt \right) f_X(j) = f_X(x)
\]

(as only the term when \(j = x \) is non-zero in the sum) so we have the inversion formula: for \(x \in \mathbb{Z} \)

\[
f_X(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-ixt} \varphi_X(t) \, dt.
\]

(II) If \(X \) is continuous and absolutely integrable

\[
\int_{-\infty}^{\infty} |\varphi_X(t)| \, dt < \infty
\]

then

\[
f_X(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-ixt} \varphi_X(t) \, dt
\]

Example Suppose that for \(t \in \mathbb{R} \),

\[
\varphi_X(t) = e^{-|t|}.
\]

Clearly this function is absolutely integrable, so we have

\[
f_X(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} e^{-|t|} \, dt = \frac{1}{\pi} \int_{0}^{\infty} \cos(tx)e^{-t} \, dt
\]

\[
= \frac{1}{\pi} \frac{1}{1 + x^2}
\]

by the result in equation (I). Hence \(X \sim \text{Cauchy} \).

Diagnosing Discrete or Continuous Distributions

(I) If

\[
\lim_{|t| \to \infty} \sup |\varphi_X(t)| = 1
\]

then \(X \) is often a discrete random variable. Technically, \(X \) may also have a singular distribution: see, or example

www.math.mcgill.ca/dstephens/556/Papers/Koopmans.pdf

3
but such distributions are rarely encountered in practice.

(II) If
\[
\limsup_{|t| \to \infty} |\varphi_X(t)| = 0
\]
then \(X\) is continuous; consequently, if
\[
\lim_{|t| \to \infty} |\varphi_X(t)| = 0
\]
then \(X\) is continuous.

INTERPRETING THE CHARACTERISTIC FUNCTION.
To get a further understanding of characteristic function, we consider the inversion formulae. For discrete random variables defined on the integers, we have
\[
f_X(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} e^{-ixt} \varphi_X(t) \, dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} [\cos(\pi t) - i \sin(\pi t)] \varphi_X(t) \, dt
\]
One way to think about this integral is via a discrete approximation; fix
\[
t_j = -\pi + \frac{2\pi j}{N} \quad j = 0, 1, \ldots, N
\]
and write
\[
f_X(x) \approx \frac{1}{2\pi} \left\{ \sum_{j=0}^{N} \cos(xt_j)\varphi_X(t_j) - i \sum_{j=0}^{N} \sin(xt_j)\varphi_X(t_j) \right\}
\]

(I) Suppose \(f_X\) is degenerate at \(x_0\), that is,
\[
f_X(x) = \begin{cases}
1 & x = x_0 \\
0 & x \neq x_0
\end{cases}
\]
Then by elementary calculations
\[
\varphi_X(t) = \cos(x_0t) + i \sin(x_0t)
\]
so that
\[
\text{Re}(\varphi_X(t)) = \cos(x_0t) \quad \text{Im}(\varphi_X(t)) = \sin(x_0t)
\]
that is, pure sinusoids with period \(2\pi/x_0\).

(II) Suppose \(f_X\) is discrete, then as above
\[
\varphi_X(t) = \sum_{j=1}^{\infty} \cos(tx_j)f_X(x_j) + i \sum_{j=1}^{\infty} \sin(tx_j)f_X(x_j)
\]
so that
\[
\text{Re}(\varphi_X(t)) = \sum_{j=1}^{\infty} \cos(tx_j)f_X(x_j) \quad \text{Im}(\varphi_X(t)) = \sum_{j=1}^{\infty} \sin(tx_j)f_X(x_j)
\]
that is, a weighted sum of pure sinusoids with period \(2\pi/x_1, 2\pi/x_2, \ldots\), with weights determined by \(f_X\).